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SUMMARY

Neurons in sensory cortex integrate multiple influ-
ences to parse objects and support perception.
Across multiple cortical areas, integration is charac-
terized by two neuronal response properties: (1) sur-
round suppression—modulatory contextual stimuli
suppress responses to driving stimuli; and (2)
‘‘normalization’’—responses tomultiple driving stim-
uli add sublinearly. These depend on input strength:
for weak driving stimuli, contextual influences facili-
tate or more weakly suppress and summation
becomes linear or supralinear. Understanding the
circuit operations underlying integration is critical
to understanding cortical function and disease. We
present a simple, general theory. A wealth of integra-
tive properties, including the above, emerge robustly
from four cortical circuit properties: (1) supralinear
neuronal input/output functions; (2) sufficiently
strong recurrent excitation; (3) feedback inhibition;
and (4) simple spatial properties of intracortical con-
nections. Integrative properties emerge dynamically
as circuit properties, with excitatory and inhibitory
neurons showing similar behaviors. In new record-
ings in visual cortex, we confirm key model predic-
tions.

INTRODUCTION

A key task of sensory cortex is to globally integrate localized sen-

sory inputs and internal signals to parse objects and support

perception. While the nature of this computation is not under-

stood, much is known about its manifestation in neuronal firing.

Sensory cortical neurons are selective for the structure of a stim-

ulus in their classical receptive field (CRF), a localized region of

sensory space. Such selectivity, e.g., orientation selectivity in

primary visual cortex (V1), is primarily determined by the

ensemble of feedforward inputs the cell receives (Priebe and

Ferster, 2008). Modulation of responses by more global influ-

ences, including stimuli outside the CRF (Cavanaugh et al.,

2002a), additional stimuli within the CRF (Carandini and Heeger,

2012), or spatial attention (Reynolds andHeeger, 2009), primarily

alter the gain rather than selectivity of responses, suggesting a

key role of cortical circuitry in dynamically modulating response

gain.

The modulatory cortical circuit manifests in two properties

observed across multiple cortical areas:

(1) Sublinear response summation or ‘‘normalization’’. The

response to two stimuli shown simultaneously in the

CRF is typically closer to the average than the sum of

the responses to the two stimuli shown individually. That

is, the responses sumsublinearly. This has been observed

in monkeys in areas V1, MT, V4, IT, and MST as well as in

cat V1 and many noncortical structures (reviewed in Car-

andini and Heeger, 2012). However, when stimuli are

weak, cortical summation can become linear or supralin-

ear, as observed in MT (Heuer and Britten, 2002) and

MST (T. Oshiro et al., Program No. 360.19, 2013, Neuro-

science Meeting Planner, Soc. Neurosci., abstract).

(2) Surround suppression. Stimuli outside the CRF (in the

‘‘surround’’) typically suppress responses to CRF stimuli.

Surround suppression has been observed in multiple

cortical areas, including V1 and V2 in cats (Anderson

et al., 2001; Ozeki et al., 2009; Sengpiel et al., 1997;

Tanaka and Ohzawa, 2009; Vanni and Casanova, 2013;

Wang et al., 2009; Nienborg et al., 2013), mice (Song

and Li, 2008; Adesnik et al., 2012; Van den Bergh et al.,

2010), and monkeys (Cavanaugh et al., 2002a, 2002b;

Sceniak et al., 1999; Schwabe et al., 2010; Shushruth

et al., 2009; Van den Bergh et al., 2010), monkey visual

areas V4 (Sundberg et al., 2009), MT (Tsui and Pack,

2011), LIP (Falkner et al., 2010) and motor area frontal

eye fields (Cavanaugh et al., 2012), and areas serving

other sensory modalities (e.g., see Sachdev et al.,

2012). However, surround stimuli can facilitate responses

to weak center stimuli (e.g., Schwabe et al., 2010; Seng-

piel et al., 1997). Furthermore, even while CRF size re-

mains fixed across stimulus strengths (Song and Li,
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2008), summation field size—the stimulus size giving

maximal response—shrinks monotonically with stimulus

strength, as observed in cat (Anderson et al., 2001;

Song and Li, 2008), monkey (Cavanaugh et al., 2002a;

Sceniak et al., 1999; Shushruth et al., 2009) and mouse

(Nienborg et al., 2013) V1 and in monkey V2 (Shushruth

et al., 2009) and MT (Tsui and Pack, 2011). Thus,

surrounding regions that are facilitating for weak CRF

stimuli become increasingly suppressive for stronger

CRF stimuli.

These response properties may reflect a canonical computa-

tion of cortical circuits (Carandini and Heeger, 2012), often sum-

marized phenomenologically as divisive normalization: each

neuron’s response is a supralinear ‘‘unnormalized response’’ to

driving CRF inputs divided by an increasing function of the un-

normalized responses of all neurons in a local network (Carandini

and Heeger, 2012). However, normalization cannot easily

describe facilitation of response to weak center inputs by sur-

round regions that cannot themselves drive response (though

see Cavanaugh et al., 2002a), so here we will use ‘‘normaliza-

tion’’ only to describe summation of CRF inputs and not surround

effects.

Here, we demonstrate a surprisingly simple circuit motif that

gives a new and unified circuit-level explanation of this canonical

computation. Previous circuit models of these phenomena (e.g.,

models reviewed in Carandini and Heeger, 2012; Schwabe et al.,

2010; Somers et al., 1998) have typically addressed normaliza-

tion or surround suppression, but not both. They have largely

relied on increases in inhibitory input to explain these phenom-

ena. Such increases have not been found in many normalization

phenomena (Carandini and Heeger, 2012), and inhibitory input

appears decreased in surround suppression (Ozeki et al.,

2009) (though see Adesnik et al., 2012; Haider et al., 2010,

addressed in Discussion). Consistent with this, inhibitory and

excitatory neurons behave similarly in our model, e.g., both

show normalization or suppression of responses, which arise

as collective network effects. Models of the contrast depen-

dence of surround suppression (Schwabe et al., 2010; Somers

et al., 1998) have assumed intrinsic properties of inhibitory cells

that rendered them ineffective at low contrasts. While such

mechanisms cannot be ruled out (e.g., Kapfer et al., 2007), our

unified model instead provides a network explanation of

contrast-dependent effects.

We have previously discussed one mechanism underlying our

model (Ahmadian et al., 2013). It is based on the fact that a

cortical neuron’s firing rate is well described by raising its input,

as reflected in its depolarization from rest, to a power greater

than 1. This power-law input-output (I/O) function arises when

the mean input to neurons is subthreshold, so that neurons fire

on input fluctuations about the mean (Hansel and van Vreeswijk,

2002; Miller and Troyer, 2002). The cell’s I/O function must ulti-

mately saturate, but at least in V1, neurons remain in the unsat-

urated, power-law region of the I/O function throughout the full

range of firing induced by visual stimuli, with powers in the range

2–5 (Priebe and Ferster, 2008).

This power-law presents a puzzle: how does cortex remain

stable? The gain of neurons—the change in output rate per

change in input, i.e., the I/O function’s slope—monotonically in-

creases with response level. Then, if excitatory neurons excite

one another, with increasing response level they will more and

more strongly amplify their own response fluctuations until, at

some ‘‘breakpoint’’ response level, the excitatory subnetwork

will become unstable. Activity would then explode until re-

sponses saturate, unless the network is stabilized by other fac-

tors such as feedback inhibition. A possibility is that excitatory

instability is never reached, because the breakpoint level is

beyond the dynamic range of cortical networks, or because

excitatory instability is prevented by mechanisms such as

short-term synaptic depression or hyperpolarizing voltage-acti-

vated conductances. However, simple calculations suggest

that the breakpoint occurs at relatively low rates (e.g., section

4 of the Supplemental Text of Ozeki et al., 2009), well within

cortical dynamic range and for which the effects of these mech-

anisms should be weak. Direct evidence also suggests excit-

atory-subnetwork instability in various cortical operating regimes

(London et al., 2010; Ozeki et al., 2009).

We showed (Ahmadian et al., 2013) that, in networks of excit-

atory (E) and inhibitory (I) neurons with power-law I/O functions,

stability can be dynamically maintained via feedback inhibition

even when response levels move beyond the breakpoint. The

network then is an ‘‘inhibition-stabilized network’’ (ISN), i.e.,

the excitatory subnetwork alone is unstable, but the network is

stabilized by feedback inhibition (Ozeki et al., 2009; Tsodyks

et al., 1997). Stabilization occurs over a broad parameter regime,

i.e., no parameter fine-tuning is required. Furthermore, this stabi-

lization causes a strong change in network operating regime,

from supralinear to sublinear response summation, as follows.

At low response levels below the breakpoint, i.e., for weak input

such as a very low-contrast visual stimulus, neuronal gains are

low, so effective synaptic strengths—the change in postsynaptic

rate per change in presynaptic rate—are weak. As a result, drive

from within the network is weak relative to external drive (math-

ematically, weak externally driven synapses drive network cells

that drive weak network synapses, so network drive is doubly

weak relative to external). With only weak interactions between

neurons, responses sum supralinearly, following the supralinear

I/O function of isolated cells: response to two simultaneously

presented stimuli exceeds the sum of the responses to each

stimulus presented alone. With increasing input strength, the

relative contribution of network drive grows until the breakpoint

is reached. Stabilization requires strong damping of the growth

of net input (E minus I) such that, in a broad parameter regime,

responses then sum sublinearly: the two-stimulus response is

less than the sum of the individual stimulus responses. Both E-

and I-cell neuronal responses sum sublinearly, an emergent

outcome of network dynamics, as opposed to the more intuitive

scenario that suppression in E cells results from increased I-cell

firing.

Thus, when individual neurons have supralinear input/output

functions, inhibitory stabilization drives a transition from weak

coupling and supralinear response summation for weak inputs

to ISN behavior and sublinear summation for strong inputs.

Here, we show how this ‘‘stabilized supralinear network’’ (SSN)

mechanism, along with mechanisms involving the spatial struc-

ture of connectivity, can give a unified explanation of a wide
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range of cortical behavior involving global integration of multiple

inputs.

RESULTS

We will focus on modeling V1 behavior, but also refer to other

cortical areas. We make several simplifying assumptions. We

model interactions in a single layer, e.g., layer 2/3 (L2/3), ignoring

interlaminar processing. We assume that the net effect of exter-

nally driven input (henceforth, ‘‘external input’’) to this layer is

excitatory. We consider only two cell types, E and I, ignoring sub-

types. We consider an ‘‘E/I pair’’—one E unit and one I unit—at

each position, where a ‘‘unit’’ can be thought of as a mutually

connected set of neurons. Wemodel neuronal firing rates, rather

than action potential (‘‘spike’’) generation, which suffice to un-

derstand many aspects of network behavior when spikes are

fired irregularly and asynchronously (Ermentrout and Terman,

2010; Murphy and Miller, 2009). These simplifications allow a

clear picture to emerge of simple laminar processing motifs

that explain a surprising amount of the complexity of cortical

responses.

We initially present simple models on a 1D ring or line to

highlight mechanisms, but subsequently study a 2D model

cortex. The model equations are as follows. Let x represent

position of an E/I pair on the model cortex. We let hðxÞ be

the shape and c the magnitude of external input, both taken

for simplicity as identical for E and I units. Increasing input

strength c represents increasing contrast, but with arbitrary

scale; its values should not be equated with contrast. We let

WEIðx1; x2Þ be the strength of connection from the I unit at

position x2 to the E unit at x1, and similarly WEE, WIE, and WII

represent E/E, E/I, and I/I connections, respectively. We

let rEðxÞ and rIðxÞ be the firing rates of, and IEðxÞ and IIðxÞ the

input to, the E and I units at position x. Then the model equa-

tions state:

1. The input to a unit is the linear sum of its external input and

its input from each cortical unit:

IEðxÞ= c hðxÞ+
X

x0
ðWEEðx; x0ÞrEðx0Þ+WEIðx; x0ÞrIðx0ÞÞ: (1)

IIðxÞ= c hðxÞ+
X

x0
ðWIEðx; x0ÞrEðx0Þ+WIIðx; x0ÞrIðx0ÞÞ: (2)

The sum over x0 ranges over all cortical positions.

2. The steady-state (SS) firing rate of a neuron for a given

fixed input is proportional to the input, with negative values

set to zero, raised to a power n (e.g., Figure 1B):

rSSE ðxÞ= k
�½IEðxÞ�+

�n
(3)

rSSI ðxÞ= k
�½IIðxÞ�+

�n
: (4)

Here, k is a constant, n>1, and ½I�+ represents thresholding of I at

zero: ½I�+ = I if I>0; = 0, otherwise. k and n are generally taken

identical for E and I cells for simplicity, to focus on emergent

network properties that arise even without cell-type differences.

3. At any instant of time, each firing rate approaches its cur-

rent steady-state value with first-order dynamics:

tE
drEðxÞ
dt

= � rEðxÞ+ rSSE ðxÞ (5)

tI
drIðxÞ
dt

= � rIðxÞ+ rSSI ðxÞ: (6)

Note that steady-state values change in time as firing rates or

external inputs change.

Normalization in a 1D Ring Model
We first study an example of normalization: the response to the

superposition of two drifting gratings of different orientations.

When the gratings are of equal contrast, the response across

the V1 population is a sublinear multiple (� 0:5 to 0.7) of the

sum of the responses to the individual gratings, while as con-

trasts become unequal, the response approaches ‘‘winner-

take-all,’’ i.e., the lower-contrast grating has little impact on the

response (Busse et al., 2009; MacEvoy et al., 2009). This

‘‘cross-orientation suppression’’ arises at least in part through

sublinear summation of subcortical input to cortical cells (e.g.,

Priebe and Ferster, 2008; but see Sengpiel and Vorobyov,

2005). Nonetheless, given the likelihood that cortex also per-

forms normalization (Carandini and Heeger, 2012), we use this

simple experimental paradigm with linearly summing external in-

puts to study how the model cortex sums multiple inputs.

We consider a set of E/I pairs at a single position in visual

space with varying preferred orientations. Preferred orientation,

being a circular variable, is represented by the coordinate q of an

E/I pair on a ring (Figure 1A). An oriented stimulus grating induces

a Gaussian-shaped pattern of external input strengths peaked

at the corresponding preferred orientation. For superposed

gratings, the external inputs add linearly. The four connection

functions WXYðq1; q2Þ (X;Y˛fE; Ig) each depend only on the dif-

ference jq1 � q2j between preferred orientations. The excitation

and inhibition received by cells have similar orientation tuning

in cats V1 layers 2–4 (e.g., Mariño et al., 2005), so we give these

functions identical Gaussian shapes, but different strengths. We

have presented a few results from this model previously (Ahma-

dian et al., 2013), see Figure 1 legend. This simple model directly

illustrates the predicted transition from supralinear to sublinear

summation and shows that it can account for multiple aspects

of normalizing behavior.

With the increasing strength of a single grating stimulus, the

network shows the anticipated transition from dominantly exter-

nally driven (weakly coupled) to dominantly network-driven (Fig-

ures 1C–1E), with network input: (1) increasingly dominated by

inhibition (Figures 1C, 1D, and 1F) as observed in mouse S1

under excitatory drive to E cells (Shao et al., 2013) (similar

behavior occurs when simulating that protocol, Figure S3), and

(2) substantially cancelling external input to leave a slowly

growing net input (Figures 1C and 1D). For equal- and high-

strength orthogonal gratings, E and I units each add responses

sublinearly, with response to two gratings about 0.7 times the

sum of the individual responses (Figure 1G). Responses to

nonorthogonal gratings also add sublinearly (Figures S4A and

S4B), as in experiments (MacEvoy et al., 2009). With increasing
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Figure 1. Normalization in a Nonlinear Ring Model
(A) There are 180 E (red) and I (blue) units, with coordinates q on a ring corresponding to preferred orientations (1o to 180o, 180o = 0o). Lines between units

schematize connections between them. A stimulus grating evokes input chðqÞ equally to E and I units, with hðqÞ a unit-height Gaussian centered at the stimulus

orientation with SD sFF = 30o, except (J). We consider gratings at 45o, 135o, or both simultaneously.

(B) The power-law input/output function, k = 0:04, n= 2:0.

(C–F) Use a single-grating stimulus.

(C and D) Input to and firing rates of E (C) and I (D) units at stimulus center. With increasing external input strength c (x axis; dashed lines), network input (E, red and

I, blue) transitions from weak to dominating (insets), and substantially cancels external input, so net input (green) grows slowly. Firing rates (black; also shown in

Ahmadian et al., 2013) are proportional to net input squared.

(E and F) We consider the summed input received by all E (red) or I (blue) units. With increasing c, input to network (sum of absolute values of E and I input) is

increasingly network-driven (E; dashed, external input; solid, network input), and network input is increasingly inhibitory (F; y axis, EN=ðEN + IÞ, where I and EN are

inhibitory and network excitatory input, respectively).

(G) Sublinear response summation for multiple stimuli. Top two rows, responses of E (left, red) and I (right, blue) units across network to 45o (top) and 135o (2nd

row) stimulus, c= 50. Third row, responses to both stimuli presented simultaneously. Fourth row, responses from third row (black) versusmean (orange) and linear

sum (green) of responses to the two individual stimuli.

(G–I) We fit the response to two superposed stimuli of the E or I population as a weighted sum of the responses to the individual stimuli, with weights w1 and w2

determined by least-squared-error fitting. For equal-strength stimuli, w1 =w2hw. In (G), best-fit weights w indicated in row 3, with fit shown as gray curve.

(H) Increasingly winner-take-all responses for increasingly divergent contrasts of the two stimuli. Left, E firing rates across network; input strengths ðc1; c2Þ are
ð40; 40Þ, ð50; 30Þ, ð60;20Þ, and ð70; 10Þ. Orange, response to 45o alone; green, to 135o alone; and black, to both superposed. Right, best-fit weightsw1 (orange)

and w2 (green) for E population versus lnðc2=c1Þ, with c1 + c2 = 80.

(I) For equal-strength stimuli, best-fit weightw versus stimulus strength c= c1 = c2 for E (red) and I (blue) responses. Weak inputs add supralinearly. Modified from

Ahmadian et al. (2013).

Left inset, averaged responses of neurons in monkey area MT to two superposed CRF stimuli of indicated contrasts (averaged across main diagonal; each cell

normalized to its own maximum rate; this is Figure 9 of Heuer and Britten, 2002).

Right inset, model response of E unit at q= 45o, averaged over stimuli at 45o; 135o or at 135o;45o having respective strengths c1 (x axis) and c2 (y axis).

(J) Width-tuning in orientation space. Response of E unit to stimuli of varying input width sFF for c from 10 to 50, normalized tomaximum rate for given c. Shrinking

summation field size versus contrast was shown in Ahmadian et al. (2013).
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difference in stimulus strengths, summation becomes increas-

ingly winner-take-all (Figure 1H). Sublinear addition for equal-

strength gratings persists across a broad range of stimulus

strengths, but at the lowest strengths addition is instead supra-

linear (Figure 1I). The model results for two-input summation

across all pairs of stimulus strengths (Figure 1I, inset right)

closely match results in monkey visual cortical area MT (Heuer

and Britten, 2002) (Figure 1I, inset left). Model results for both

E and I cells across a large set of stimulus-strength pairs are

very well fit by phenomenological equations of the normalization

model (Busse et al., 2009; Carandini and Heeger, 2012) (E cells,

R2 = :974; I cells;R2 = :988; Figure S5). Note that inmost previous

models only E cells, not I cells, show normalization. These results

arise robustly across a reasonable range of parameters, e.g.,

Figure S6.

