
Supplementary Discussion. 

Optimal filtering in a nonlinear system. The simple argument leading to Eq. (1) may 

appear reminiscent of the redundancy reduction principle40, 41, 45-47. However we do not 

assume that the response is linear, impose a particular constraint, or specify the 

optimality measure. We simply assume that the optimality measure, whatever it may be, 

is preserved under a change in ensemble. Due to the generality of this argument, we 

cannot make predictions for the optimal shape of frequency tuning, only for the relative 

changes in tuning upon a change in the input power spectra. For a linear system, the 

redundancy reduction arguments predict40, 41, 47 that neural filters should completely 

remove second-order correlations present in the input ensembles, i.e. the product 

L(k)P(k) should be constant across frequencies for sufficiently small frequencies for any 

ensemble. Although this argument may reasonably describe subcortical visual 

processing41, 43, 47, it does not appear to describe visual cortex either in response to natural 

stimuli or to noise (Fig. 2c,f), where L(k)P(k) depends on k. Therefore nonlinearities of 

simple cells and/or alternative optimization principles appear essential in describing 

optimal filter properties in the primary visual cortex. 

 In the Discussion of the main text, we point out that the adaptation observed here 

may share some underlying mechanisms with previous observations of cortical pattern-

specific adaptation. Indeed, it has been proposed40, 48, 49 that such pattern-specific 

adaptation arises from anti-Hebbian or decorrelating mechanisms that would more 

generally lead to adaptation to the stimulus power spectrum like that observed here. 

These models of adaptation40, 48, 49 are closely related to the redundancy reduction 

arguments just discussed and, more generally, to principles of optimal encoding37, 41, 45-47 



that have been proposed to govern the design and operation of the nervous system. 

Despite the specific disagreements just discussed, our results support these general ideas 

in two respects. First, we have found that adaptation acts to reduce relative 

responsiveness to patterns that have relatively greater stimulus power, as these theories 

predict. Second, we have found that neural filters adapt to changes in stimulus ensemble 

in a manner that increases the information transmitted, relative to the information that 

would be transmitted if filters did not adapt (as seen by the decreased information when 

filter and ensemble are swapped, Fig. 3). 

 The optimality argument (1) for a nonlinear system analyzing Gaussian inputs 

predicts that the nonlinearity does not change its functional form. This is supported in our 

data by the fact that the average information values are roughly equal under natural and 

noise stimulation. The information I can be rewritten in terms of the nonlinear function 

f(x) of the filter output x and the probability P(x) that the filter output has value x: I =  

∫ dx P(x)f(x)log2f(x).  One way to preserve this sum is to use the strategy of our 

optimality argument: to leave P(x) unchanged, which for a Gaussian ensemble is 

accomplished by changing the filter according to Eq. 1, and to leave the nonlinearity f(x) 

unchanged. The extent to which this strategy is followed by our two example cells can be 

seen in Figure 1 and Supplementary Figure 3: the pink curves illustrate P(x), while the 

blue curves illustrate f(x), which in Figure 1 is also scaled by the firing rate. As can be 

seen by comparing the curves for the noise MID to that for the natural MID, the curves 

are at least roughly preserved. 

Sensitivity of simple cells to multiple stimulus dimensions. We find that even simple 

cells in primary visual cortex are sensitive to more than one stimulus dimension, in 



agreement with other recent work26, 29. A single filter corresponds to a single stimulus 

dimension; the filter output tells the strength of the stimulus along that dimension. The 

ratio I/Ispike (Fig. 3, bottom) tells the proportion of the information encoded about the 

stimulus in the neuron's spikes that can be accounted for by the output of the most 

informative filter30. For simple cells, the dominant filter accounts for only about 35% of 

the overall information. Thus, other stimulus dimensions must significantly influence the 

neuron's firing10, 26, 29. Presumably all of these relevant dimensions also shift with 

changes in stimulus ensemble, of which we analyzed here only the dominant one. It is 

also possible that adaptive changes in the structure of each of the relevant dimensions 

will change their relative importance for eliciting a spike. In particular, the dominant 

filter for one input ensemble might become secondary in encoding the other input 

ensemble. The fact that we did not see qualitative changes in the structure of the 

dominant filter between natural and noise stimulation suggests that such shifts in the 

relative role of dimensions are not common. Future studies will extend the adaptation 

analysis to include other relevant dimensions beyond the dominant filter.  

Optimal spatial frequency and orientation under natural and noise stimulation.  