A cortical transition from sublinear to supralinear summation

for increasingly weak stimuli has thus far not been observed,

though a transition to linear summation is seen in MT (Heuer

and Britten, 2002) and MST (T. Oshiro et al., Program No.

360.19, 2013, Neuroscience Meeting Planner, Soc. Neurosci.,

abstract). In MT, average summation was linear when at least

one stimulus had contrast below that which drove half-maximal

response; behavior at the lowest contrasts was not separately

analyzed. The match of model and MT behavior (Figure 1I, inset)

suggests, but does not prove, that at the lowest contrasts MT,

like the model, sums supralinearly. In V1 cross-orientation sup-

pression, summation remains sublinear down to 6% contrast

(Busse et al., 2009). Thismight be explained by suppression orig-

inating in subcortical inputs rather than cortex (Priebe and Fer-

ster, 2008). In all cases, the weakest stimuli studied, or even

spontaneous activity, might suffice to drive the network out of

the supralinearly summating regime. Note that supralinear ef-

fects can be weaker for some parameters, e.g., see Figure 6D.

Normalization in the model is closely related to surround sup-

pression in the space of stimulus features (orientation). When

we vary the stimulus orientationwidth, thewidthgiving the largest

response—the orientation ‘‘summation field’’—shrinks with

increasing stimulus strength (Figure 1J), akin to the well-known

shrinkage with contrast of the summation field in visual space.

(The orientation summation field is distinct from the orientation

‘‘CRF’’ or tuning curve, which, like the visual-space CRF [Song

and Li, 2008], experimentally is invariant with contrast [Priebe

and Ferster, 2008].) Orientation summation field shrinkage

cannot be easily tested in V1, becausemanipulations of stimulus

orientation width either nonlinearly suppress input to cortex (un-

der simultaneous presentation of multiple orientations, Priebe

and Ferster, 2008) or alter other stimulus parameters, e.g., spatial

frequency or extent across visual space, that independently

affect response (under change of grating frequency or aspect

ratio). However, it could be tested using optogenetic stimulation

to activate broader or narrower sets of orientation columns or, in

terms of direction rather than orientation, by testing whether MT

directional summation fields shrink with increasing contrast.

In sum, the model for the first time provides a network expla-

nation of normalizing andwinner-take-all behavior of both E and I

cells. This arises through a transition with increasing stimulus

strength from external to internal sources of dominant input,

with internally generated input becoming increasingly inhibitory,

and a corresponding transition from supralinear to sublinear

response summation.

Surround Suppression in a 1D Cortical Model
We now consider interactions between stimuli in different visual

positions, i.e., in the CRF and in the surround. We study a 1D line

of E/I pairs (Figure 2A), with line position representing CRF posi-

tion in visual space. We ignore other stimulus features, such as

orientation. A drifting luminance grating evokes a static external

input, chðxÞ, that has variable width (representing grating diam-

eter) and peak height c. This input is largely spatially flat, ignoring

grating phase, because we are considering the overall input to

the set of cells with varying phase preferences at a given spatial

position and because many layer 2/3 cells are ‘‘complex’’ cells

that are relatively insensitive to grating phase.

Because only E cells make long-range horizontal connections

in sensory cortex, we set the spatial range of I projections small

relative to E projections, abstracted as making I projections local

to each E/I pair. E projection strengths decrease with distance

with a Gaussian shape. For reasons discussed below, we take

E/ I projections tobespatiallywider thanE/E (moregenerally,

the ratio E/I=E/E of summed connection strengths should

increase with distance; anatomical ranges could be identical).

Spatial considerations now combine with the supralinear to

sublinear transition to create a richer set of phenomena. We

introducemodel behavior in two steps. First, we consider a linear

I/O function, which demonstrates spatially periodic behavior that

explains a number of experimental results. Then, we return to

power-law I/O functions, which yield contrast-dependent modu-

lation of this behavior.

Linear Model

Here, a linear I/O function replaces Equations 3 and 4:

rSSE ðxÞ= IEðxÞ, rSSI ðxÞ= IIðxÞ. A linear model gives a reasonable ac-

count of dynamics when firing rates are near their steady-state

values for a fixed input. Responses are expressed relative to

this steady-state value and so can become negative.We set syn-

aptic weights to make the network an ISN.

Input to cortex of increasing lengths evokes spatially oscil-

lating standing waves of activity (Figure 2B). Intuitively, active

neurons suppress their neighbors, which are less active, mean-

ing their neighbors are less suppressed (more active). If external

input is roughly equal across the activated region, then peaks of

the standing waves occur at the edges of the activity pattern,

which lacks suppression from one side (Adini et al., 1997). As a

result, the activity of the units at the center varies, with increasing

stimulus size, from a peak to a trough to a peak of the wave,

yielding second peaks in length tuning curves (Figure 2C) as

has been observed in firing rates (Sengpiel et al., 1997; Wang

et al., 2009, and see new experiments below) and inhibitory con-

ductances (Anderson et al., 2001). The periodic activity occurs at

‘‘resonant’’ spatial frequencies, the frequencies that the network

most strongly amplifies (Supplemental Text S2.1; see also Fig-

ures 5B and 5C). Sufficiently large and smoothly tapering inputs

(e.g., inputs windowed with a Gaussian envelope) lack power at

these frequencies, so no periodic activity results (Figures S7 and

S8). Given localized inhibitory connectivity, inhibitory resonant

frequencies arise only in an ISN (Supplemental Text S2.1.1). In

sum, the linear model accounts for surround suppression of
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both E and I cells and spatially periodic activity and tuning

curves.

Nonlinear Spatial Model

A linear model cannot address qualitative changes in behavior

with stimulus contrast, because scaling the input (increasing

contrast) only scales responses. We now restore the power

law I/O function of Equations 3 and 4. The effects of the linear

model are retained, but now are contrast dependent.

As in Figure 1, the network transitions, with increasing input

strength, from dominantly externally driven to dominantly

network-driven, with network drive increasingly inhibition-domi-

nated (Figures 3A and 3B), corresponding to a transition from

non-ISN to ISN behavior (Figure S2D). I-unit aswell as E-unit reso-

nantspatial frequenciesappear in the ISN regime,with frequencies

that increase (wavelengths that decrease) with increasing input

strength (Figures S2E and 5D; Supplemental Text S2.3).

Correspondingly, spatially periodic activity and surround sup-

pression are not seen at the lowest contrast (stimulus strength),

but emerge with increasing contrast (Figure 3C). As contrast in-

creases, the spatial modulation of activity grows in amplitude

and shrinks in wavelength, and second peaks in length tuning

appear. These simple effects can explain a wide range of exper-

imental results: (1) the second peaks in the length tuning of I

conductance, discussed previously, arise for high-contrast, but

not for low-contrast stimuli (Anderson et al., 2001); (2) summation

field size (location of first peak in the length tuning curve) shrinks

with contrast (Anderson et al., 2001; Song and Li, 2008; Cava-

naugh et al., 2002a; Nienborg et al., 2013; Sceniak et al., 1999;

Shushruth et al., 2009; Tsui andPack, 2011) (Figure 3D), following

the shrinking resonancewavelength; (3) a high-contrast surround

stimulus can facilitate the response to a low-contrast center, but

suppress the response to a high-contrast center (Cavanaugh

et al., 2002a; Schwabe et al., 2010; Sengpiel et al., 1997) (Fig-

ure 3E), but (4) this effect depends on surround size (Figure 3E)

and shape (Figure S8B), whichmay explain varying results in pre-

vious studies (Cavanaugh et al., 2002a; Schwabe et al., 2010);

and note also that (5) I units develop wider summation fields

than E units (Figures 2C and 3D), as observed in rodent V1
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Figure 2. Spatial Contextual Interactions in Linear Model

(A) Cartoon of 1D firing ratemodel of V1, used for Figures 2 and 3. E (red) and I (blue) units form a 1D grid, with grid position representing CRF visual space position.

Grid spacing 0:25o (Figure 2) or 0:33o (Figure 3). Drifting grating stimulus of given size drives input c times input profile hðxÞ of corresponding width, equally to E

and I units.

(B) Input to, and firing rate responses of, model units to stimuli of increasing length versus position of E/I pairs (x axis, degrees; 0, grid center). Top two rows,

gratings of increasing size (top) cause 1D input with shape hðxÞ (plots). Bottom two rows, E (red) and I (blue) firing rates across network, showing spatially periodic

activity.

(C) Length-tuning curves of units at stimulus center show surround suppression and second peaks (E, red and I, blue). Circles mark eight stimulus sizes shown in

(B). Note here, and in Figure 3, modulations of I units are relatively weak and y axes do not start at zero.
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(Adesnik et al., 2012). Again, these results arise robustly across a

reasonable range of parameters, e.g., Figure S6.

Several of these results seem to depend on E / I projections

being spatially wider than E / E, although our exploration of

parameter space is limited, so we are not certain of this. When

these two projections have the same width, we have not seen

spatially periodic behavior, and for many parameters, summa-

tion field size does not shrink continuously with contrast, but
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Figure 3. Spatial Contextual Interactions with Supralinear, Power-Law Input/Output Functions

(A and B) Responses to full-field stimuli. Network transitions, with increasing input strength, from dominantly externally driven to network-driven (A), with network

drive increasingly inhibition-dominated (B). Conventions are as in Figures 1E and 1F.

(C) Length-tuning at multiple levels of input strength (c= 1; 6;11; 21; 31, schematized by gratings of increasing contrast, left). The two columns of plots for each of

E (left) and I (right) show firing rates across network for largest stimulus (left columns) and length-tuning curves for units at stimulus center (right columns). All

curves normalized to their maxima.

(D) Summation field size (first peak of length-tuning curve) shrinks with increasing stimulus strength. Values normalized to that at stimulus strength c= 100

(dashed line; 0:4o, E units; 1:7o, I units).

(E) Strong surround stimulus (c= 50) can switch from facilitative to suppressive with increasing center stimulus strength, depending on stimulus size. Center

stimulus fills c= 50 summation field, diameter 0:55o (E, left), 1:9o (I, right). Responses to center-only stimulus (thick lines) or with added surround for total stimulus

size ranging from 23 to 203 center size (legends).
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instead jumps from no suppression to the size that saturates

external input (note, here I projections are far narrower than E

projections; when both have equal width, shrinkage occurs,

Figure 1J).

In sum, given connectivity that falls off with spatial distance

with I projections short-range compared to E, the transition

with increasing stimulus strength to inhibitory stabilization and

sublinear summation explains a great deal of contextual modu-

lation behavior of both E and I cells. The model predicts period-

icity in activity and tuning curves with wavelengths that shrink

and amplitudes that grow with contrast. This explains shrinkage

of summation fields and transitions from surround facilitation to

surround suppression with increasing contrast.

Experimental Tests I
We tested the predictions of periodic activity in single-unit extra-

cellular studies of neurons in anesthetized ferret V1.

We tested whether size tuning curves show periodicity for

high-contrast stimuli (Figures 4A–4C). Few previous studies

have carefully studied length tuning for lengths between summa-

tion field size and some large size (reviewed inWang et al., 2009),

though curves with periodicity have been reported (e.g., Seng-

piel et al., 1997; Wang et al., 2009). We presented drifting grat-

ings ranging in size from 1� to 30� diameter in 1� increments,

randomly interleaved. Tuning curves showed clear periodicity

(Figure 4A). We fit two models to tuning curves, a difference-

of-Gaussians (DoG) model for the center/surround receptive

field, which exhibits no spatial periodicity (Figure 4A, orange

curves), and a model adding a sinusoidal surround modulation

(SSM) to the DoG model (Figure 4A, black curves). To assay

whether the curves showed significant periodicity, we consid-

ered two tests. In 73 of 76 cells, the SSM fit was significantly bet-

ter (p<0:01) than the DoG fit (Figure 4B) according to a nested

F-test, which takes into account the SSM’s extra parameters.

Using cross-validation (fit each model to a randomly chosen

80% of the data, test model on remaining 20%, repeat 100

times), the SSM’s median sum-squared error (SSE) on the with-

held data was less than the DoG’s for 70/76 cells (Figure 4C;

p= 6:2310�15, 2-sided binomial test of null hypothesis that

each model is equally likely to have smaller median SSE for a

given cell; median of illustrated distribution significantly different

from zero, 2-sided Wilcoxon signed rank test, p= 1:04310�10).

We next tested spatial periodicity of the activity profile across

the cortical surface for high-contrast stimuli, an issue not previ-

ously studied to our knowledge (Figures 4D–4F). Ideally, one

would showa large drifting grating and sample responses of cells

at multiple spatial positions. Instead, we studied the response of

each single cell as we moved the drifting grating to multiple

randomly interleaved spatial positions. These positional tuning

curves showed clear periodicity (Figure 4D), with 66 of 74 better

fit by the SSM than the DoG model (p<0:01, nested F-test; Fig-

ure 4E). In the cross-validation test (Figure 4F), SSM errors

were less than DoG errors for 61 of 74 cells (p= 1:4310�8, bino-

mial test as above; median significantly different from zero,
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Figure 4. Experimental Tests of Model Predictions
(A–C) Periodicity in size-tuning curves (76 cells studied).

(A) Two examples of tuning curves, normalized to peak = 1. Data indicate mean ± SE as determined frommaximum likelihood estimation (Supplemental Methods

S1.4.2). Curves, best fit DoG (orange) and SSM (black) models. Tuning curves for all cells, Figure S10.

(B) Reciprocal of summed squared error (SSE) for DoG and SSM models for all neurons studied. Blue points (73 cells), SSM fit significantly better (p<0:01) than

DoG fit by nested F-test. Red points (three cells), p>0:01.

(C) Cross-validation (c-v) analysis. Histogram of number of cells showing given % change in median SSE (in predicting withheld data, across 100 c-v trials) for

SSM model relative to DoG model.

(D–F) Periodicity in position-tuning curves (74 cells). Conventions and statistical tests as in (A–C).

(D) Two examples of tuning curves. Tuning curves for all cells, Figure S11.

(E) Reciprocal of SSE for DoG and SSM models. Of 74 cells studied, 66 were significantly better fit by SSM model (blue points).

(F) C-v analysis. Details of statistical tests for all cells, Tables S1, S3, and S4 and Supplemental Methods S1.5.2.
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Figure 5. Contrast Modulation (CM) Gratings: Model and Experiments

(A) CM stimuli. Snapshot of 2D CM gratings used in experiments and corresponding spatially periodic 1D model input hðxÞ.
(B and C) Linear model of Figure 2. For E (B) and I (C) units, curves show response versus CM SF (solid lines) and power versus SF (omitting point at SF 0) of firing

rates across space for large (dashed-dot lines) and small (dotted lines) luminance stimuli (without CM). All peak at network resonant frequencies, derived

analytically (black dashed lines; Supplemental Text S2.1). Y axes, left, responses to CM stimulus; right, normalized power. X axes, SF in cycles/degree. Stimulus

diameters, small, 0:5o; large, 4:5o (E) or 5:25o (I).

(D) Nonlinear model of Figure 3. E (red) and I (blue) network resonant frequencies increase with input strength, as measured by preferred CM SF.

(E–G) Experimental measurements of contrast dependence of CM tuning (50 cells studied). Luminance grating had cell’s preferred orientation and SF. CM SF

tuning was studied at optimal CM orientation, at four luminance contrasts: 4%, 8%, 16%, and 64%.

(E) Normalized CM SF tuning curves for three example cells at the four contrast levels. Tuning curves for all cells, Figure S12.

(F) Mean preferred CM SF increases with stimulus contrast. Error bars, SEM. Data for two middle contrasts were not significantly different (two-sided Wilcoxon

rank-sum [WRS] test, p= 0:68) and so were grouped together for other tests. All other differences were significant (one-sided WRS test, n= 50 [low, high con-

trasts] or n=100 [medium contrast]): low versus medium, p<0:5310�4; low versus high, p<10�7; and middle versus high, p=0:046. * p<0:05 and ** p<10�4.

(legend continued on next page)
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p= 2:4310�7, Wilcoxon test as above). This result is particularly

surprising given an expectation that receptive field strengths

monotonically decrease with distance from their center.

Modeling and Experimental Test II: Contrast
Dependence of Network Frequency
The model predicts that the network resonant spatial fre-

quencies should increase with contrast (Figure 3). Such a fre-

quency increase would provide strong evidence that the periodic

behaviors are emergent properties of the network dynamics,

rather than fixed properties of the connections. Because we ex-

pected difficulty in accurately measuring oscillations in tuning

curves from responses to very low contrast stimuli, we employed

a different stimulus used by Tanaka and Ohzawa (2009) to probe

center-surround receptive field structure in cat V1: a contrast-

modulated sinusoidal grating.

For a given neuron, Tanaka and Ohzawa (2009) presented a

large drifting luminance grating covering center and surround,

with orientation and spatial frequency (SF) optimal for the CRF,

and superimposed a drifting sinusoidal contrast modulation

(CM) (Figure 5A, top). They studied the selectivity of the neuron’s

response to the CM orientation and SF. The neurons were quite

selective. The preferred CM spatial period was generally larger

than the period of the CRF’s preferred luminance SF (mean ±

SD, 2.1 ± 0.9 times larger), and there was a wide distribution of

relative angles between the preferred CM orientation and the

CRF’s preferred luminance orientation.

We model the CM as spatial periodicity in the input to cortex,

i.e., high- or low-contrast regions receive strong or weak input,

respectively (Figure 5A, bottom). The linear model shows CM

tuning with preferred spatial period equal to the period of the

resonant network activity, i.e., the optimal CM stimulus drives

the peaks, but not troughs of resonant activity (Figures 5B, 5C,

S2A, and S2B; Supplemental Text S2.1). This remains true in

the nonlinear model, in which the preferred CM SF, like the other

measures of network frequency, increases with stimulus con-

trast (Figures 5D and S2E; Supplemental Text S2.3). Thus, the

preferred CM SF provides an excellent and direct assay of the

network’s resonant frequency.

We tested the prediction that network resonant frequencies in-

crease with contrast, by studying the contrast dependence of

preferred CM SFs, previously measured only at high contrasts

(Tanaka and Ohzawa, 2009). We studied 50 cells at four lumi-

nance contrasts. Tuning curves for three example cells (Fig-

ure 5E) showed low-pass behavior at low contrast, but prefer-

ence for higher frequencies at higher contrasts. Like these

cells, 50% of studied cells preferred the lowest frequency tested

at the lowest contrast tested, while none preferred the lowest fre-

quency at the highest contrast tested. The mean preferred CM

SF across cells increased significantly with increasing contrast

(Figure 5F). The CM SF preferred at the lowest contrast tested

was lower than at the highest contrast for 72% of cells, the

same for 12%, and higher for 16% (Figure 5G; p= 2:5310�5

[ties discarded] or p= 9:0310�5 [ties divided equally], two-sided

binomial test assuming ‘‘lower’’ or ‘‘higher’’ equally likely for each

cell). We were also able to study length tuning across multiple

contrasts in a small number of cells (N= 16), with results consis-

tent with model predictions (Figures S9A–S9C).

All three experimental measures of network periodicity—

length tuning period, position tuning period, and preferred CM

SF—have periods, for high contrasts, dominantly in the range

1–8 times larger than the period of the CRF’s preferred lumi-

nance SF (Figures 5H–5J, and Tanaka and Ohzawa, 2009).

This is predicted by the model under a simple heuristic argu-

ment: a neuron’s summation field should fill nomore than 1/2 cy-

cle of the resonant spatial period, as a larger size would drive

suppressive troughs; while empirically, the high-contrast sum-

mation field typically contains 0.5–4 CRF preferred luminance

spatial periods (Teichert et al., 2007). This argument is supported

by our data, as illustrated for size-tuning period (Figure 5H):

mean and median summation field sizes are z1=2 of the size-

tuning period; and summation fields contain 0.5–4 luminance

spatial periods. The three different periods are not correlated

across cells, neither in experiments nor in a model with

stochastic connectivity presented below in Figure 6 (Figures

S9D and S9E). This presumably reflects different local subnet-

works of cells being recruited by each experimental paradigm.

Full Model
Thus far we have studied feature (orientation) effects and spatial

effects in separate 1D models. Here, we show that these results

can all arise in a single model of a large 2D patch of V1 and also

consider effects of more realistic stochasticity. Visual position

changes smoothly across the 2D patch and units have preferred

orientations given by a superposed orientation map (Figure 6A).

Connections and each unit’s parameters are chosen stochasti-

cally (which indicates that results are robust to parameter varia-

tions), with probability of a connection between two units of

given types 0.1 (E projections) or 0.5 (I projections) times the

product of unit-height Gaussian functions of positional distance

(qualitatively as in Figures 2 and 3) and of preferred orientation

difference (as in Figure 1). Dependence of connectivity on

preferred orientations is supported by evidence discussed for

Figure 1 and the fact that long-range horizontal excitatory con-

nections preferentially connect neurons of similar preferred

orientation (Gilbert and Wiesel, 1989). We have not tried to

tune the model other than to find a regime with reasonable sur-

round suppression (and in retrospect the chosen regime may

be suboptimal, Supplemental Methods S1.3.2). Our intent is sim-

ply to address qualitative results.

(G) Pie chart summarizing population data, described in main text.

(H–J) For all three measures of network frequency—size tuning preferred SF (pSF) (H, inset), position tuning pSF (I), and high-contrast CM pSF (J)—the network

frequency tends to be 1–8 times larger than the cell’s luminance pSF, as the model predicts. Histograms include all cells for which SSM model gave better fit by

nested F-test than DoGmodel for length and position tuning (excluding five cells with luminance period larger than the full screen for length tuning) and all 50 cells

for CM tuning.

(H) Scatterplot of size tuning pSF (y axis) versus luminance pSF (x axis), each in units of summation field size. Histograms, distributions of data along each axis.

Green and black dashed lines,medians andmeans, respectively, of these distributions. Inset histogram, distribution along diagonals parallel to themain diagonal.
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Figure 6. A Large-Scale, Probabilistically Connected, 2D Model of V1

(A) We model a grid of 75375 E/I units. Retinotopic position progresses uniformly across the grid, spanning 16o316o. Preferred orientations are assigned

according to a superposed orientation map, illustrated.

(B) Strength of external versus network input and (C) EN=ðEN + IÞ in response to preferred-orientation full-field gratings both behave similarly to 1D model

(all conventions and definitions as in Figure 3A for (B) and Figure 3B for (C). (B) and (C) show means, ± SD in (C), over E or I units at 25 randomly selected

locations.

(D) Transition from supralinear to sublinear summation in response to superposed full-field gratings with equal stimulus strength (x axis) and 90o difference in

orientations. Plot shows best-fit summation weight (w), averaged over 25 different pairs of orthogonal orientations (first grating equally spaced from 0o to 86:4o),

versus stimulus strengths for E (red) and I (blue) units. w computed from curves of average firing rates across units in each of 18 equal-sized bins of preferred

orientation. Conventions and definition of w as in Figure 1I.

(E) Mean length-tuning curves for c= 40 from all units that demonstrated significant surround suppression among 500 randomly sampled E/I units (surround

suppression index, [SSI], >0:25; 498 E and 304 I units). SSI= ðrmax � rfullÞ=rmax , where rmax = maximum firing rate to stimuli shorter than ð2=3Þ316o; rfull = response

to largest (16o) stimulus.

(F) Length-tuning for different levels of stimulus strength for 14 E and 14 I units, randomly selected. Each neuron is assigned a different color, yellow to red (E units)

or cyan to blue (I units).

(G) Summation field size shrinks with stimulus strength; E (top) and I (bottom) units, mean ± SD over 100 randomly selected grid locations.

(legend continued on next page)
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The model qualitatively reproduces all of the results of the

previous 1D models, but with more realistic variability. With

increasing stimulus strength, (1) input shifts from externally-

driven to network-driven (Figure 6B) with network input increas-

ingly inhibition-dominated (Figure 6C), as in Figures 1E, 1F, 3A,

and 3B; (2) response summation switches from supralinear to

sublinear (Figure 6D), as in Figure 1I; and (3) surround suppres-

sion and periodicity in length-tuning curves develop (Figure 6E,

average high-strength tuning curves; Figure 6F, sampling of

diverse tuning curves of individual units across input strengths)

and summation fields shrink (Figure 6G), as in Figures 3C and

3D. For weak center input strength, surround suppression

weakens, and for smaller surrounds, can switch to surround

facilitation (Figure 6H), as in Figure 3E. The periodicity in both

length- and position-tuning curves is statistically significant (Fig-

ure 6I), as in the experimental data (Figures 4B and 4E). Preferred

CM SF increases with stimulus strength (Figure 6J), as in model

and experiment (Figures 5D–5G). Note that preferred CM SF for I

units is uniformly 0 for smaller stimulus strengths, consistent with

the linear model prediction that a nonzero I-unit resonant SF re-

quires an ISN (Supplemental Text S2.1.1).

The model also reveals new results. There is no correlation be-

tween luminance and CM preferred orientations (Figure 7A),

similar to experiments (Tanaka and Ohzawa, 2009). This is

because CM preferred orientation arises as a network effect

(the best orientation across 2D cortical space of the spatially pe-

riodic activity, determined in the model by random variations in

intracortical connections), whereas CRF preferred orientation is

(H) Dependence of surround suppression on center stimulus strength and surround size for four example E units chosen to represent the diversity seen across

units. For each unit, the center stimulus exactly filled its summation field. Surround stimulus strength c= 40.

(I) Applying the same procedures to model data (100 randomly selected E units) as to experimental data produces similar results: 98/100 units (length tuning, left)

and 90/100 units (position tuning, right) are better fit by SSMmodel thanDoGmodel (p<0:01, nested F-test). All conventions and analyses as in Figures 4B and 4E.

Statistics for all units in Tables S4 and S5.

(J) Preferred CM SF versus stimulus strength for E (top) and I (bottom) units. Luminance grating is full-field at preferred orientation of center grid location. E/I units

studied at 100 locations, the center and the 99 locations with preferred orientation closest to the center location’s (all within 2o; spatially dispersed across the

map). Mean (curves) ± SD (color). Due to limits of computing time, we studied CM SF tuning at fixed CM orientation (vertical across model cortex) and CM

orientation tuning (Figure 7A) at fixed CM SF (0.3 cycles/degree).
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Figure 7. 2D Probabilistic Model: Further Results

(A) Histograms of differences between preferred luminance and CM orientations for E (red) and I (blue) units of Figure 6J for c= 40. The two preferred orientations

were completely uncorrelated (E units, r = 0:098, p= 0:33 and I units, r = 0:093, p= 0:36).

(B) Distribution of SSI (see legend of Figure 6E) for E (red) and I (blue, shown above E units) units at 500 randomly selected sites of Figure 6E. SSI = 0,

no suppression; SSI = 1, complete response suppression; and SSI <0, response facilitation. Mean ± SD, E units 0.75 ± 0.18 and I units 0.30 ± 0.35.

(C) Distribution of summation field sizes, same 500 E and 500 I units and colors as (B). Mean ± SD, E, 1:08o ± 0:18o and I, 4:97o ± 3:74o.

(D) Dependence of surround suppression on surround orientation for stimulus strength c= 40. Center stimulus at unit’s preferred orientation fills summation field;

surround at varying orientations relative to center stimulus (x axis) extends stimulus to total diameter 15:1o (70 grid spacings). Mean (solid lines) ± 1 SD (shaded

region) of responses of 50 randomly selected E (top) or I (bottom) units, each normalized to response to center stimulus alone.

(E) Orientation tuning of surround suppression decreases for low-strength center. Histograms show circular variances (C.V.’s) of 1 minus the normalized

orientation tuning curves of surround suppression (as in D) for the 50 E and 50 I units of (D), for center c= 40 (top) or c= 10 (bottom); surround c= 40 in both

conditions. Mean C.V. (x in figure) increases significantly at low center strength, indicating broader orientation tuning. Mean ± SD of C.V.’s for high (c= 40) and low

(c= 10) contrast and p values for difference between two distributions using 2-sided WRS test: all units, high 0:64±0:11, low 0:74±0:11, p= 2:6310�9; E units,

high 0:62±0:10, low 0:77±0:09, p= 6:3310�10; and I units, high 0:67±0:12, low 0:72±0:12, p= 0:034.
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the luminance orientation that best drives a cell’s external input.

The model shows a relatively broad distribution of surround sup-

pression indices, akin to the variability observed experimentally

(e.g., Walker et al., 2000) (Figure 7B), and of I-unit summation

field sizes (Figure 7C), with I units having larger mean summation

fields and weaker mean surround suppression than E units, as in

Figures 2B, 2C, and 3C. Surround suppression is tuned for sur-

round orientation (Figure 7D), with tuning that is weaker for a low-

contrast versus high-contrast center (Figure 7E), both as

observed in V1 (Cavanaugh et al., 2002b; Sengpiel et al., 1997;

Ozeki et al., 2009).

DISCUSSION

The SSN provides a remarkably simple account, and the first

unifying circuit account, of a wide variety of behaviors across

multiple cortical areas. These include surround suppression,

normalization, and their dependencies on contrast and other

stimulus parameters (see multiple references in Introduction),

as well as spatial periodicity in activity and length tuning (Ander-

son et al., 2001; Tanaka and Ohzawa, 2009; Wang et al., 2009).

The model requires no fine tuning, producing qualitatively similar

behavior over broad parameter regimes. Our first experimental

tests provide strong support, for the first time demonstrating

systematic periodicity in high-contrast length-tuning and posi-

tion-tuning curves (the latter indirectly indicating spatial period-

icity in activity), as well as an increase in the underlying SF

of periodic activity with increasing contrast as measured by

preferred CM SF.

The model depends on very few assumptions, most impor-

tantly a supralinear I/O function for single neurons and suffi-

ciently strong recurrent excitation and feedback inhibition. It

differs from previous circuit models (e.g., Schwabe et al., 2010;

Somers et al., 1998, and models reviewed in Carandini and

Heeger, 2012) in providing a unified network explanation of mul-

tiple aspects of both contextual modulation and normalization,

exhibiting similar behaviors for both E and I cells, showing sup-

pression and normalization without increases in inhibition, and

explaining contrast-dependent behaviors without assuming a

class of I neurons that are ineffective at lower contrasts.

Connection to the Balanced Network
As discussed in more detail in Ahmadian et al. (2013), in both the

SSN and the balanced network model (van Vreeswijk and Som-

polinsky, 1998), the dynamics robustly lead inhibition to stabilize

excitation. However, the two models operate in very different re-

gimes. In the balanced network, both external and network-

driven inputs are very large, but are tightly balanced, leaving

only a far smaller residual input. This predicts external input

alone is much larger than net input, counter to results of isolating

external input by silencing cortex (Priebe and Ferster, 2008). Due

to tight balancing, the balanced network can only respond line-

arly to the input. In the SSN, inputs are not large, the balance

is loose, and nonlinear behavior like that seen in cortex can

result. In preliminary results with spiking models, SSN behavior

is reproduced while, like the balanced network, producing asyn-

chronous, irregular firing (D. Obeid and K.D.M., unpublished

data).

Experimental Predictions
The model makes many experimental predictions beyond

those we tested: (1) for linearly adding external inputs, cortical

areas should show supralinear (weak input) or sublinear

(strong input) response summation; optogenetically stimulating

two distinct sets of neurons could ensure linear input addition;

(2) periodicity in length- and positional-tuning should decrease

in wavelength with increasing contrast, as shown here for CM

tuning; (3) periodicity in length- and positional-tuning should

attenuate or disappear as stimuli are changed from sharp-

edged to slowly tapering, while CM tuning persists; (4 & 5)

across a variety of normalization or suppression phenomena,

(4) E and I cells should show similar behavior (both normalized

or both suppressed); however, this may be confounded

by multiple I-cell subtypes with differing responses, so a

more robust prediction (Supplemental Text S2.2.3) is (5)

response suppression in E cells should be accompanied by

a decrease in the I conductance they receive; and (6) the sum-

mation field for directional tuning in MT should shrink with

contrast.

A seventh prediction is that ISN behavior should occur only for

lower spatial frequencies of input to I cells, along with sufficient

network activation to drive the network into the ISN regime (Sup-

plemental Text S2.2). A key ISN behavior is the ‘‘paradoxical’’

response of I cells: addition of excitatory drive to I cells causes

them to lower their firing rates in the new steady state (Ozeki

et al., 2009; Tsodyks et al., 1997). Thus, if channelrhodopsin-2

(ChRh2) were expressed in I neurons, and a light pattern of a

given SF were modulated or drifted at low temporal frequency

while a visual stimulus was presented, the network should

show paradoxical response only for sufficient visual contrast

and then only for spatial frequencies of light below a critical fre-

quency kcr (Figure 8). This predicts a sharp jump, with increasing

SF, of about 180� in the relative phase of E and I cell activities as

kcr is crossed, or more robustly (Supplemental Text S2.2.3), in

the relative phases of the E and I conductances received by E

cells.

We also note several caveats. In some species or areas, spon-

taneous activity may suffice to drive the network out of the

supralinearly summating regime. Periodicity in length- and posi-

tion-tuning curves depends on sharp-edged input, but this might

not correspond directly to stimulus shape: connection fan-in and

fan-out at previous stages could spatially smooth input from

sharp-edged stimuli, while processing (e.g., surround suppres-

sion) at previous stages could sharpen input edges for smoothly

tapering stimuli. Because I cells have wider summation fields

than E cells, intermediate stimulus sizes can suppress E cells,

but facilitate I cells (see Discussion of results of Haider et al.,

2010, below). In parameter regimes in which I projections are

not too narrow, both E and I cells can be surround suppressed

with increases in the inhibition they receive: inhibition from

new I cells recruited by a larger stimulus can outweigh loss of

inhibition from suppressed I cells. Other factors that can

dynamically change effective synaptic strengths–short-term

synaptic depression or facilitation, adaptation currents–may

add complexity to model behavior, but will not alter the basic

SSN distinction between weak- and strong-effective-synapse

regimes.
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Does the SSN Model Apply to Rodent Cortex?
We have primarily modeled data from species with columnar

organization and maps of features such as preferred orientation.

Does ourmodel apply to species, such as rodents, that lack such

organization?

Recurrent excitation in rodents may be weaker than in species

with columnar organization, so that excitatory instability and the

transition to sublinear behavior may not occur. This is suggested

by results of Atallah et al. (2012) in mouse V1 L2/3: optogenetic

suppression of parvalbumin (PV)-expressing I cells increased

E-cell visual responses without any increase in the excitatory

conductance they received and with a nonparadoxical increase

in inhibitory conductance, suggesting a dearth of E/E coupling

and non-ISN behavior. This could explain why maps fail to

develop in rodents, as such failure can occur if local interactions

between neurons are suppressive (Kaschube, 2014). However,

engagement of L2/3 excitatory connectivity may vary with exper-

imental conditions or area. In rodent auditory cortex, locomotion

added drive to L1 I neurons, suppressing L2/3 E-cell firing

with a paradoxical suppression of inhibitory conductance they

received, suggesting an ISN (Zhou et al., 2014). Other results

suggest strong recurrent excitation and ISN-like behavior in L5

of rodent cortex (London et al., 2010; Stroh et al., 2013); rodent

response properties might be synthesized in deep layers by SSN

mechanisms and propagate to upper layers.

Adesnik et al. (2012) found in mouse V1 L2/3 that somato-

statin-expressing I cells (SOM cells) were surround facilitated,

while E and PV cells were suppressed, suggesting a non-ISN

in which increased SOM inhibition mediates suppression (Nien-

borg et al., 2013). However, suppression might decrease the net

inhibition (SOM + PV) cells receive, as in an ISN; optogenetic

suppression of SOM-cell spiking only moderately reduced E-

cell surround suppression; and another study found both SOM

and PV neurons were surround suppressed (Pecka et al.,

2014). The relative sparsity of SOM cells and increased propor-

tion of PV cells in macaque versus mouse V1 (reviewed in Nien-

borg et al., 2013) is another potentially significant species

difference.

A Conflicting Experiment?
The model suggests a resolution to the apparent conflict be-

tween two findings: inhibition decreased during surround sup-

pression (Ozeki et al., 2009); yet increased stimulus size in

windowed natural movies suppressed E cell firing, while

increasing the inhibition they receive and PV cell firing (Haider

et al., 2010). Haider et al. (2010) used small stimuli: for a given

cell, center stimulus size was that giving half-maximal response,

which for a Gaussian-shaped CRF is about 0.5-0.6 3 CRF size

(Supplemental Methods S1.3.4); large stimuli were three times

larger, or 1.5-1.8 3 CRF size (versus surrounds typically 10 3

CRF size in Ozeki et al., 2009). PV cells have larger summation

fields than E cells in mice (Adesnik et al., 2012) and our model

(Figure 7C). Thus, Haider et al. (2010)’s larger stimuli, (1) to E cells

might have size close to optimal for I cells; and (2) to I cells might

evoke more response than center stimuli, even if optimal size

were in between. Figure S14 shows how the model could simul-

taneously produce the results of both studies. The broad spatio-

temporal power spectrum of natural stimuli may also contribute:

paradoxical effects arise only at lower spatial frequencies

(Figure 8) and similar dependence might occur for temporal

frequency.

Extension to Other Cortical Properties
The network’s winner-take-all property for unequal-strength in-

puts may explain suppression of correlated neural variability

induced by a sensory stimulus or motor plan (Churchland

et al., 2010) or attention (Cohen and Maunsell, 2009; Mitchell

et al., 2009): increasing strength of other inputs (stimulus, plan,

or attention) suppresses the contribution of correlated neural

noise to neuronal output. Multiple attentional effects on neural
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Figure 8. Spatial-Frequency- and Contrast-

Dependent Paradoxical Response in the

2D Nonlinear Model

Slowly drifting, spatially sinusoidal modulatory

input is given to I units (e.g., by photostimulation

with ChRh2 expressed in I cells), in the presence of

varying levels of spatially uniform tonic visual input

driving both E and I units. ‘‘Paradoxical’’ ISN

behavior–I firing rates decreasing for increased

input to I units–manifests as E and I units modu-

lating in phase with one another. For weak tonic

input, the network is a non-ISN and units respond

nonparadoxically (modulatory input and I in phase,

E at opposite phase) for all modulatory spatial

frequencies. For high tonic input, network is an

ISN. Then low-spatial-frequency, but not high-

spatial-frequency modulation drives units para-

doxically (Supplemental Text S2.2 and Fig-

ure S2C). A more robust prediction is that these

changes in relative phase will occur in the excita-

tion and inhibition received by cells (Supplemental

Text S2.2.3). Modulatory input and E and I firing

rates are all shown normalized to both their mini-

mum and maximum values.
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responses arise if attention modulates inputs to a normalizing

circuit (e.g., Reynolds and Heeger, 2009); the SSNmodel is likely

to reproduce these effects. Future studies will address these

issues.