Filters derived from noise and natural stimuli had similar optimal orientation and spatial 

frequency. The optimal values were obtained as the position of the maximum of the 2D 

Fourier transform in space at the temporal frequency of the grating (2Hz). We found a 

small but statistically significant shift in the optimal spatial frequency, with filters 

derived from noise inputs having a 21% (±3% s.d.) higher value of the optimal spatial 

frequency than filters derived from natural inputs (p<10-4). This shift in optimal spatial 

frequency was small enough that neither the noise ensemble estimate nor the natural 

ensemble estimate was significantly different from direct measurements of the preferred 

spatial frequencies of these cells with gratings. We note that the measurements with 

gratings were done separately, before exposure to the noise or natural ensembles, and do 



not represent tests of grating spatial frequency sensitivity in the states of adaptation to 

white noise or natural stimuli.  We note also that our conclusions about optimal coding 

depend on the sensitivity throughout the entire range of spatial frequencies and not on the 

position of the maximum of the spatial frequency tuning curve (the “optimal” spatial 

frequency) for a particular cell.   

In agreement with previous findings25, 26, we did not see statistically significant 

changes in optimal stimulus orientation between grating, natural ensemble, or noise 

ensemble estimates. Natural stimuli have anisotropic power spectra with increased power 

at horizontal and vertical orientations50, and therefore one might have expected some 

shifts in optimal stimulus orientation away from horizontal or vertical for the natural 

filter relative to the noise filter. Adaptation to orientation is strongest when the difference 

between the preferred orientation of the neuron and the adapting orientation is between 

20-60 degrees, and acts to shift the preferred orientation away from the adapting 

stimulus11. Thus, shifts due to over-representation of vertical and horizontal orientations 

would both tend to occur on neurons preferring oblique orientations, and would be in 

opposite directions. We speculate that the two effects tend to cancel.  

Dynamics of Adaptation to Natural Stimuli. Here we argue against certain artifactual 

explanations of Figure 4a. It could be argued that the increase of information with time 

seen in Figure 4a may occur because of correlations between the stimuli used for the 

information calculation (the “test set”) and those used in calculating the filters themselves 

(the “training set”). Natural movies tend to have correlations that diminish in time as a 

power law rather than an exponential31, 33, 35, 36, and in that sense are long-lasting. The 

training set was the last half of the movies, so it might be argued that, as time progresses 

from the beginning of the movies, the correlation of the test set with the training set 

would increase and this might explain the increase in information. One argument against 



this explanation is that information saturates after the first quarter of stimulus 

presentations, whereas the correlation with the training set would continue to increase 

throughout the first half. We tested this explanation more directly by using an alternative 

training set.  We calculated the filters from the middle half of the movies (136 to 410 sec) 

and then calculated information on the first quarter and the last quarter.  Now the first 

quarter and the last quarter are equally distant in time from the training set, and so if this 

explanation were correct we would expect them to be mirror images of each other: 

information would go up during the first quarter and go down by an equal amount during 

the last quarter. On the contrary, and in support of the adaptation argument, we see the 

same rise in information during the first quarter as before, even though the first quarter is 

now much closer in time to the training set, and we see no fall in information during the 

last quarter, cf. Supplementary Figure 6a. An exponential fit gave a time constant of 55±9 

seconds, which agrees with the time constant of 42±9 seconds derived from information 

during the first half of the data, cf. Figure 4.  Also, against the more general argument 

that the rise or fall in information in Figure 4 might be due to some non-stationarity in the 

stimulus movies, we show that relevant stimulus components, such as the mean and the 

standard deviation of the outputs of the neural filters applied to these movies, are stable, 

cf. Supplementary Figure 6 (b-e). 

Supplementary Methods. 

Dataset Selection. 

The present dataset is obtained from 4 animals and included 133 single units which were 

clustered using a manual spike sorter. For 85 of the 133 neurons, a reliable non-zero filter 

was obtained from natural inputs, as judged by visual inspection. We found that this 



subjective criterion correlated well with an objective criterion of having a significantly 

positive information value for the filter applied to its own ensemble (after finite-size 

corrections51 are applied). The information was positive for all 85 cells, and exceeded its 

standard deviation in 81/85 cells. We used the latter criterion to select the dataset of 71 

cells with reliable filter estimates to both noise and natural stimuli, of which 40 were 

classified as simple based on their responses to moving sinusoidal gratings of optimal 

orientation and spatial frequency. Specifically, simple cells were those with ratio of 

F1/F0>1, where F1 is the response modulation (Fourier component at the frequency of 

the stimulus grating) and F0 is the mean response to the optimal grating.  Because results 

of Figure 4 are based only on natural stimuli filters, we have included 5 additional simple 

cells for which the natural stimulus filter was reliable and noise stimulus filter was not.  