Attentional enhancement and modulatory suppression can be

understood as opposite turns of a ‘‘knob’’ that adjusts the gain of

‘‘balanced amplification’’ (Murphy andMiller, 2009), which arises

in the ISN regime: a small network shift toward inhibition (e.g.,

addition of modulatory E input to I cells) causes a large decrease

in both E- and I-cell responses, while a small shift toward excita-

tion causes large increases in both (these changes can be mul-

tiplicative, i.e., gain changes, in the SSN; Figure S13). Thus, a

function of strong cortical recurrence may be to provide modu-

latable amplification.

Conclusions
The SSN provides a powerful framework for understanding how

sensory cortex globally integrates multiple sources of input,

bottom-up and top-down, to produce neuronal responses and

ultimately perception. The computational function of these inte-

grative behaviors may now be more deeply probed by studying

how the underlying circuit processes more complex and natural

stimuli. Circuit changes that cause failures of this basic circuit

operation might manifest at multiple cortical levels from primary

sensation to higher cognition. Understanding such failures may

provide insight into disorders such as autism and schizophrenia,

which show deficits in contextual (Silverstein and Keane, 2011)

or global (Qian and Lipkin, 2011) processing and involve disrup-

tions in E/I balance (Yizhar et al., 2011; Yoon et al., 2010) that

could disrupt the balanced amplification underlying SSN modu-

lations. Indeed, schizophrenics show reduced visual surround

suppression that correlates with reduced gamma-amino-butyric

acid (GABA) concentration in visual cortex (Yoon et al., 2010),

while autistic subjects show increased variability in sensory re-

sponses (Dinstein et al., 2012), which might reflect failure of

normalization-induced variability suppression.

EXPERIMENTAL PROCEDURES

Animal care protocols conformed to NIH guidelines and were approved by the

Brandeis University Institutional Animal Care and Use Committee. Methods

are found in Supplemental Methods, section S1.
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Supplemental Information includes Supplemental Methods, Supplemental

Text, fourteen figures, and five tables and can be found with this article online

at http://dx.doi.org/10.1016/j.neuron.2014.12.026.
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S1 Methods

We first present in brief the information needed to replicate our results, excepting the details
of the maximum likelihood estimation (MLE) procedure (Sections S1.1-S1.2). We then
present supplemental modeling information (Sections S1.3-S1.4), including the MLE details
in Section S1.4.2.

S1.1 Modeling Methods in Brief

We define the Gaussian Gσ(x, y) = e−
d(x,y)2

2σ2 , where for positions d(x, y) = |x − y|, for
orientations d(x, y) = shortest distance around circle of circumference 180o between x and y.
We define ∼ N (m,σ2) to mean distributed as a normal distribution with mean m, variance
σ2.

S1.1.1 Determination of external input shape h(x)

Input of length l had shape sl(x) =

(
1

1+e
−x+l/2σRF

)(
1− 1

1+e
−x−l/2σRF

)
. Fig. 1: stimulus of

orientation φ had h(θ) = GσFF
(φ, θ). Figs. 2-3: h(x) = sl(x). Figs. 6-8: stimulus centered

at 2D position x′, orientation φ has h(x) = sl(|x − x′|)GσFF
(φ, θ(x)) (θ(x) is preferred

orientation of units at 2D position x). For full-field gratings, sl(·) is replaced by 1.

S1.1.2 Parameters

All figs: τE = 20ms, τI = 10ms.
Figs. 1,2,3: there are N E/I units with grid spacing ∆θ (Fig. 1) or ∆x (Figs. 2,3).
Fig. 1: Connections are Wab(θ − θ′) = JabGσori(θ, θ

′). N = 180, ∆θ = 1o, JEE = 0.044,
JIE = 0.042, JEI = 0.023, JII = 0.018, σori = 32o, σFF = 30o, k = 0.04, n = 2.0.
Figs. 2,3: Excitatory projections are WaE(x, x′) = JaEGσaE(x, x′) for a ∈ {E, I}. Inhibitory
projections WaI are only to same grid position as projecting neuron. Figure 2: N = 401,
∆x = 0.25o, σRF = 0.33∆x, JEE = 0.385, JIE = 1.0, WEI = 0.55, WII = 1.5, σEE = 0.5o,
σIE = 1o, c = 1. Figure 3: N = 101, ∆x = 1

3

o
, σRF = 0.125∆x, JEE = 1.0, JIE = 1.25,

WEI = 1.0, WII = 0.75, σEE = 2
3

o
, σIE = 4

3

o
, k = 0.01, n = 2.2.

Figs. 6,7: Grid is 75 × 75 E/I pairs, grid interval ∆x = 16
75

o
, periodic boundary condi-

tions. The map of preferred orientations θ(x) (x is 2D position) is randomly generated
using the method of Kaschube et al. (2010) (their supp. materials, Eq. 20) with n = 30,
kc = 8 cycles

75 grid intervals
. Let Wab(x,x

′) be synaptic weight from unit of type b (E or I), po-
sition x′ to type a, position x. Nonzero connections are sparse, chosen with probability
p (Wab(x,x

′) 6= 0) = κbGσaE(x, x′)Gσori(θ(x), θ(x′)). For nonzero connections, Wab(x,x
′) is

∼ N (Jab, (0.25Jab)
2); negative weights are set to zero. Weights of a given type b onto each

unit are then scaled so that all units of a given type a receive the same total type b synaptic
weight, equal to Jab times the mean number of connections received under p (Wab(x, x

′) 6= 0).
τE, τI , nE, nI , and k are ∼ N (m, (0.05m)2) where m is the corresponding mean value. nE
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and nI are exponents of power law for E or I cells respectively. Parameters (mean values
if stochastic): κE = 0.1, κI = 0.5, JEE = 0.10, JIE = 0.38, JEI = 0.089, JII = 0.096,
k = 0.012, nE = 2.0, nI = 2.2, σEE = 8∆x, σIE = 12∆x, σEI = σII = 4∆x, σori = 45o,
σFF = 32o, σRF = ∆x.
Figs. 2,3,6: CM tuning is studied using a full-field grating multiplied by the contrast mod-
ulation 1

2
(1 + sin (2π (k · x+ ωt))) where x and k are 1D in Figs. 2 and 3 and 2D in Fig. 6

and ω = 4Hz. Stimulus was run for 1 sec (1ms time steps). Preferred CM spatial frequency
(SF), and preferred CM orientation in Fig. 6, were those producing maximum peak response
over that time.

In Fig. 6, there were problems with units having response peaks of similar heights for
multiple harmonics of a fundamental preferred SF. For this figure, we defined CM preferred
SF as follows. We Fourier transformed the CM SF tuning curve and found its peak X,
a number representing cycles/(tuning curve). Let f be the highest frequency in the CM
SF tuning curve. We then successively looked at intervals of the tuning curve 0 to Nf/X,
N = 1, 2, . . . , floor(X) followed by the full interval, looking for a response peak that was at
least 95% of the height of the global peak of the tuning curve. The first such peak that was
found was deemed the preferred SF. Visual inspection of many tuning curves confirmed that
this procedure correctly isolated the fundamental of a harmonic stack of similar responses
and otherwise simply found the peak of the tuning curve.
Figure 8: Parameters as in Fig. 6. All stimuli are full field. Photostimulus drifted at 3 Hz.
Low input: tonic input 1, modulatory amplitude 1. High input: tonic input 40, modulatory
amplitude 10. Spatial frequencies: 0.03 c/deg (low), 0.5 c/deg (high). Illustrated E/I pair
chosen at random; grating at preferred orientation. Photostimulus oriented vertically across
model cortex as shown in Fig. 6A.

S1.1.3 Simulation methods

For the linear model, the steady state can be explicitly determined. Using matrix/vector
notation, letting r be the vector of firing rates of all units across the network (both E and
I), h the vector of their external inputs, W the matrix of connection weights between these
neurons and 1 the identity matrix of the same dimension, the steady state activities rSS are
given by r = (1 −W)−1h, which was numerically calculated. For the nonlinear models,
steady states (and dynamics in CM-tuning simulations, Fig. 8, and Supplemental Fig. S2C)
were determined by simulations using simple forward Euler method with 1 ms time step. All
simulations were run from multiple initial conditions to confirm independence of final state
from initial condition and tested with shorter time steps to ensure no changes in results.

S1.1.4 Tuning curve plots

All model tuning curves linearly connect points sampled at high resolution, without smooth-
ing.
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S1.2 Experimental Methods in Brief

S1.2.1 Animal care, surgery, and recording

Animal care protocols conformed to NIH guidelines and were approved by the Brandeis
University Institutional Animal Care and Use Committee. Eight adult ferrets (90-110 days
of age; 7 females, 1 male) were studied. They were singly or doubly housed and kept on a 12
hour light/12 hour dark cycle. Anesthesia was induced with a mix of ketamine (30 mg/kg)
and xylazine (3.0 mg/kg) (IM) and maintained with 0.5–1.5% isoflurane. Atropine (0.2
ml, 0.5 mg/ml) was administered. All wound margins were infused with the long-lasting
analgesic bupivicane (0.25%). A nylon tracheal tube was inserted by tracheotomy, and
animals respirated on a 2:3 mixture of oxygen:nitrous oxide, switched to 1:1 after surgeries.
Silicon oil was placed on the eyes to prevent corneal damage. The animal was secured in a
stereotaxic frame, a small craniotomy (4 × 8 mm wide) was made and the dura removed.
Ferrets were then paralyzed with continuous IP infusion of gallamine triethiodide (0.2mg/hr)
to suppress spontaneous eye movements and respirated with a 1:1 mixture of oxygen:nitrous
oxide. Heart rate, end-tidal CO2 (maintained between 3.2% - 5.0%), and temperature were
monitored continuously throughout surgeries and recordings.

Extracellular signals were recorded from upper layers of ferret V1 using carbon fiber
microelectrodes (Kation Scientific).

S1.2.2 Visual stimulus protocols

Receptive field mapping: After initial coarse mapping of the CRF and preferred orienta-
tion, we determined CRF center (by switching between circular and complementary annular
stimulus, progressively shrinking radius while searching for position that gave response to
circular but not annular stimulus), then preferred direction (drifting gratings of 16 direc-
tions, 22.5o steps, spatial frequency 0.1 cycles/deg, temporal frequency 4 Hz), and then
preferred spatial frequency (SF) (preferred-direction gratings of 7 SF’s). Then studies of
length, position, and CM tuning were carried out.
Tuning studies: Luminance gratings always had cell’s preferred orientation, direction,
and spatial frequency. For length tuning (30 stimuli, radius 1o to 30o by 1o) and position
tuning (21 30o-diameter stimuli, position −15o to 15o by 1.5o, moved parallel to grating
orientation), stimuli were presented for 2 sec, drift rate 4 Hz, interstimulus interval (ISI) 4
sec. Response measure was mean firing rate during grating presentation. CM grating varied
contrast sinusoidally from 0% contrast to luminance-grating contrast. We first found CM
preferred orientation (among 8 orientations, 22.5o spacing) with 70% luminance contrast
and CM SF 0.05 cycles/deg. This CM orientation was used to study CM SF tuning across
luminance contrasts (24 stimuli: SFs 01, .015, .02, .03, .04, .05 c/deg; contrasts 4%, 8%,
16%, 64%). CM stimuli were presented for 4 seconds, drift rates 4 Hz (luminance), 1 Hz
(CM), ISI 4 sec. Response measure was 1 Hz component of firing rate during CM grating
presentation. For each tuning type, stimuli were presented in pseudorandom order; each
stimulus appeared 4–5 times.
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S1.2.3 Maximum likelihood estimation (MLE) and DOG and SSM models

We used MLE to improve our estimates of tuning curves by removing the effects of slow,
stimulus-independent variations in excitability. Details are in Section S1.4.2.

For Fig. 4 and Fig. 6I, SSM and DOG curves were defined as follows. The error function
is defined by erf(x) = 2√

π

∫ x
0
dz e−z

2
, and ranges from −1 to 1. We define the non-negative

function z(x) = (erf(x) + 1) /2. For size-tuning curves r(x), the DoG model is r(x) =
a1z ((x− a2) a3) − a4z ((x− a5) a6) ea7x + a8. The SSM model eliminates the a8 term and
replaces ea7 with (ea7x cos (a9x+ a10) + a8). (Note that setting a9 = a10 = 0 reduces the SSM
model to same form as the DOG model, as becomes clear if the equations are reexpressed in
terms of erf(x) rather than z(x); that is, the models are nested.) For position-tuning curves

p(x), the DoG model is p(x) = a1e
−(x−a2)

2

2a23 − a4e
−(x−a5)

2

2a26 + a7. The SSM model replaces a4

with a4 (cos (a8x+ a9) + a10). SSM and DOG models were fit by minimizing sum-squared
error using the Matlab function lsqcurvefit.

S1.3 Supplemental Methods Information: Modeling

S1.3.1 External input shape: General considerations and supplementary figures

We adopted the function sl(x) that defines “sharp-edged” stimuli (Section S1.1.1) early
in our work, but it is very similar to the form that would be obtained by assuming that
the spatial envelope of the CRF is given by a Gaussian function of retinotopic space and
that the external input to a given cell is the integral of the product of its Gaussian CRF
with the stimulus. If we let the Gaussian CRF have standard deviation σG and assume
a sharp-edged stimulus constant over x = −l to x = l, this integral is proportional to

fl(x) = 1
2

(
erf
(
x+l/2

σG
√

2

)
+ erf

(
l/2−x
σG
√

2

))
. Identifying σRF = 0.6σG, sl(x) and fl(x) are essen-

tially identical for σRF < 0.25l, a condition that holds for almost all of our stimuli. As
σRF increases from 0.25l to l, sl(x) becomes about 10% wider than fl(x) (half width at half
height) and its amplitude relative to fl(x) decreases to about 0.6fl(x).

In Supplemental Figs. S7 and S8, we also considered more smoothly-tapering stimuli. For

Gaussian-shaped stimuli of length l, h(x) = gl(x) where gl(x) = e
− x2

2σ2
l with σl = l/2√

2∗ln(2)
(l is

full-width at half-height of the input). We considered varying degrees of tapering by linearly
interpolating between sl(x) and gl(x) to produce input profiles h(x) = asl(x) + (1− a)gl(x)
with a = 0, 0.2, 0.4, 0.6, 0.8, 1.0.

Throughout the paper, external input was taken for simplicity as identical for E and I
units. In Ahmadian et al. (2013) we consider aspects of the more general case in which
external drives to E and I are not equal.

S1.3.2 Parameters: General considerations

We did not attempt to tune parameters to quantitatively match data, but instead aimed at
explicating simple, robust mechanisms underlying qualitative behaviors. For similar reasons
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we ignored many biological details that should be explored in future work, notably the
different types of I cells and their (and E cells’) different cellular and synaptic properties,
cortical layers, biological properties such as spike-rate adaptation or synaptic depression that
would reduce the supralinearity of input/output functions, and the dynamic increase in the
power-law exponent n and associated change in the parameter k that would be induced by
the reduction in voltage noise levels with contrast (Sadagopan and Ferster 2012) (because
the effective power is roughly determined by the distance from rest to threshold in units
of the voltage noise standard deviation (Hansel and van Vreeswijk 2002, Miller and Troyer
2002)). We used equal numbers of E and I units, but we expect no significant changes if
reduced numbers of I units are used with correspondingly stronger connections, based on
similar behavior of spiking models with realistic proportions of I neurons and rate models
with equal numbers of E and I units (Murphy and Miller 2009, and D. Obeid and K.D.
Miller, unpublished observations of SSN models).

Since this work was largely completed we realized (Ahmadian et al. 2013) that the most
strongly nonlinear behavior would likely arise for ΩE < 0, ΩE < ΩI where, for equal external
input to E and I units as used here, ΩE ≡ W̄II − W̄EI , ΩI ≡ W̄IE − W̄EE, and W̄XY is the
total synaptic strength from units of type Y received by a unit of type X. This condition
was not met in Fig. 6, which had 0 < ΩE < ΩI . These simulations nonetheless worked well
enough for our purposes of displaying qualitative behavior.

We used τI = 1
2
τE. Using faster inhibition than excitation helps ensure network stability

but does not otherwise affect steady state responses.
In the 2D simulations (Figs. 6-8), degrees can be converted to distance across cortex by

assuming a cortical magnification factor of 0.6 mm/deg, a typical figure for 5−10o eccentricity
in the cat (Albus 1975), giving σEE = 1.02mm, σIE = 1.54mm, σEI = σII = 0.51mm, ori-
entation map period 1.2mm. We used slightly different exponents, nI > nE, to increase sta-
bility despite variability (experiments suggest much larger differences: Supplemental Fig. S3
of Haider et al. 2010). Variability of τ ’s, n’s, k was limited because larger variability tended
to yield instability. Biologically, large variability can probably be tolerated without insta-
bility because of various forms of homeostatic compensation (Turrigiano 2011, Vogels et al.
2011) as well as mechanisms such as adaptation/depression in excitatory cells and synapses
or facilitation in inhibitory synapses, not modeled here.

S1.3.3 DoG and SSM fits to model data: General considerations

Model length-tuning curves have 61 data points (evenly spaced from 0.5 to 75 grid units). In
Fig. 6I, mean/median SSE’s per data point for position tuning are 1.4/1.8 (DOG) or 3.5/4.6
(SSM) times those of experiments; for length tuning, 0.09/0.08 (DOG) or 0.10/0.08 (SSM).
These differences, of unknown cause, are similar for DOG and SSM and so do not indicate
differences in periodicity of model vs. real cells.
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S1.3.4 Determining size of stimuli used by Haider et al. (2010), relative to CRF
size

In the Discussion we discuss the size of the stimuli used by Haider et al. (2010), based on the
following calculation. We assume a Gaussian CRF profile (Jones and Palmer 1987), which
we take for simplicity to be circularly symmetric. We define the standard deviation of the
Gaussian to be length 1. Thus the CRF is proportional to G(r) ≡ 1

2π
e−r

2/2 where r is the
radial coordinate in 2D polar coordinates. In response to a stimulus of strength 1 uniformly
stimulating the CRF out to radius x (measured in units of the standard deviation), the

output of the CRF filter applied to the stimulus is
∫ x

0
rdr

∫ 2π

0
dθ G(r) = 1− e−x. We assume

the CRF size is 2 standard deviations of the Gaussian, so maximal filter output is 1 − e−2

(e.g. beyond that radius surround suppression would set in). Finally we assume the neuron’s
response is the filter output raised to a power n. Thus, the condition that the stimulus

radius x gives half-maximal response is
(

1−e−x
1−e−2

)n
= 1

2
, or x = − ln

(
1− 2−1/n (1− e−2)

)
. For

n ranging from 2 to 3, this gives x ranging from 0.94 to 1.16 (in standard deviations), or
from .47 to .58 of CRF size.

S1.4 Supplemental Methods Information: Experiments

S1.4.1 Recording

Spikes were amplified with a preamplifier/amplifier system by Multichannel Systems (Ger-
many) and acquired and clustered using a Micro1401 acquisition board and Spike2 software
(Cambridge Electronic Design, LLC). Visual stimuli were created in Matlab using the Psy-
chophysics Toolbox (Kleiner et al. 2007) on a Macintosh Pro (OS10) and displayed on a Sony
monitor (GDM-520) (100 Hz refresh and frame rates). Spike tuning curves were analyzed
with custom software in Matlab.

S1.4.2 Maximum likelihood estimation (MLE) for denoising of tuning curves

To improve our estimates of tuning curves, which represent the stimulus-specific component
of responses, we used MLE to remove the effects of slow, stimulus-independent variations
in excitability (Supplemental Figs. S1A,B). This was particularly important for our data
because we presented each stimulus only four or five times. Because we wished to explore a
large region of stimulus parameter space with each cell, we were constrained in the number
of times we could present each stimulus by the amount of time we could reasonably expect
to record from a single neuron. Removing the slow stimulus-independent variations in rate
improves our statistical power to estimate tuning curves. We also incorporated our prior
knowledge that tuning curves are smooth by using constraints on tuning curve smoothness,
which also improves our statistical power by effectively combining data across nearby stimuli.

To remove stimulus-nonspecific slow variations in response magnitude, we modeled a
neuron’s firing rate to stimulus type i (i.e., a given stimulus size, stimulus position, or CM
contrast and SF) presented at time t as ri(t) = g(t)si where g(t) represents slow changes in
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Figure S1:
MLE for denoising of tuning curves, and fits of DOG and SSM models to tuning curves
(related to Supplement S1.4.2-S1.4.3). (A). Examples of slow changes in cortical excitability.
The firing rate versus time for six example cells is shown in blue (calculated with a 100ms sliding
window). The initial estimate of the nonspecific scaling function, g0(t), is in green. The adjusted
g(t) that maximizes the likelihood of both g(t) and the stimulus specific response vector si(t) is
shown in red. (B). Slow fluctuations in cortical excitability do not obscure stimulus selectivity. We
examine one firing rate curve from (A) while highlighting four 100-second time epochs, marked
by adjacent pairs of dashed vertical lines. Each subplot shows firing rates during one of these
epochs, in bins across the 100 seconds, with each bin indicating response to a single stimulus or
a single ISI (ISI responses are small or zero, so ISI bins mostly appear to be spaces between the
bins showing stimulus responses). The stimuli were shown in pseudorandom order so the particular
stimuli shown are different in each epoch. During periods of both high and low cortical excitability,
the cell responds differentially to different stimuli. Note the changing scale on the y-axes of the
subplots. C. Example outcomes of MLE denoising: three example size-tuning curves. The green
data are the raw size-tuning curves, and the black data indicate the size-tuning responses after
the MLE de-noising process. The best-fit SSM model curve for the post-processed data is in blue.
(Continued on next page.) 10



Figure S1:
(Continued). D. MLE denoising preserves response properties. Left: Histogram of the correlation
coefficients between orientation tuning curves before and after the MLE denoising process. The
overwhelming majority of cells show a near perfect correlation between the raw tuning curve and
the post-processed tuning curve. Right: Histogram of the correlation coefficients of luminance
spatial frequency tuning curves before and after the MLE denoising process. E. MLE smoothing
eliminates high frequencies from SSM fits. We consider frequencies of the oscillation in fits of
the SSM model to size-tuning curves (76 cells). The green dots show fits to the data from MLE
denoising without smoothing (x-axis) and from MLE denoising with smoothing (y-axis). The two
show no significant correlation (r = 0.12, p = 0.31; DF = 74, t = 1.014). We found the Gaussian
spatial filter that, applied to the unsmoothed MLE size-tuning curves, gave the least mean-squared
error from the smoothed MLE curves, which had standard deviation σ = 0.99o. The blue dots
compare frequencies from SSM fits to this Gaussian smoothing of the unsmoothed MLE curves (x-
axis) to those from the smoothed MLE curves (y-axis); these are now highly correlated (r = 0.49,
p = 5.7 × 10−6; DF = 74, t = 4.891). Thus the smoothing in the MLE algorithm has very
similar effect to smoothing with a Gaussian filter with σ = 0.99o. F,G. Statistics of size-tuning fits
compared to the classic Difference of Gaussians (DoG) model. Same analysis as Fig. 4B-C, but here
comparison is to a more classic version of the DoG model, setting parameter a7 = 0 in the equation
for the size-tuning DoG (Section S1.2.3). F. The reciprocal of the sum squared error for the DoG
and SSM models, conventions and statistical tests as in Fig. 4B. 74/76 cells had significantly better
fits by SSM than classic DoG by nested F-test. G. Results of cross-validation analysis, conventions
as in Fig. 4C. For 69/76 cells the SSM model fit gave less median sum-squared error than the
classic DoG model (p = 6.4 × 10−14, binomial test; median of distribution significantly different
from zero, p = 1.1 × 10−11, Wilcoxon signed-rank test, SignedRank= 2775; statistical tests as in
Fig. 4C). Statistics for all cells given in Supplemental Table S2. H-I. Cross-validation analysis of
size-tuning model fits. H. Three examples of the cross-validation process. In each case, the original
SSM curve, fit with all 30 data points, is in green. The 100 cross-validation fits, each fit with 24
randomly selected points (80% of the original data), are shown in blue. I. A log-log histogram of
the normalized error of the cross-validation fits relative to the full-data fit shows a roughly power-
law distribution, indicating that most cross-validation fits differ very little from their respective
full-data fit. Letting rai and ri be the firing rate at position i for cross-validation estimate a and

for the full-data fit respectively, the normalized error for estimate a is
∑
i(r

a
i −ri)2∑
j r

2
j

. J-K. Cross-

validation analysis of position-tuning model fits. J. Three examples of the cross-validation process.
Conventions as in H. K. A log-log histogram of the normalized error between the cross-validation
fits and the full-data fit. Conventions as in I.
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overall cortical excitatability and si is stimulus-specific response (the tuning curve). Time
was binned, one bin for each stimulus onset/offset interval and one for each ISI (ISI’s are
an additional stimulus type). The initial g(t) was found by least-squares fitting of the
spike train, smoothed with a 100ms sliding window, to the 12-parameter function, g(t) =∑4

i=1Ai sin(2πfit+φi) where the fi were constrained to be < 10 cycles/experiment duration
(exp’t duration typically 8-16 minutes) to ensure that g(t) captures only slow variations
corresponding to changes in cortical state rather than changes in stimuli. We then maximized
the log likelihood, alternating maximizing over the si with g(t) fixed and over the 4 Ai
parameters of g(t) with other parameters of g(t) and the si fixed. To incorporate prior
knowledge of the smoothness of tuning curves, for length- and position-tuning curves, the si
maximization was constrained so that, after setting maximum si to 1, the second derivative
of the tuning curve was always < 0.10/deg2 (length-tuning) or < 0.15/deg2 (position tuning).
Smoothing was not used for CM-tuning because those curves had only six points, sufficiently
spaced that we had no a priori reason to expect smooth curves. For length and position
tuning, the likelihood of an observed k spikes in a given time bin of size ∆t at time t with
stimulus i was given by a Poisson distribution with mean ri(t)∆t. For CM tuning, the log
likelihood of an observed envelope F1 amplitude k in a given bin was −(k − ri(t)∆t)2.

To find error bounds for our estimates, we derive the Hessian matrix of the log likelihood
– the matrix of second derivatives of the log likelihood (L.L.) with respect to the si’s. The
Hessian is diagonal – derivatives ∂2L.L.

∂si∂sj
are zero for i 6= j – and the diagonal entries are just

∂2L.L.
∂s2i

. In this case, in the neighborhood of the maximum likelihood estimate, the probability

of si can be approximated by a Gaussian, centered at the maximum likelihood value, with
variance given by the negative of the inverse of the ith diagonal entry of the Hessian. We
take the error bar to be the standard deviation of this distribution, i.e. the square root of
the variance, which we refer to as the standard error (because it gives the standard deviation
of the probability distribution for the mean).

The responses and error bars presented throughout the experimental results section are
derived from this MLE process. Note that tuning curve amplitudes are arbitrary (replacing
g(t) and the si with bg(t) and (1/b)si would not change performance for any b), so presented
tuning curves are all normalized to have peak value 1.

As controls on the MLE process, we show that (1) responses remain stimulus-selective
across widely varying overall levels of cortical responsiveness (Supplemental Fig. S1B); (2)
orientation tuning curves and spatial frequency tuning curves are largely unchanged by the
MLE, (Supplemental Fig. S1D; the MLE process was applied to the stimulus epochs in which
preferred direction and preferred spatial frequency were assessed).

We also examined the effects of the MLE fitting on the frequencies of tuning curve oscil-
lations found by the SSM model fits to size tuning curves. The MLE procedure suppresses
higher frequencies of oscillation (above about 0.1 cycle/deg) and shrinks error estimates
(Supplemental Fig. S1C,E); position-tuning curves behave similarly). We believe this is
due to suppression of high-frequency noise in the tuning curves. This noise arises because
the random presentation times of a given stimulus may happen to occur at times of lesser
excitability or of greater excitability. Since stimuli of different sizes are presented in pseu-
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dorandom order, these effects are uncorrelated between different stimulus sizes, including
adjacent sizes, and so induce high-frequency noise in the size tuning curve. This noise is
suppressed by the use of MLE to factor out the excitability changes. High-frequency noise
also arises due to trial-to-trial biological variation in responses at a fixed level of excitability.
This noise, and also residual noise from excitability changes, is suppressed by the assumption
of smoothness of the tuning curves we used as part of the MLE procedure.

One might worry that the MLE smoothing procedure reduced signal rather than noise.
To address this, we show that the smoothing is roughly equivalent to a very limited con-
ventional smoothing. We ran the MLE process without any smoothing constraints (“MLE-
unsmoothed”). We then found the Gaussian smoothing filter that, when applied to the
size-tuning curves from MLE-unsmoothed, gave the least mean-squared difference across the
76 cells with the size-tuning curves resulting from MLE with smoothing (“MLE-smoothed”).
The optimal Gaussian filter had standard deviation 0.99o. The smoothness assumption in
MLE gives results very much like smoothing the MLE-unsmoothed tuning curves with this
optimal filter. For each cell, we calculated the sum-squared difference between the size tuning
curves determined by MLE-smoothed and by this Gaussian-filtering of MLE-unsmoothed,
as a percentage of the sum of the squares of the MLE-smoothed tuning curve. This per-
centage had median 0.0130 (5th and 95th percentiles, 0.0028 and 0.040) and mean±stdev
0.0160±0.0139. Furthermore, the frequencies of SSM fits to MLE-unsmoothed data after
(but not before) the Gaussian smoothing are highly correlated to the frequencies found from
MLE-smoothed results (Supplemental Fig. S1E). All of these results indicate that adding the
smoothness constraint to the MLE yields tuning curves very much like those obtained sim-
ply by smoothing MLE-unsmoothed with the Gaussian filter (a conclusion also supported
by visual inspection of the curves). The Gaussian filter has a width about 1o and hence
represents a very limited degree of smoothing. In addition, if the suppression of frequencies
above 0.1 cycle/deg were due to the smoothness constraint eliminating true signal at higher
spatial frequencies, we would expect – unless cells had two distinct oscillation frequencies,
one above and one below 0.1 cycle/deg – that cells with oscillation frequencies above 0.1
cycle/deg in SSM fits to the MLE-unsmoothed size-tuning data would be brought down only
to 0.1 cycle/deg in MLE-smoothed data (i.e., to the highest limiting frequency imposed by
smoothing, as judged by the highest frequency seen in the smoothed fits), but this is not the
case (Supplemental Fig. S1E).

S1.4.3 Fits of DoG and SSM models to tuning curves

For size tuning, the exponential decay ea7x was important for a good fit. We included this
term in both DoG and SSM models, so that the only difference between the two models is the
periodicity. Results are very similar if the SSM model is compared to a more standard DoG
model without the decay term (a7 = 0 in equation for DoG model; Supplemental Fig. S1F).

Fits of SSM and DOG models using Matlab function lsqcurvefit were done subject to
constraints established empirically as necessary to avoid poorly-fitting local minima. In units
in which the first and last points on the curves had coordinates 10 and 300, respectively,
these constraints were: for size-tuning curves, a1 ≥ 0, 0 ≤ a3 ≤ 1, a4 ≥ 0, 0 ≤ a6 ≤ 1 (SSM)
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or 0 ≤ a6 ≤ a3 (DOG), −0.1 ≤ a7 ≤ 0.1, 0 ≤ a9 ≤ π/10, −π ≤ a10 ≤ π; for position-tuning
curves, a1 ≥ 0, −150 ≤ a2 ≤ 150, a3 ≥ 0 (DOG) or a3 ≥ 25 (SSM), −150 ≤ a5 ≤ 150 (DOG
only), a6 ≥ 0 (DOG) or a6 ≥ 50 (SSM), 0 ≤ a8 ≤ 2π/45, −π ≤ a9 ≤ π, a10 ≥ 0. In size-
tuning DOG model of Supplemental Fig. S1F-G (a7 = 0), constraints on other parameters
are unchanged except 0 ≤ a3 ≤ 0.2. The use of different constraints for the two models may
cast doubt on the use of the F-test, which depends on the models being nested, i.e. identical
after extra parameters in the SSM model are set to zero. Because fits generally became
worse (greater summed-squared error) when constraints were relaxed, we think of these
constraints as guidance to the error-minimizing algorithm to get it into the best parameter
regime, rather than as constraints on the models. The cross-validation analyses provide an
independent check on the significance of our results that does not rely on the assumption of
nested models.

In Figs. 4C, 4F and Supplemental Fig. S1G, we showed results of a cross-validation
analysis comparing the performance of the DoG vs. SSM models. In Supplemental Figs. S1H-
I (size-tuning data) and S1J-K (positional-tuning data), we show that there is in general very
little difference between the cross-validation fits of the SSM model, using 80% of the data,
and the SSM fits using the full data set, indicating that the variance in our SSM estimates
is very small.

S1.5 Statistical Methods

S1.5.1 Assumptions of Normality

Most of the statistical tests we used make no assumption that data is normally distributed.
There are two exceptions:

• We used a nested F-test to compare SSM and DOG model fits to data. These models
are nested: the SSM model contains all the parameters of the DOG model plus addi-
tional parameters; setting these additional parameters to zero gives the DOG model.
On the assumption that the residuals from the fits are approximately normally dis-
tributed, and under the null hypothesis that the simpler hypothesis is correct (i.e.,
that the extra parameters in the more complex model are all equal to zero), the F-
statistic, which is derived from the ratio of the summed-squared errors of the two fits
(or more generally of the Ξ2 of the two fits) should follow an F distribution with de-
grees of freedom as specified in legend of Supplemental Table S1. We use this test on
the plausible assumption of approximately normally distributed residuals, but we also
assay the same question with a cross-validation test that requires no such assumption.

• We used the Pearson correlation coefficient to determine whether two sets of data are
correlated in Fig. 6K and Supplemental Figs. S9C,D,E and S1e. We use the standard
test as to whether r is significantly different from zero, which is to conduct a Student’s

t-test with degrees of freedom DF = n − 2 on the statistic t = r
√

n−2
1−r2 . For an

uncorrelated normal distribution, t follows the Student’s t distribution withDF degrees
of freedom. However, t also approximately follows this distribution for non-normal
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distributions if sample size is not very small (Edgell and Noon 1984), i.e. ≥ 6, so
no assumption of normality is required. Furthermore all but one of our tests show
lack of significant correlation by a wide margin, with the two smallest non-significant
p-values being 0.17 and 0.31, and the remaining test shows very strong significance
(p = 5.7× 10−6, one of the tests in Supplemental Fig. S1E). These margins combined
with the results of Edgell and Noon (1984) alleviate any worries about non-normality.

S1.5.2 Test statistics for statistical tests of Figs. 4C,F, 5F and 7A,E

Here we give test statistics (and repeat p and r values from main text) for statistical tests
other than those documented in Supplemental Tables.

• Tests of Fig. 4C,F: tests whether median of difference between sum-squared error of
SSM and DOG models on withheld data in cross-validation tests is less than 0, using
Wilcoxon signed rank test. Fig. 4C: p = 1.04 × 10−10, SignedRank= 2711; Fig. 4F:
p = 2.4× 10−7, SignedRank= 2347.

• Tests of Fig. 5F for differences between contrast levels in experimentally measured
CM preferred SF, using Wilcoxon rank sum (WRS) test. Two middle contrasts not
significantly different: p = 0.68, ranksum= 2584; low vs. medium: p < 0.5 × 10−4,
ranksum= 2818; low vs. high: p < 10−7, ranksum= 1789.5; middle vs. high: p = 0.046,
ranksum= 7137.5.

• Tests of Fig. 7A, Student’s t-test for significance of Pearson correlation coefficient (as
described in previous subsection) between luminance and CM preferred orientations in
model data: E units: r = 0.098, p = 0.33, DF = 98, t = 0.979; I units: r = 0.093,
p = 0.36, DF = 98, t = 0.923.

• Tests of Fig. 7E for differences between high and low contrasts in model circular
variance of orientation tuning of surround suppression, using WRS test. All units:
p = 2.6 × 10−9, ranksum= 7032; E units: p = 6.3 × 10−10, ranksum= 1555; I units:
p = 0.034, ranksum= 1990.
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S2 Supplemental Text: Mathematical Analysis and Re-

lated Theoretical Issues

S2.1 Network Resonant Frequencies

We write the linear model equation in matrix/vector form as

τET
d

dt
r(x) = −r(x) + W ∗ r(x) + ch(x) (S1)

Here, r(x) =

(
rE(x)
rI(x)

)
, h(x) =

(
h(x)
h(x)

)
, W(x) =

(
WEE(x) −WEI(x)
WIE(x) −WII(x)

)
, T =

(
1 0
0 τI

τE

)
,

and the ∗ means convolution: W ∗ r(x) ≡
∑

x′ W(x− x′)r(x′). We will also refer to the full

set of connections as the matrix W =

(
WEE −WEI

WIE −WII

)
where the submatrix WXY has

elements (WXY)ij = WXY(xi−xj) and xi and xj are the ith and jth grid positions respectively.
Here we analyze linear network behavior, and in particular derive expressions for the

excitatory and inhibitory resonant frequencies. We simplify by assuming either periodic
boundary conditions for the network or that the network stretches to ±∞. For generality
we will let the inputs to E and I have different magnitudes: hE(x) = αh(x), hI(x) = h(x).

Because the connections between two units at locations x and x′ depend only on the
distance between the two neurons – that is, they are translation-invariant, the same at any
position – the convolution in Eq. S1 is turned into a multiplication by Fourier transformation.
For any function f(x), we let f̃(k) be its Fourier transform at what we will call spatial
frequency k (on a grid of N units, k is an integer corresponding to spatial frequency k cycles
per N units). We normalize the Fourier transform so that the Fourier transform of f ∗ g(x)
is f̃(k)g̃(k).1 Then after Fourier transform, Eq. S1 becomes

τET
d

dt
r̃(k) = −r̃(k) + W̃(k)r̃(k) + ch̃(k) (S2)

where r̃(k) =

(
r̃E(k)
r̃I(k)

)
, h̃(k) = h̃(k)

(
α
1

)
, and W̃ =

(
W̃EE(k) −W̃EI(k)

W̃IE(k) −W̃II(k)

)
. Note

that the E and I activity patterns at a given spatial frequency influence one another’s time
evolution, but evolve independently of the activity patterns at every other spatial frequency.
This follows from the linearity of the network and the translation-invariance of the weight
functions.