Response Reconstruction: Neural Filters and Corresponding Nonlinearities  

In the framework of the LN model, the probability of response to a particular input S is 

given by an arbitrary nonlinear function f which only depends on the product of the input 

signal S and the neural filter L:  

f=f(L*S).        (2) 

 More generally, reconstruction might require description in terms of a nonlinear function 

of the outputs of several filters, or curved subspaces instead of a strictly linear projection 

between signals and filters. However, in this paper we focus on the analysis of properties 

of the dominant filter L of the LN model obtained with noise or natural inputs. We note 

that the assumption of a single linear filter is more general than the assumption that the 

cell is linear overall, because the input/output function can be strongly nonlinear and is 

usually well described by a threshold or threshold-linear function.  



In the case of white noise inputs, the linear filter can be found using the reverse 

correlation method, also known as the spike-triggered average (STA): 

SSS (spike))|spike(ˆSTA PPe −= ,     (3) 

where the expectations are taken over the stimulus ensemble probability distribution P(S). 

In other words, the STA vector is computed by taking the average stimulus weighted by 

the number of spikes it elicits and subtracting the average stimulus multiplied by the 

overall number of spikes. The magnitude of the filter is irrelevant, because its change can 

be accommodated by an appropriate rescaling of the input/output function (2), which 

converts stimulus components along the relevant filter into spike probability. Therefore, 

we normalize all of the derived filters to unit length or measure them with respect to the 

noise level.  

If inputs are taken from a Gaussian distribution with correlations (colored noise), then the 

linear filter can be estimated by computing the STA according to Eq. (3) with a 

subsequent correction for input correlations. The decorrelated STA (dSTA) is obtained by 

multiplying the STA with the inverse of the stimulus covariance matrix Cij: 

  STA
1

dSTA ˆˆ eCe −=       (4) 

In the case of correlated Gaussian inputs, the dSTA filter Eq. (4) represents the solution 

of both the purely linear model and the LN model. This is no longer true for natural 

inputs, which are not Gaussian30. Therefore we calculate and treat the dSTA for the 

natural ensemble as the prediction of the purely linear model.  It is known that higher 

signal-to-noise ratios and smoother filters can be achieved by various forms of 

regularization of the decorrelation process, including low-pass filtering the STA  or 

imposing a high-frequency cutoff on the covariance matrix23, 25, 26. The increase in 



predictive power upon such regularization happens for three reasons. First, due to finite 

data or simply the nature of the stimulus ensemble, the covariance matrix might be 

singular or nearly so, so that its inversion would result in uncontrollably large 

eigenvalues for high frequencies where power in the stimulus ensemble is small.  We 

have found that this is not the case for our covariance matrix: calculation of the dSTA 

according to Eq. (4) without any regularization, in numerical simulations for model linear 

cells, led to excellent agreement between the dSTA and the filter of the model cell  with 

correlation coefficients >0.99 30 (and unpublished data). Second, due to finite amounts of 

data, there is noise in the estimation of the STA. If this noise has a relatively flat 

spectrum, then at high frequencies where signal in the true STA is low, decorrelation may 

preferentially amplify noise rather than signal.  Again, our results with the linear model 

with a finite number of spikes (e.g. 1000 spikes) suggest that this is not a problem, 

although we cannot be certain that the noise problem is not worse for real nonlinear 

neurons. Third, because the dSTA is a biased estimate of the filter of an LN neuron 

probed with natural scenes, the estimate might be improved by deviating from the linear 

model.  This can be done by adding a parameter (a low-pass cutoff) and tuning this 

parameter on a cell-by-cell basis to maximize predictive power of the resulting filter23, 25.  

However, it is not clear to what degree a change in just one parameter could account for 

all deviations between filters of the fully linear model and those of the LN framework. 

For all of these reasons, we refrained from regularization in our calculations of the dSTA 

except in the illustrations of example cells in Figure 1; we otherwise treated the dSTA 

calculated by Eq. (4) as the prediction of the fully linear model. It should also be noted 

that the inclusion of an ad-hoc low-pass filter parameter would make it impossible to 



reliably estimate the higher-frequency parts of the filter; this, along with the bias of the 

unregularized dSTA, is why the MID method was necessary for us to assay changes in 

the spatial frequency tuning across ensembles.  In Figure 1, for comparison purposes, we 

illustrate both regularized and unregularized forms of the dSTA.  Regularization was 

based on selecting a cutoff on the eigenvalues of the covariance matrix C below which 

none of the eigenvalues with the corresponding eigenvectors contributed to the inverse C-

1 in Eq. (7), making it a pseudo-inverse23, 25. For each possible value of the cutoff 

parameter, the dSTA vector was calculated according to Eq. (7) based on a trial set using 

7/8 of the data. The optimal cutoff value was selected as that for which the corresponding 

dSTA provided maximal information on the remaining 1/8 of the data designated as a test 

set. 