From Eq. S2, the network fixed point, where d
dt

r̃ = 0, satisfies r̃ = (1 − W̃(k))−1ch̃(k),

1See footnote 3.
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where 1 is the 2-dimensional identity matrix. We can rewrite this as

r̃E(k) =


(

1 + W̃II(k)
)
α− W̃EI(k)

Det (1− W̃(k))

 h̃(k) ≡ LE(k)h̃(k) (S3)

r̃I(k) =

(
1− W̃EE(k) + αW̃IE(k)

Det (1− W̃(k))

)
h̃(k) ≡ LI(k)h̃(k) (S4)

Here, Det (1 − W̃(k)) = W̃EI(k)W̃IE(k) − (W̃II(k) + 1)(W̃EE(k) − 1) is the determinant of
(1− W̃(k)). Stability of the network dynamics requires that Det (1− W̃(k)) > 0 for all k.2

Equations S3-S4 show how selective amplification of spatially periodic patterns of activity
arise in response to non-periodic input. The terms multiplying h̃(k), which we have given
the names LE(k) and LI(k), act as linear filters on the input to produce the steady-state
responses. If the input is not spatially periodic, i.e. has no peaks at k 6= 0 (non-DC peaks),
spatial periodicity can nonetheless arise in the firing rates if the filters have non-DC peaks
within the bandwidth of h̃(k), inducing nearby non-DC peaks in rE(k) or rI(k). By solving
for these filter maxima we can find the conditions under which the network will demonstrate
spatial periodicity for non-periodic input.

To find the filter maxima, we will solve for the roots of the first derivative of the network
filters with respect to k. The denominator of these derivatives is Det(1 −W(k))2. Since
network stability requires that Det(1 −W(k)) > 0 for all k, this denominator remains
nonzero. Thus, we can simply determine when the numerator of the derivative becomes
zero.

S2.1.1 Inhibitory resonant frequency

Defining ∂kf(k) ≡ df(k)
dk

, the numerator of ∂kLI(k) is(
W̃EI(k)− α

(
1 + W̃II(k)

))(
∂kW̃IE(k)

(
W̃EE(k)− 1

)
− ∂kW̃EE(k)W̃IE(k)

)
+
(

1− W̃EE(k) + αW̃IE(k)
)(
−∂kW̃EI(k)W̃IE(k) + ∂kW̃II(k)

(
W̃EE(k)− 1

))
(S5)

We work in the limit in which inhibitory connectivity is very localized compared to excitatory
connectivity, meaning that W̃EI(k) and W̃II(k) are very broad in k relative to W̃IE(k) and
W̃EE(k). As a result, the derivatives of the two I projections are very small relative to the
derivatives of the two E projections, so that the second line in Eq. S5 is very small relative
to the first line. We restrict to the limit of completely localized inhibitory connectivity, as
in our simulations, in which W̃EI(k) ≡ W̃EI and W̃II(k) ≡ W̃II are constants, independent

2The network is stable iff both eigenvalues of 1−W̃(k) have negative real part for all k (these eigenvalues
across all k are the eigenvalues of 1DW

−W, where 1DW
represents the identity matrix of the same dimen-

sionality as W). The eigenvalues of a 2× 2 matrix M have negative real part iff Det M > 0 and Tr M < 0,

where Tr M is the trace of M, hence a necessary condition for stability is that Det
(
1− W̃(k)

)
> 0 for all

k.
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of k, and so their derivatives are zero; one could consider corrections for finite width of the
inhibitory projections, but we do not pursue that here.

Then, the condition for a zero of the derivative is that the first line of Eq. S5 is zero.
Because WEE(x) and WIE(x) are even functions of x, both W̃EE(k) and W̃IE(k) are even
functions of k, so both their derivatives are zero at k = 0. Thus, one zero is at k = 0.

Assuming that it is not the case that W̃EI = α
(

1 + W̃II

)
– a condition that, if true, would

mean that rE(x) ≡ 0 for all x by Eq. S3 – the only other zeros occur for k such that

W̃EE(k) =
∂kW̃EE(k)W̃IE(k)

∂kW̃IE(k)
+ 1 (S6)

The first term on the right side of Eq. S6 will be positive for all k if ∂kW̃EE(k) and ∂kW̃IE(k)
always have the same sign and W̃IE(k) > 0 for all k. This will be true for Gaussian con-
nectivity functions on an infinite continuum, and should be true more generally for even
connectivity functions that decay monotonically with distance sufficiently smoothly. So long
as this is true, a solution of equation S6, meaning a non-zero peak for the network filter,
can only occur for k with W̃EE(k) > 1, which – along with overall network stability – is
the condition for the network to be an ISN. That is, given localized inhibitory projections
and sufficiently smoothly decaying excitatory projections, a necessary – but not sufficient
– condition for the network to show spatially periodic responses to spatially non-periodic
inputs is that the network be an ISN.

We now use our choice of Gaussian excitatory connectivity functions, WaE(x) = JaEe
− x2

2σ2
aE ,

and assume we are operating on an infinite continuum rather than a discrete finite grid – a
continuum of units along an infinite, continuous position x and hence an infinite continuum of
spatial frequencies k. Note that this means that WaE(x) has dimensions of 1/length (so that
its spatial integral with rates gives a rate); in practice, this means we must replace the JaE’s
from our discrete connectivity on a grid of width ∆x, with JaE/∆x (so that the discrete con-

volution
∑′

x ∆xJaE
∆x
e
− (x−x′)2

2σ2
aE rE(x′) approaches an integral in the continuum limit). The JaE’s

in the formulae below should all be understood numerically to correspond to this JaE/∆x
and have corresponding dimension 1/length. The I connections WaI apply only to the same
grid location, and the continuum equivalent is that the weights are WaIδ(x−x′) (so that con-
tinuum and discrete operations give the same result:

∫
dx′WaIδ(x− x′)rI(x′) = WaIrI(x)).

This means that the Fourier transform is simply W̃aI = WaI , which is dimensionless.
The continuum limit allows us to compute the Fourier transform of the Gaussian con-

nectivity3, which produces analytic results that agree very well with the simulated results

3We use the convention f̃(k) =
∫
dx eikxf(x), f(x) = 1

2π

∫
dk e−ikxf̃(k). With this convention, the

Fourier transform of f ∗ g(x) is f̃(k)g̃(k) (see text that calls footnote 1) and the Fourier transform of the

weights on the continuum is W̃aE(k) = JaEσaE
√

2πe−
k2σ2aE

2 . If instead we use f̃(k) = 1
κ

∫
dx eikxf(x),

f(x) = κ
2π

∫
dk e−ikxf̃(k) for some constant κ (e.g., κ =

√
2π is commonly used), then the convolution

is multiplied by κ while the Fourier transform of the Gaussian is divided by κ. The result is that all the
factors W̃XY in Eqs. S3-S4 are both divided by κ and multiplied by κ (the latter because they all result from
convolutions), so that their values and hence the results of the analysis are unchanged.
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on the finite grid (e.g., see Fig. 5B-C of the main text and Supplemental Fig. S2A,B). We
thus determine the k that solves Eq. S6, which we call the resonant frequency of inhibition,
kI :

kI =

√
2 ln

(
JEEσEE

√
2π
(

1− σ2
EE

σ2
IE

))
σEE

(S7)

Spatial periodicity arises iff (if and only if) the solution kI is real, which in turn occurs iff
the argument of the logarithm is greater than 1:

JEEσEE
√

2π

(
1− σ2

EE

σ2
IE

)
> 1 (S8)

This in turn implies that σIE > σEE and that JEEσEE
√

2π > 1. JEEσEE
√

2π = W̃EE(0)
is the maximum eigenvalue of the operation of convolving with WEE(x) (see footnote 3), so
that the latter condition means that the excitatory subnetwork by itself is unstable; that is,
the network, assuming it is stable, is an ISN.

In sum, for a linear network, given sufficiently localized inhibitory connectivity and ex-
citatory projections that are even and monotonically decay from zero sufficiently smoothly,
then spatial periodicity in the inhibitory network in response to non-periodic input can only
arise if (1) the network is an ISN and (2) σIE > σEE. The periodicity then will arise precisely
when the condition in Eq. S8 is satisfied.

In addition, note that, in Eq. S7, the dependence of kI on the items inside the logarithm
is weak, so that the strongest dependence of kI is that it is proportional to 1/σEE. That is,
longer-range excitatory projections lead to longer inhibitory wavelengths. In addition, we see
that kI increases more weakly with increasing JEE and with increasing σIE/σEE, meaning
that excitatory projections that are stronger or more widespread to I vs. E lead to shorter
inhibitory wavelengths.

S2.1.2 Excitatory resonant frequency

The numerator of ∂kLE(k) is(
W̃EI(k)− α

(
1 + W̃II(k)

))(
∂kW̃IE(k)W̃EI(k)− ∂kW̃EE(k)

(
1 + W̃II(k)

))
+
(

1− W̃EE(k) + αW̃IE(k)
)(

∂kW̃II(k)W̃EI(k)− ∂kW̃EI(k)
(

1 + W̃II(k)
))

(S9)

Again, we take W̃EI(k) ≡ WEI and W̃II(k) ≡ WII so that the second line is zero, and find,
assuming that WEI 6= α (1 +WII), that the zeros of ∂kLE(k) are either at k = 0 or where

WEI =
∂kW̃EE(k) (1 +WII)

∂kW̃IE(k)
(S10)
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Using the Gaussian connectivity functions and the assumption of an infinite continuum, we
find that the non-DC zeros of ∂kLE(k) occur at the excitatory resonant frequency kE:

kE =

√
2

1−(σ2
EE/σ

2
IE)

ln
(

WEIJIEσ
3
IE

JEE(1+WII)σ3
EE

)
σIE

(S11)

For this to be real and nonzero, and thus for excitatory spatial periodicity to exist, we either
must have σIE > σEE and the argument of the logarithm > 1, or else σIE < σEE and the
argument of the logarithm < 1

Unlike inhibition, the existence of a real kE does not require the network to operate
within the ISN regime. However, we now show that, assuming a stable network, if kI is
real and positive, then kE is also real and positive, and furthermore kI < kE. That is, if
the inhibitory network shows spatial periodicity, the excitatory network does also, with a
shorter wavelength. We use the facts, which follow from kI being real and positive, that (1)
σIE > σEE and (2) Eq. S8 is satisfied.

Since σIE > σEE, kE is real and positive iff the argument of the logarithm is > 1:

WEIJIEσ
3
IE > JEE (1 +WII)σ

3
EE (S12)

As noted above, a necessary condition for network stability is that Det
(
1− W̃(k)

)
> 0 for

all k. By solving for the extrema of this determinant (the values of k for which its derivative
with respect to k is 0) and imposing the condition that the determinant at these extrema is
> 0, we obtain the following requirement for stability:(

WEIJIEσ
3
IE

JEE (1 +WII)σ3
EE

)( σ2EE
σ2
IE
−σ2

EE

)
> JEEσEE

√
2π

(
σ2
IE − σ2

EE

σ2
IE

)
(S13)

From Eq. S8, the right side of Eq. S13 is > 1. Since σIE > σEE, the exponent on the left

side of Eq. S13 is > 0. Thus, a necessary condition for stability is that
(

WEIJIEσ
3
IE

JEE(1+WII)σ3
EE

)
> 1,

which also means that the extremum is in fact a minimum.4 This is precisely the condition
of Eq. S12 that guarantees that the argument of the logarithm in Eq. S11 for kE is > 1
and thus that the excitatory population has a real resonant frequency. Furthermore, a bit
of algebra shows that the condition kI < kE then translates precisely into the condition of
Eq. S13 (which also implies that stability is lost precisely when kI becomes greater than
kE). In sum, if the network is stable and the inhibitory network has a real, positive resonant
frequency, then the excitatory network has a higher real, positive resonant frequency.

S2.1.3 Understanding spatially periodic activity in the model from the resonant
frequencies

From equations S11 and S7, we see that, with increases in σEI
σEE

, kI increases, while kE may
increase or decrease. We test our formulae (derived from the continuum limit) against the

4The 2nd derivative at the extremum is positive iff
(

WEIJIEσ
3
IE

JEE(1+WII)σ3
EE

)
> 1.
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result of simulations of our linear model on the grid, varying σIE while keeping all other
parameters constant at the values given previously, and compare the preferred contrast
modulation (CM) spatial frequency to the analytically predicted resonant frequencies (Sup-
plemental Fig. S2A,B, and see also Fig. 5B-C of main text). The match is essentially perfect.
The analytic solutions reveal that for σIE sufficiently wide, the network will actually be un-
stable (red area on the plot). This arises when the E→I connections become too broad for
feedback inhibition to stabilize higher frequencies at which E→E connections are unstable,
and as already noted occurs precisely where the resonant frequency of inhibition becomes
greater than that of excitation.

This analysis also reveals why stimuli with sharp-edged contrast profiles produce multi-
peaked length-tuning curves but those with Gaussian contrast profiles do not (Supplemental
Figs. S7,S8). In the Fourier domain, a step-function is transformed into a sinc function
sin(kl)
k

, where l is the width of the step function, and more generally sharp-edged stimulus
profiles will have varying degrees of “ringing” in their Fourier transforms. This ringing will
induce sign changes in the Fourier representation whose positions depend on stimulus length,
resulting in a periodic flip in the phase of the resonant frequency with increasing stimulus
size. These phase changes give rise to the periodic rise and fall of activity of the unit at
the stimulus center with stimulus length, i.e. to periodic length-tuning curves. Gaussian
stimuli, on the other hand, are simply transformed into Gaussians curves over frequency
with inversely proportional width (narrow stimuli will have broad Fourier representations,
and vice-versa). For sufficiently wide Gaussian stimuli, the power spectrum goes essentially
to zero at a frequency below that of the peaks in the network response filters (kE and kI).
Then the network’s resonant frequencies receive sufficiently little input that the power in the
firing-rate curves follows the power in the stimulus, falling monotonically with frequency. As
a consequence, the firing rates show no spatial periodicity. For narrower Gaussian inputs,
the stimulus may be wide enough in Fourier space to have non-zero power at the network’s
preferred frequencies, and in response the network does have spatially-periodic activity – see
the yellow curves in the left half of Supplemental Fig. S7A. However, this does not produce
periodic length tuning curves because the phase does not change with increasing stimulus
length (and also the spatial periodicity largely disappears at relatively small stimulus sizes).

As the length l of a step-function stimulus is increased, there can be stimulus lengths
where sin(kl)

k
= 0 for one of the peak frequencies (kE or kI). This will be observed across the

population as a relative weakening in the amplitude of the corresponding spatial oscillation
(though not a complete absence of periodicity, as spatial frequencies near the peak are also
relatively amplified).

S2.2 Critical frequency, and an experimental test

S2.2.1 The critical frequency

A focus of previous theoretical work on the ISN regime has been on the “paradoxical” de-
crease in steady-state inhibitory firing rates that results from an increase in the external
input to inhibitory units (Ozeki et al. 2009, Tsodyks et al. 1997). With the addition of a
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spatial dimension in our current model, this paradoxical response depends on the stimulus
spatial frequency. This can be understood from the fixed-point firing-rate solutions in equa-
tions S3 and S4. The E and I activities at each frequency k satisfy equations of the same
form as the linear two-population models (one E population, one I population) studied in
(Ozeki et al. 2009, Tsodyks et al. 1997). Hence the analysis of those papers applies sep-
arately to the activity at each frequency. If W̃EE(k) > 1, then the excitatory subnetwork
at frequency k is unstable, so that, assuming the dynamics at frequency k are stabilized
by feedback inhibition, the activity at frequency k behaves as an ISN. This includes the
paradoxical response to input to inhibitory units: if external input is purely to inhibitory
cells, h̃E(k) ≡ 0 or α = 0, the fixed-point equations become

r̃E(k) = − 1

Det (1− W̃(k))
W̃EI(k)h̃I(k) (S14)

r̃I(k) =
1

Det (1− W̃(k))

(
1− W̃EE(k)

)
h̃I(k) (S15)

Because the network is stable, det(1 −W(k)) > 0. Hence, as expected, r̃E(k) is always
decreased by an increase in input h̃I(k) to the inhibitory units. However, r̃I(k) is increased
or decreased by such a change in input according to whether W̃EE(k) < 1 or W̃EE(k) > 1,
respectively. The decrease in r̃I(k) in response to increased input to inhibitory units for
W̃EE(k) > 1 is the ”paradoxical” ISN response.

Because the strength of connectivity WEE(x) decreases monotonically and smoothly to
zero as a function of distance |x|, in the Fourier domain the connection strength W̃EE(k) also
decreases monotonically as a function of spatial frequency |k|. Thus, if the network is an
ISN, meaning that at least some values of W̃EE(k) are > 1, then with increasing |k| W̃EE(k)
will fall below 1 at some critical frequency |k| = kc. This means that frequencies below kc
will show the paradoxical ISN behavior, while frequencies above kc will not. The critical

frequency kc is defined by JEEσEE
√

2πe−(kcσEE/
√

2)
2

= 1, that is:

kc =

√
2 ln

(
JEEσEE

√
2π
)

σEE
(S16)

kc scales approximately as 1
σEE

, since the logarithmic dependence is weak. Note that if

JEEσEE
√

2π < 1, meaning that no frequency has W̃EE(k) > 1 (the network is always a
non-ISN), then kc is imaginary, meaning that there is no transition from ISN to non-ISN
behavior at any real frequency.

We note from examining Eq. S7 that kI =

√
k2
c + 2

σ2
EE

ln
(

1− σ2
EE

σ2
IE

)
. Since the second

term in the squareroot is negative, kI < kc. This shows again that the resonant frequency of
the inhibitory elements must fall within the range of frequencies that are inhibition-stabilized.
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S2.2.2 Experimental Prediction: Ideal Case.

The existence of this critical frequency yields an interesting experimental prediction, illus-
trated in Fig. 8 of the main text. Here and in the next section we provide the theory behind
this prediction, based on the results just obtained in section S2.2.1.

We imagine we have experimentally isolated an ISN of E and I cells, for example a patch of
sufficiently-stimulated layer 2/3 cells in a piece of cortex. There are many practical questions
as to when an ISN has been isolated, for example: can a patch of upper layer cells be treated
effectively as a closed network except for steady external input arising from other layers and
other patches of cortex, i.e. can we neglect feedback from these other regions in response
to changes in activity in the patch? What are the roles of multiple subtypes of inhibitory
neurons, and which inhibitory neurons are the relevant ones for providing feedback inhibition
to stabilize the otherwise unstable excitatory subnetwork? We ignore these questions, simply
imagining that feedback from outside the patch is negligible, that the recurrence among the
E cells in the patch is strong enough to be unstable by itself, and that we are manipulating
I neurons in the patch that provide feedback inhibition that prevents this instability.

The prediction is based on selectively stimulating I cells in a manner that is sinusoidally
modulated spatially across cortex. We assume this is achieved with light stimulation of
channelrhodopsin (ChR) expressed only in the I cells. There must be a baseline level of
stimulating light about which the sinusoidal modulation occurs. We assume the network is
in the ISN regime in response to spatially unmodulated light stimulation (changes in the
baseline light level). The sinusoidal modulation must drift or contrast modulate, with a
temporal frequency low enough that the network has time to roughly equilibrate and so be
in a near-steady-state at each moment in the cycle. We can then apply the steady-state
picture of ISN and non-ISN behavior to each moment in the cycle. E- and I-cell firing rates
will periodically modulate at the temporal frequency of the stimulus, and we consider the
relative phases of their modulation.

Then the prediction is that, for light stimulus of increasing spatial frequencies, the re-
sponses of E and I cells undergo a roughly 180o transition in their relative phases at the
critical spatial frequency kc (Eq. S16). We illustrate this prediction in our linear model,
stimulating only the inhibitory cells in the network with a “photostimulus” with a defined
spatial frequency (Supplemental Fig. S2C). Stimuli with spatial frequency below kc drive
activity that operates as an ISN, and so E and I firing rates are modulated in phase with
each other and out of phase with the input (Supplemental Fig. S2C, bottom left). This is the
spatial analogue of the paradoxical response described by Ozeki et al. (2009). Stimuli with
spatial frequency above kc evoke non-ISN activity, and so E and I move out of phase with
each other, while I moves in phase with the input (Supplemental Fig. S2C, bottom right).

As shown in Fig. 8 of the main text, exactly the same effect holds in the more realis-
tic, nonlinear, two-dimensional model with sparse random connectivity, with one significant
change. Because of the expansive input-output nonlinearity, the paradoxical response de-
pends not only on the I-cell network being driven at a spatial frequency below the critical
frequency, but also on the combination of sensory and baseline input being sufficient to drive
the network into the ISN regime.
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S2.2.3 Experimental Prediction: More Realistic Case.

Even given the assumption that we have isolated a patch of cells that operates as an ISN,
there are other practical problems with the proposed experiment. First, only a fraction of
inhibitory neurons will be activated, i.e. ChR will be incompletely expressed. We assume,
due to the high connection probabilities from I to E neurons in cortex (Fino and Yuste 2011,
Packer and Yuste 2011), that this fraction suppresses firing across the entire E network.
Thus, the resulting reduction in E→I input will be spread across all the I neurons, both
those that were stimulated and those that were not. The reduction in network excitation
to a stimulated I neuron may then be less than the input that was directly added to it
by the stimulation, so that stimulated I neurons will respond in phase to the stimulus.
Unstimulated I neurons will respond in phase with the E cells, at the opposite phase to
the stimulus. Unfortunately, these behaviors also characterize the non-paradoxical response
expected in a non-ISN, and so no change in this behavior will be seen as kc is crossed. Second,
there are multiple subtypes of inhibitory neuron, and in the case of parvalbumin-containing
(PV) and somatostatin-containing (SOM) interneurons in rodents, the two types can show
opposite responses to stimuli that suppress E cells (Adesnik et al. 2012) (further discussed in
main text). The result may then depend on which class of inhibitory cells is studied, where
“class” refers to both subtype and whether or not they express ChR.

These problems can be overcome and the paradoxical response and the jump in phase
as kc is crossed can be robustly studied by applying the prediction to the relative phases of
the net inhibitory current and the net excitatory current received by E cells, rather than to
the firing of E and I cells. Regardless of the details of varying firing across different classes
of I cells, this net current received should follow the predicted ISN (low-frequency, sufficient
contrast) and non-ISN (otherwise) phase relationships. To understand why, it is necessary
to understand the mechanism of the paradoxical ISN effect (Ozeki et al. 2009).

Suppose that the network is at a steady state of firing rates in response to steady external
inputs. The fact that recurrent excitation is strong enough to be unstable by itself means
that, if E cells lower their firing rates from the previous steady-state levels, this causes
withdrawal of too much recurrent E→E input – so much that, absent other changes, the E cell
firing rates would fall still further rather than moving back to the fixed point (and similarly,
if E cells raised their rates, this would cause recruitment of so much recurrent E→E input
that, absent other changes, the E cell firing rates would rise still higher). In a stable network
in which the external input has not changed, feedback inhibition dynamically responds to a
transient decrease in E-cell firing and restores the network to the fixed point (the lowering
of E firing rates causes a lowering of feedback inhibition that exceeds the loss of recurrent
excitation, so E cells move back up to their fixed point levels, bringing inhibition along with
them). However, when the lowering of E-cell firing is caused by an increase of external
input to I cells, so that in the new steady state E-cell firing remains lower than previously,
then in this new steady state the E-cells must be receiving less inhibition than previously,
to compensate for the excessive loss of recurrent excitation. No matter what the detailed
dynamics of the various I-cell populations may be, only such a net decrease of inhibition
can stabilize the new lower firing rates given the excessive loss of recurrent excitation (they
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Figure S2:
Resonant frequencies and model linearization (related to Supplement S2.1-S2.3, and
main text discussions of Figs. 3,5,8).
A-C: Resonant frequencies in the linear model of Fig. 2. A,B: Match of preferred contrast-
modulation (CM) spatial frequencies (A) to analytically predicted resonant frequencies (B, com-
puted from Eqs. S11 and S7), for E (red) and I (blue) units, vs. σIE/σEE . We vary σIE with all
other parameters of the linear model fixed. In the red shaded region to the right in (B), where
kE < kI , the network is unstable. C: The ISN model predicts a 180o phase shift in the relative
responses of E and I units to direct input to I cells at a critical input spatial frequency (as shown for
nonlinear 2D model in Fig. 8). Top left: I cells in the network are stimulated with a photostimulus
with a defined spatial frequency. The stimulus drifts at 2 Hz. Bottom: The low spatial frequency
stimulus on the (continued on next page)
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Figure S2:
(Continued) left has spatial frequency 0.2 cycles/degree. It drives E (red) and I (blue) cells at center
of grid (x = 0) roughly in phase with one another, roughly out of phase with the stimulus they
receive (black dashed). The higher spatial frequency stimulus on the right is at 0.5 cycles/degree.
Now I cell fires roughly in phase with the stimulus and out of phase with E cell. Top right:
summary plots of relative phases of E and I firing rates as a function of photostimulus spatial
frequency. The vertical dashed lines are the analytically calculated critical frequency (Eq. S16).
Top: phase difference between E and I activities across space at the spatial frequency of the stimulus.
Bottom: phase differences in time between illustrated firing rates of E and I units at x = 0. D-E:
Linearization of the nonlinear model of Fig. 3. D: Both E and I units are driven by a small (1o

diameter) stimulus of strength c (x-axis) centered at x = 0, and linearization is performed around
the resulting steady state. Curves show the change in firing rates (left y-axis) of the E (red) and
I (blue) units at x = 0 induced by giving additional input of strength 1 to stimulated I cells 1;
and the maximum real part of the eigenvalues of ŴEE (green, right axis). E: Resonant frequency
increases with increasing stimulus strength. The resonant spatial frequencies of both the excitatory
and inhibitory populations are calculated from the Jacobian matrix at the fixed point of response
to a uniform stimulus of the given strength.

could also be stabilized if E-cells received a new source of external excitation sufficient to
compensate the loss of recurrent excitation, but we have assumed that the only change to
external inputs is in the input to I cells).

On the other hand, in the non-ISN regime, a drop in E firing from the old steady-state
levels causes too little withdrawal of E→E input to allow the E firing rates to remain so low,
so that these firing rates would bounce back up to the old steady-state levels absent other
changes. The lower firing rates at the new steady state in the non-ISN regime must therefore
be stabilized by an increase in the inhibition the E cells receive (or else by withdrawal of
external excitatory input, which does not occur).

In sum, for stimuli below kc (ISN regime), both the inhibition and the excitation received
by E cells will decrease when the external input to I cells is increased, while for stimuli above
kc (non-ISN regime), the inhibition they receive will increase while the excitation they receive
will decrease. Thus, for low-temporal-frequency stimuli to I cells, the relative phase of the
inhibition and the excitation received by E cells should jump by 180o as the spatial frequency
of the stimulus crosses kc. This conclusion is robust to the details of the I-cell network.

S2.3 Linearization of the Nonlinear Model

With the addition of an expansive nonlinearity, we predicted that our network would tran-
sition from non-ISN to ISN regimes with increasing input strength. This is because the
effective synaptic strength increases with increasing input strength, until at some point the
effective E → E connections become strong enough to be unstable in the absence of feed-
back inhibition. The effective synaptic strength – the change in postsynaptic firing rate for a
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given change in presynaptic firing rate – increases because it is the product of the biophysical
synaptic strength (e.g., the current injected in the postsynaptic cell) and the postsynaptic
gain (the change in postsynaptic firing rate for a given current injection). Given the ex-
pansive nonlinearity, postsynaptic gain increases with postsynaptic firing rate and thus with
input strength.

This input dependence of the dynamic regime can be understood by linearizing the dy-
namics around the fixed-point firing rates. We let r(x) = rFP(x) + δr(x) where rFP(x) ≡(
rFP
E (x)
rFP
I (x)

)
is the vector of fixed-point firing rates and δr(x) is the deviation of the fir-

ing rates from the fixed point. Defining T and W(x) as in Section S2.1 and 1 as the

two-dimensional identity matrix, the linearized dynamics are τE
dδr(x)
dt

=
∑

x′ Ŵ(x, x′)δr(x′)

where Ŵ(x, x′), the Jacobian matrix of the dynamical system, is given by Ŵ(x, x′) =

T−1 (Φ(x)W(x− x′)− 1) with Φ(x) = nk1/n

(
rFP
E (x)

n−1
n 0

0 rFP
I (x)

n−1
n

)
. The linearized

dynamics will accurately describe model behavior so long as r is sufficiently close to rFP.

As in Section S2.1 for W, we write Ŵ =

(
ŴEE −ŴEI

ŴIE −ŴII

)
to refer to the full matrix of

linearized connections, where the submatrix ŴXY has elements
(
ŴXY

)
ij

= ŴXY(xi, xj).

We can numerically calculate the eigenvalues and eigenvectors of the effective linear
weight matrix, Ŵ, at a given steady-state and use them to predict the effective dynamic
regime of the nonlinear network. For the fixed point to be stable, all eigenvalues of Ŵ must
have negative real part. We roughly equate5 the ISN regime with at least one pattern of
excitatory activity being unstable in the absence of feedback inhibition, meaning that at
least one eigenvalue of ŴEE has positive real part; this will occur when the values of rFP

E (x)
become sufficiently large.

As a simple test, we stimulated E and I cells in the 1-D nonlinear model of Fig. 3 with
a small, centrally-located stimulus of strength c and considered the linearization about the
corresponding fixed point. All eigenvalues of Ŵ have negative real part for all stimulus
strengths tested (up to c = 100). We then perturbed only the stimulated inhibitory cells
with a small additional excitatory input, and recorded the responses of the E and I cells at the
stimulus center. We observe, as expected, that the stimulus strength at which the largest real
part of an eigenvalue of ŴEE becomes positive coincides closely with the stimulus strength
at which additional drive to inhibitory cells causes a decrease in steady-state inhibitory firing
rate (Supplemental Fig. S2D).

We also consider linearization about the steady-state response to a full-field stimulus of

5Why this is a rough rather than exact correspondence: The condition that at least one eigenvalue of
ŴEE has positive real part ensures that there is at least one pattern of E-unit activity that is unstable in
the linear regime. By the reasoning of section S2.2.3, this ensures that a pattern of small input to I cells that
causes a new steady state in which the only change is a decrease in amplitude of this unstable E-unit pattern
must result in the E cells receiving less inhibition in that new steady state. This is the paradoxical signature
of the ISN. However this does not ensure that any particular stimulus to I cells, such as the uniform input
over a 1o region used in Supplemental Fig. S2D, will yield a paradoxical response.
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strength c. We use the linearized weights to calculate the network resonant and critical
frequencies.6 All three frequencies monotonically increase with stimulus strength, and once
stimulus strengths reach moderate levels both E and I resonant frequencies are below the
critical frequency, meaning that the network shows ISN behavior for stimuli at those frequen-
cies (Supplemental Fig. S2E). The analytically calculated frequencies from the linearization
describe most-amplified (resonant) frequencies for small sinusoidal deviations about the uni-
form stimulus of strength c, but they reasonably approximate the preferred CM frequencies
in the actual network (Fig. 5D), which involve responses to stimuli that oscillate sinusoidally
between strength 0 and strength c.

6Because the stimulus is spatially uniform, steady-state firing rates are spatially uniform except for
boundary effects. Therefore, away from the boundaries, the linearized weight submatrices ŴXY, X,Y ∈ E, I,
remain translation-invariant, of Gaussian shape about each position but with size scaled by steady state firing
rates according to Φ (which does not vary with position). As a result, we expect the eigenvectors of the
submatrices to closely approximate the Fourier modes, with real eigenvalues that decrease with frequency.
Accordingly, we diagonalize each linearized submatrix with eigenvalues ordered from largest to smallest real
parts with imaginary part discarded, and make the ansatz that the weight matrix Ŵ in the Fourier basis is
well approximated by the matrix of these four diagonal submatrices (with minus signs for the submatrices

ŴXY for y = I). That is, we equate ŴXY(k) with the kth-largest eigenvalue in the real diagonal submatrix

ŴXY. We then can calculate the equivalent of LE(k) and LI(k) in this representation (Eqs. S3-S4), with
replacements (1 + W̃II(k)) → ŴII(k), (1 − W̃EE(k)) → −ŴEE(k), W̃EI(k) → ŴEI(k), W̃IE(k) → ŴIE(k),
Det (1 − W̃(k)) → Det(−Ŵ (k)). We find the resonant network frequencies from the peaks of LE(k) and
LI(k) vs. k. The critical frequency is found as the first frequency for which the corresponding eigenvalue of

ŴEE is < 0.
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Figure S3:
Increasing dominance of network input by inhibition with increasing input strength,
using protocol of Shao et al. (2013) (related to Figs. 1F, 3B, and 6C). In Figs. 1F, 3B,
and 6C, we showed that the ratio E/(E + I) of network-driven excitation E to network-driven
inhibition I grows with increasing stimulus strength, as in Fig. 3E of Shao et al. (2013). However,
in our model figures, the input was given equally to E and I cells. Here we show that the same
result holds when we more closely model the protocol of Shao et al. (2013). In Shao et al. (2013),
channelrhodopsin (ChRh) was expressed in L2/3 of mouse S1 in around 25% of E cells (ChRh
was expressed in 21.1 ± 0.9% of all neurons, and about 80% of neurons are E cells). Then in
cortical slices, intracellular recordings were made from non-ChRh-expressing E cells to assay the
strength of excitatory and inhibitory input, E and I, evoked by light stimulation of the ChRh-
expressing E cells. To model this, we chose E cells randomly with probability 0.25 to receive input
(input identical to that in main-text figures, except set to zero for all I cells and for E cells with
probability 0.75), and recorded from the E cells not receiving input (red curves) or from the I
cells (blue curves). Results corresponding to Fig. 1F (A), Fig. 3B (B), or Fig. 6C (C) all show
qualitatively the same behavior as the original figures: increasing dominance of network input by
inhibition with increasing stimulus strength.
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Figure S4:
Normalization in the ring model of Figure 1. A,B: Non-orthogonal grating pairs also show
sublinear addition. A: E-cell responses to the two stimuli presented individually (dotted) and to
the simultaneous presentation of both stimuli (red), as well as the sum (green) and mean (blue) of
the individual responses, for orientation differences of 90o, 40o, and 20o. B: The sublinear weights
w for E and I cells vs. stimulus orientation difference. (Continued on next page.)
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Figure S4:
(Continued). w is defined as in Fig. 1I. Strength of each stimulus is c = 50 for all panels. C:
The switch from supra- to sub-linear addition occurs at lower stimulus strengths for wider stimuli,
as suggested by the fact that larger stimulus widths switch from being facilitating to suppressive
at lower stimulus strengths (C, and Figs. 3E, 1J, 6H and Supplemental Fig. S8D). The relative
additive weights for excitatory cells in response to two equal-strength, equal-width orthogonal
stimuli (orientation difference 90o) are plotted as a function of stimulus width and stimulus strength.
For comparison, simulations in B and in Fig. 1G used stimulus strength c = 50 and stimulus width
σFF = 30o. D. Small but not large surround stimuli, relative to summation field size, can facilitate
response to a low-contrast center. D(i-vi). Left panels show stimuli: red dashed curve, center
stimulus for c = 50, always presented at orientation 45o with strengths varying from c = 0 to
c = 50 by 1; yellow through red solid curves, surround stimuli varying as indicated in legend,
c = 50 in all cases. Right panels show response vs. center contrast: red dashed curve, response
to center stimulus alone; yellow through red solid curves, response to center plus correspondingly
colored surround stimulus. D(i-iv). Small center stimulus: center size is summation field size for
c = 50, which is σctrFF = 3 (Fig. 1J). In (i-iv) we will describe separation of center and surround in
units of half-widths (HW), meaning the separation between the largest orientation corresponding
to half width at half height (HWHH ORI) of the center grating, and the smallest HWHH ORI
of the surround grating. D(i). Surround stimulus is varied in size from 3 to 12 in steps of 1.5.
Surround gratings have common center position, set so that largest surround is separated by 6 HW.
D(ii). Surround stimuli vary in size as in (i), but their positions are varied so that all surround
stimuli have separation 6 HW. D(iii)-(iv). Qualitative effects of (i)-(ii) are insensitive to position.
D(iii). Surround stimulus equal in size to center stimulus, varied in position from 5 to 11 HW in
steps of 1 HW. All curves have wide region of facilitation. D(iv). Large surround stimulus (size
12) is varied in position from 6 to 12 HW in steps of 1 HW. All curves show only suppression.
D(v)-(vi). Sufficiently small and near surrounds can facilitate even large center stimuli. Here,
center size is large (σctrFF = 30, as in all other ring model simulations) and surround is small (varying
from 3 to 12 in units of 1.5). Distances are between center positions of the two gratings. D(v).
Surrounds orthogonal to center (90o distance). At this distance surrounds are only suppressive.
D(vi). Surround are 45o from center. Here, small surrounds can facilitate low-contrast center.
Note, the case of center and surround both of size 30 produces only suppression, as illustrated in
A.
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Figure S5:
Ring model results of Fig. 1 are well fit by equations of the normalization model. We
presented pairs of orthogonal stimuli (at 45o and 135o). Each stimulus was presented at 21 stimulus
magnitudes c, from 0 to 100 in steps of 5. This yields 21 × 21 = 441 firing rate curves for both
E and I, of which 11 × 11 = 121 are illustrated. Each curve shows firing rate (y axis) vs. ring
coordinate from θ = 0o to θ = 180o (x axis). Separately for E and I, these 441 curves were used
to fit equations of the phenomenological normalization model (Busse et al. 2009), shown in figure.
Red (E) and blue (I) curves show responses of full model, while orange (E) and cyan (I) curves show
fit of normalization model (discrepancies become visible when figure is expanded). (Continued on
next page.)
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Figure S5: (continued) In the normalization model equation, R1+2 (c1, c2) is the vector of responses
across the population (E or I) to presentation of stimuli 1 and 2 at strengths c1 and c2, respectively,
crms =

√
c2

1 + c2
2, and G1 and G2 are vectors of responses across the population given by identical

circular Gaussians, with amplitude A and width parameter p, centered at 45o and 135o, respectively.
This model has five free parameters: rmax, c50, n, A, and p. These were fit to give the least squared
error across the 441 curves. r2

E and r2
I are the R2 values (% of variance explained) for the fits for E

and I curves, respectively. The best-fit parameters are: E units, n = 1.2278, c50 = 24.4622, rmax =
47.7657, A = 1.6441, p = 3.3977; I units, n = 1.4213, c50 = 80.2834, rmax = 149.9930, A = 2.9298,
p = 2.3514. Note that this model cannot fit the supralinear summation we see for stimulus strengths
below 10 (Fig. 1I), because G1 does not contribute appreciable activation to the region activated
by G2 and vice versa. Because 19 of 20 nonzero strengths used here were 10 or above, this did
not greatly affect fit quality. Circular Gaussians have the form G(θ) = Aep∗cos(2(θ−θ0))/(2πI0(p)),
where θ0 is the respective stimulus orientation and I0 is the modified Bessel function of the first
kind (“besseli” in Matlab) of order 0.
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Figure S6:
Robustness of results for ring model (Figure 1) and Nonlinear 1-D model (Figure 3).
For Fig. 3 (A) and Fig. 1 (B), we show that a basic feature of the model response stays qualitatively
invariant, changing smoothly and continuously, as parameters are changed, indicating that model
behavior does not require fine tuning of parameters. A. Length-tuning curves for nonlinear 1-D
model of Fig. 3 (top: E cell; bottom: I cell) under weight perturbations. 100 simulations were
run, identical to Fig. 3C for c = 31, except that in each simulation, each of the four weight-
strength parameters (JEE , JIE , WEI , WII , defined in Section S1.1.2) were randomly chosen from
a uniform distribution covering ±10% about the value used for Fig. 3. The length-tuning curves
from Fig. 3C are shown in bold, and those from the 100 randomly-perturbed simulations are shown
as thin lines. B. Summation weights w for ring model of Fig. 1 (E cells: left; I cells: right) under
weight perturbations. As in Fig. 1I, two orthogonal gratings of equal strength (here, c = 100)
were shown, and the weight w was determined as that giving least-squared-error fit to the equation
R12 = w(R1 + R2) where R12 is the vector of responses across the population of E or I cells to
the simultaneous presentation of both gratings, while R1 and R2 are the vector responses to one
or the other grating alone. 1000 simulations were run, in each of which the four weights JEE , JIE ,
JEI , and JII (Section S1.1.2)) were each drawn from uniform distributions covering ±10% about
the value used in Fig. 1. Each dot presents results from one simulation, with color indicating the
resulting weight w. Sublinearity of summation grows stronger (w decreases) with increasing bias of
excitatory projections toward E cells (increasing JEE/JIE) and, to a lesser extent, with increasing
bias of inhibitory projections toward I cells (decreasing JEI/JII).
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Figure S7:
Effects of varying input shape, from sharp-edged to smoothly tapered, in the linear
model of Fig. 2. A. Input (top row) and corresponding E (middle row) and I (bottom row) activity
vs. spatial position (x-axes). This repeats Fig. 2B, but now with input shape (top) interpolating,
as line colors move from black to light green (“Input” in legend, bottom right), from sharp-edged
(black lines, as used in Fig. 2) to Gaussian (lightest green lines) (see Section S1.1.1 for equations for
input shapes). Corresponding E (middle) and I (bottom) firing rates are shown by lines varying (see
legend) from red to yellow (E) or blue to cyan (I) as inputs vary from sharp-edged to Gaussian. For
larger stimuli, more smoothly-tapering stimuli do not yield spatially periodic activity, for reasons
described in Section S2.1.3. B E (left) and I (right) length tuning curves for cell at middle of grid.
This repeats Fig. 2C with the array of input shapes from A. Colors as in A and legend. More
smoothly-tapering stimuli do not yield periodic length tuning curves.
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Figure S8:
Nonlinear 1-Dimensional Spatial Model of Figure 3. A: Periodicity in spatial activity
profiles and length tuning curves depends on input shape. (Continued on next page.)

37



Figure S8:
(Continued). This panel repeats Fig. 3C, but with the array of input shapes of Fig. S7, ranging
from sharp-edged (as used in Fig. 3) to Gaussian. Colors as in Fig. S7, with red to yellow (E) and
blue to cyan (I) corresponding to sharp-edged to Gaussian-shaped stimuli. Conventions otherwise
as in Fig. 3C. As in the linear model (Fig. S7), periodicity in spatial activity patterns and length
tuning curves disappears as stimuli become more smoothly tapering. B: Dependence of facilitation
on position as well as size of surround. Center stimulus fills c = 50 summation field, as in Fig. 3E.
Surrounds (c = 50) are “annular”, which in 1D means segments equally spaced on either side of
center stimulus (inset shows inner diameter (ID) and outer diameter (OD) for 2D case; 1D stimulus
is a slice through the center of the 2D stimulus). Inner diameter of annular stimulus (distance
between inner edges of the two segments), in units of center stimulus diameter, given by x-axis
(= 1 in Fig. 3E) and outer diameter by y-axis (=total stimulus size in Fig. 3E). Figure shows heat
map of center stimulus strength at which effect of surround switches from facilitation to suppression
for E units. White indicates that surround is never facilitating (lowest center strength examined,
c = 0.5). For larger inner and outer diameters up to 20, there is no facilitation except for inner
diameter 1 and outer diameter 14-17.5 for very low center strengths (switch at center c ranging from
2 to 4.5). Note that this panel explains why high-contrast surrounds can facilitate responses to a
low-contrast center (D; Fig. 3E), whereas in the ring model a high-contrast orthogonal grating only
suppressed response to a low-contrast grating (Fig. 1H). These results are seen to be consistent when
surround size is expressed in terms of high-contrast summation-field size (hcSFS). Here, facilitation
occurs for surrounds smaller than about 5 times the hcSFS. In the ring model, the gratings were
about 10× larger than the hcSFS (compare Fig. 1J). Smaller high-contrast orthogonal gratings
can instead yield facilitation (Supplemental Fig. S4 C,D). C-D: Contrast-dependent changes in
summation field size and surround effects are insensitive to stimulus shape. The simulations from
Figs. 3D-E are repeated but with Gaussian-shaped rather than sharp-edged stimuli. The results are
essentially the same: (C) shrinking of summation fields with increasing contrast and (D) a switch
from surround facilitation to surround suppression with increasing center contrast for smaller, but
not larger, surround stimuli for E cells (left) and for all surround stimuli for I cells (right). In
D, center stimulus is Gaussian-shaped with full-width at half-height (FWHH) 0.55o for E, 1.9o for
I units, and stimulus strength as shown on x-axis; surround stimuli are sharp-edged stimuli with
sizes, positions, and strengths (c = 50) exactly as in Fig. 3E.
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Figure S9:
Experimental Results (related to Figs. 4 and 5). A-C: Size-tuning at multiple levels of
stimulus contrast. We were only able to study this in a small number of cells (16): 4 studied at
2 contrasts, 2 at 3 contrasts, 6 at 4 contrasts, and 4 at 5 contrasts. A. Our results are consistent
with those of Wang et al. (2009). They studied “counter-suppression” (CS) – a re-emergence of
activity at larger stimulus sizes after surround suppression. They defined a CS index (CSI): CSI
= Rcs−Rmin

Rmax
, where Rmax is the firing rate at the summation field peak (the first peak in the size-

tuning curve); Rmin is the minimum firing rate in the surround suppressed region (the first dip); and
Rcs is the maximum rate for still larger stimuli. They found that CSI was largest at low contrasts,
which seems counter to our prediction that periodicity of length tuning curves is stronger at higher
contrasts. We suggest that CSI decreases with contrast because at low contrast, size tuning curves
can be fundamentally summating/facilitating – responses increase with size, but with some wiggles
and dips along the way. Such continued facilitation after the first dip will produce the largest Rcs
and hence the largest CSI. This interpretation is supported by findings of Wang et al. (2009) that
responses at maximal stimulus size were larger, relative to Rmin, and suppression indices lower at
low contrast than at high contrast. (Continued on next page.)
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Figure S9:
(Continued). To calculate CSI in our own data, we removed subjectivity by using all extrema in
each size-tuning curve, calculating CSI for each consecutive peak-trough-peak triplet and taking the
average of these as the curve’s CSI. Dots represent CSI in the 16 cells for each combination of cell and
contrast. Consistent with our interpretation, in our data, which by multiple other measures accords
with our model’s predictions, we also observe a decrease in CSI with increasing contrast, with 13/16
cells (81%) showing a higher CSI at the lowest contrast studied than at the highest contrast studied
(p < 0.022, two-sided binomial test of null hypothesis that CSI equally likely to be highest at lowest
or highest contrast). B. From our fit to the SSM model, we see an increase in dominant spatial
frequency with increasing contrast, as the model predicts. 12/16 neurons (75%) showed a higher
size-tuning spatial frequency at the highest contrast studied than at the lowest contrast studied.
This trend did not reach statistical significance in a two-sided test (p < 0.077, two-sided binomial
test of null hypothesis that frequency equally likely to be highest at lowest or highest contrast) but
was significant at the 0.05 level in a one-sided binomial test (p < 0.0385). C. To determine whether
spatially periodic responses might arise from static properties of the functional architecture, such
as the periodicity of orientation columns, rather than arising dynamically as a contrast-dependent
spatial resonance, we measured the cross-correlations of all pairs of size-tuning curves measured
for a given cell at two different contrasts (after discarding the first 40% of the curve, which in
general for all cells simply captures spatial summation). We plot this against the base-2 log of
the ratio of the stimulus contrasts. The mean of each distribution is indicated by a red X. For all
contrast ratios (except for ratio 3.125, log ratio 1.644, for which there was only 1 data point), the
median was not significantly different from 0 (two-sided one-sample Wilcoxon signed rank test).
(The means also were not significantly different from zero as judged by a two-sided t-test, with
all p-values ≥ 0.13, but because the data may not be normally distributed these statistics are not
reliable, hence we used the non-parametric Wilcoxon test). Thus, peak and trough locations for a
given cell vary with contrast in a manner inconsistent with a static origin of the periodicity. For
increasing contrast ratios, statistics for the Wicoxon test are: N = (2, 28, 21, 7, 11, 6, 7, 3) curves;
p = (1.00, 0.11, 0.99, 0.47, 0.97, 0.094, 0.69, 0.75); signed rank = (1, 273, 116, 19, 32, 19, 17, 4). D,E:
Lack of correlation between the three measures of network resonant frequency (best fit frequencies
to size-tuning and position-tuning curves and contrast modulation pSF) in experiments (D) and
in model (E). Experiments: all cells for which we had both forms of data; model: 100 randomly
selected E units; in both cases, restricted to cells or units for which SSM gave a better fit than
DOG by nested F-test for length and/or position tuning if used in given panel. The calculated
correlation coefficient and its p-value are indicated on each plot. In both experiments and model,
there is no significant correlation between any pair of the three spatial frequencies, presumably
reflecting different subnetworks of cells being recruited by each stimulus paradigm. For three
panels, left to right: Experiments, n = 62, 50, 45; DF = 60, 48, 43; t = 0.817, 0.292, -0.417; Model,
n = 86, 96, 88; DF = 86, 96, 88; t = 0.227, 0.575, 1.376.
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Figure S10:
All experimentally measured size-tuning curves (related to Fig. 4). Cell identification (ID)
numbers are indicated. Data points: tuning curve and standard deviation as computed by maximum
likelihood estimation (Section S1.4.2). Blue curves: best fit of SSM model curve. Statistics for
goodness of fit of SSM vs. DOG model are in Supplemental Tables S1 (for 8-parameter DOG fit)
and S2 (for 7-parameter DOG fit). Cells illustrated in Fig. 4A are #42 (left) and #36. (Continued
on next page.)
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Figure S10:
All experimentally measured size-tuning curves (related to Fig. 4); (continued).
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Figure S11:
All experimentally measured position-tuning curves (related to Fig. 4). Cell ID
numbers are indicated. Data points: tuning curve and standard deviation as computed
by maximum likelihood estimation (Section S1.4.2). Blue curves: best fit of SSM model
curve. Statistics for goodness of fit of SSM vs. DOG model are in Supplemental Ta-
ble S3. Cells illustrated in Fig. 4D are #16 (left) and #79. (Continued on next page.)
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Figure S11:
All experimentally measured position-tuning curves (related to Fig. 4); (continued).
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Figure S12:
All experimentally measured contrast-modulation curves (related to Fig. 5). Cell ID
numbers are indicated. Data points: tuning curve for each contrast as indicated in legend, computed
by maximum likelihood estimation (Section S1.4.2). Error bars omitted for visibility given multiple
curves. Cells illustrated in Fig. 5E (left to right) are #89, #79, and #66. (Continued on next
page.)
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Figure S12:
All experimentally measured contrast-modulation tuning curves (related to Fig. 5);
(continued).
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Figure S13:
In a nonlinear two-neuron model, shifting the balance of input towards E or I can
cause a multiplicative change in the gain (related to Discussion). The rate model of
balanced amplification studied in Murphy and Miller (2009) was a linear model, so responses to
different stimuli necessarily added linearly. Thus, a modulatory input added a fixed amount to the
responses to any other input. Here we show that balanced amplification in the present model with
a power-law input/output nonlinearity can yield multiplicative gain modulation. “Tuning-curves”
for both the E and I cell in this simple model were generated by varying the strength of a stimulus of
equal magnitude delivered to both cells. At the same time, a constant modulatory input (relative
input strength shown in key at left) was added to either the E cell (top row) or I cell (bottom
row). Left two plots: adding an input to the E cell boosted the gain of both E and I, whereas
adding an input to the I cell reduced the gain. Right two plots: curves replotted normalized so that
maximal firing rate in each curve equals 1; the modulatory input induces a nearly multiplicative
change in gain. Parameters: n = 2.2, k = 0.01, WEE = 1.0, WIE = 1.25, WEI = 0.75, WII = 0.75,

gE = gI = 1. Baseline input at orientation θ: 50e−
θ2

2σ2 , σ = 20o. Modulatory input: to I cells, from
0 to 10 in steps of 2.5; to E cells, from 0 to 5 in steps of 1.25. Although we did not tune parameters
to get this effect, we have found in further parameter exploration that the degree to which effects
are multiplicative vs. additive can vary with parameters.
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Figure S14:
How the model could simultaneously account for results of Ozeki et al. (2009) and
Haider et al. (2010) (related to Discussion). We consider the model of Fig. 3. The figure
shows the net I input received by an E cell (“I conductance”) at the stimulus center as a function
of stimulus length, for c = 40. Symbols mark possible sizes of small or center stimuli (filled
symbols) and large or center+surround stimuli (open symbols) in experiment of Ozeki et al. (2009)
(diamonds) or of Haider et al. (2010) (squares). This shows how Haider et al. (2010) could have
seen an increase in inhibition received with increasing stimulus size, while Ozeki et al. (2009), using
larger stimuli, saw a decrease in inhibition received. The indicated stimulus sizes are determined
as follows. In Ozeki et al. (2009), the small stimulus size, meant to cover the CRF, was determined
as the size of a shrinking annular stimulus, centered on the CRF center, that first evoked spikes,
typically around 2o diameter; the large stimulus size was 20o diameter, typically about 10× larger.
The annulus used to measure the CRF had a large outer diameter, and the inner diameter was
shrunk until spikes were evoked. In our model for the parameters we use, an annulus with a large
outer diameter never facilitates E-cell responses, and hence would not evoke spikes, down to an
inner diameter of the E-cell summation-field size (Supplemental Fig. S8B), which is about 0.5o

(Fig. 3C). Thus, if we used a CRF size as determined by a large annulus, it would be equal to the
summation-field size. We instead here defined the CRF size to be the inner diameter of an annulus
of 1o width – outer diameter 2o larger than inner diameter – that first evoked a response. This is
quite simply a “hack”, but we don’t know how general across parameters is the model behavior that
annuli with large outer diameter do not facilitate, and it at least illustrates how the model might
produce behaviors like those seen experimentally. The key point is that the CRF should be larger
than the E-cell summation field size, so that it more closely corresponds to the I-cell summation
field size (which in the model for the parameters we use is larger than the E-cell summation field
size, Figs. 3C, 7C) and thus to the peak of inhibition received. (Continued on next page.)
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Figure S14:
(Continued). Indeed, in monkeys it has been reported that receptive fields determined by the
annular procedure are on average 47% larger than the summation field size (Cavanaugh et al.
2002). While 47% is much less than the nearly 4-fold difference between summation field size
and annular receptive field size used here, it may also be that for other parameters the average
I-cell summation field size would be closer to 50% larger than the E-cell summation field size. We
took the large stimulus for Ozeki et al. (2009) simply to be a large stimulus where suppression,
though oscillating, had reached a plateau in overall level, here 13o. In Haider et al. (2010), the
small stimulus was defined as the circular fit to the half-maximal iso-response contour of the RF
as mapped by sparse noise stimuli, while the large stimulus was three times larger. In the model,
the size of the small stimulus, so defined, is somewhat dependent on the size of the stimuli used for
sparse mapping of the receptive field. We used a 0.5o-width stimulus, moved over 500 positions in
steps of 0.0667o. A wider or narrower mapping stimulus would produce slightly larger or smaller
sizes, respectively, for the small stimulus. We took the large stimulus for Haider et al. (2010) to be
3× the size of the small stimulus.
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S4 Supplemental Tables: Legends

Supplemental Tables are provided in separate Excel files. Here we provide the legends for
those tables.

Table S1:
Statistics for length-tuning analyses of Fig. 4B-C. Columns show: cell ID number (as in
Supplemental Figs. S10-S12); SSE DOG and SSE SSM, the sum-squared error (SSE) for DOG
model and for SSM model respectively; the value of the statistic F , and the corresponding p-value,
for the nested F-test; and CV Percent Change, the % change in median sum-squared error from
DOG to SSM models. For F-test, degrees of freedom (DF) are (∆p,B) where ∆p is the difference
in the number of parameters in the two models, and B = n − (1 + p) where n is the number of
data points in the tuning curves being compared and p is the number of parameters in the more
complex model. For Fig. 4B these numbers are: n = 30, p = 10, ∆p = 2, DF = (2, 19).

Table S2:
Statistics for length-tuning analyses of Supplemental Fig. S1F-G. Same as Supplemental
Table S1, but for comparison of fits of SSM model to fits of 7-parameter DOG model (a7 = 0) rather
than 8-parameter DOG model as in Supplemental Table S1. All conventions as in Supplemental
Table S1. For F-tests of Supplemental Fig. S1F: n = 30, p = 10, ∆p = 3, DF = (3, 19).

Table S3:
Statistics for position-tuning analyses of Fig. 4E-F. Same as Supplemental Table S1, but
for position-tuning analyses of Fig. 4E-F. All conventions as in Supplemental Table S1. For F-tests
for Fig. 4E: n = 21, p = 10, ∆p = 3, DF = (3, 10).

Table S4:
Statistics for length-tuning analyses of model units, Fig. 6C, left. Same as Supplemental
Table S1, but for comparison of fits to length-tuning curves of SSM vs. DOG model for 100
randomly selected model E units, Fig. 6C. All conventions as in Supplemental Table S1, except
that to save space we did not discuss cross-validation tests for model cells, so those statistics are
not included here. For F-tests for Fig. 6C, left: n = 61, p = 10, ∆p = 2, DF = (2, 50).
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Table S5:
Statistics for position-tuning analyses of model units, Fig. 6C, right. Same as Supple-
mental Table S1, but for comparison of fits to position-tuning curves of SSM vs. DOG model for
100 randomly selected model E units, Fig. 6C, right. All conventions as in Supplemental Table S1,
except that to save space we did not discuss cross-validation tests for model units, so those statistics
are not included here. For F-tests for Fig. 6C, right: n = 30, p = 10, ∆p = 3, DF = (3, 19).
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