In addition to the above methods, we also derived neural filters using the method 

of most informative dimensions30, see next section. For all of the above methods, 

jackknife analysis of neural filters was performed: 8 filters were computed, each with 1/8 

of the data left out. When information was computed for a filter on its own ensemble, it 

was calculated only on this 1/8 of the data that was not used for computing the filter, 

except in Figure 4 where a single filter was calculated from ½ of the data and information 

was calculated on segments of the other half. In all other cases, information values 

reported are an average over the 8 values found with the 8 jackknife estimates. To 

establish statistical significance of the difference between filters derived with any two 

different methods and/or two stimulus ensembles, all 16 of the corresponding jackknife 

estimates (8 for each combination of method and ensemble) were projected on the 

direction of the difference between the mean filters describing the two groups, and an 



unpaired Students t-test was used on these projections. To calculate the signal-to-noise 

level of receptive fields shown in Figure 1, we compute the average standard deviation 

across all components of the receptive field across all the jackknife estimates (normalized 

to unit length) and display receptive field values relative to that noise level. 

Once the filter L has been obtained as either the STA (3), dSTA (4), or the MID30, 

we can calculate the nonlinear input/output function (2) directly from the data. According 

to its definition it is given by the normalized spike probability given the stimulus S: 

P(spike)
)|P(spike=)f( SLS ∗ . 

When working in the framework of the linear-nonlinear model we assume that the spike 

probability only depends on stimulus components along the filter L of interest: P(spike| 

S)=P(spike| S*L). Therefore the nonlinear input/output function can also be written as: 

P(spike)
)|P(spike=)f( LSLS ∗

∗ . 

The last expression can be transformed using Bayes’ rule: 

)P(
spike)|P(=)f(
LS

LSLS
∗

∗
∗ .           (5) 

That is, the nonlinear input/output function f is evaluated as a ratio of probability 

distributions of stimulus components along the filter L, P(S*L), and of the probability 

distribution of stimulus components P(S*L|spike) conditional on a spike. Both of the 

probability distributions are readily available from the experimental data. 

Reconstruction of Receptive Fields as Most Informative Dimensions. The justification 

for the method of most informative dimensions as a way to calculate neural receptive 

fields is described elsewhere30, where performance of the method is illustrated on model 



visual and auditory neurons. For the convenience of the reader we describe here the 

methodology of maximizing information to find the receptive fields.  It was shown that 

the information between the output of a particular vector L in the input space and the 

neuron's response, regarded as a spike or no spike in each time bin, can be computed, to 

lowest order in the probability P(spike) of a spike in the time bin,  as the Kullback-

Leibler distance between the probability distributions P(x) and P(x|spike): 
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where PL(x) is the probability distribution of stimulus projections x onto the vector L in 

the input ensemble, and PL(x|spike) is the probability distribution of stimulus projections 

x onto the vector L among inputs that led to a spike. We compute these two probability 

distributions as histograms in 21 bins covering the range of projection values (the same 

number of bins was used in finding MIDs from neural responses to noise and natural 

ensemble). For each trial vector, we also compute the gradient of information as: 
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where <S|x> is the average of the stimuli having projection value of x onto the vector L 

(using the same binning of x as for the probability distributions PL(x) and PL(x|spike)). 

Similarly, <S|x,spike>is the average of the stimuli that led to a spike that had projection 

value of x onto the vector L. We evaluate the derivative at a particular value of x using 

Savitsky-Golay coefficients (W.H. Press et al., Numerical Recipes, Cambridge University 

Press 1998) based on two adjacent bins on either side of the bin with the value x; if 

projections values from any one of these bins were not encountered in the stimulus 

ensemble, the corresponding average did not contribute to the derivative. We find that the 



use of Savitsky-Golay smoothing coefficients is not required, but helps improve 

convergence of the algorithm [note that in the search algorithm, described below, the trial 

vectors are accepted based on information values, which are evaluated without 

smoothing.] This analysis requires that stimuli and spike trains are binned at the same 

time resolution (33 ms for natural stimuli and 16 ms for noise stimuli). Therefore 

occasional stimuli correspond to multiple spikes in a bin. If that happened, projections 

values of such stimuli were counted as many times as there were spikes for all the 

probability distributions and averages in Eqs. (6) and (7).  

The search for the most informative dimension (MID) is initialized by setting the 

starting vector equal to the STA. To generate a new trial vector, we perform a line 

maximization (W.H. Press et al., Numerical Recipes, Cambridge University Press 1998) 

along the line defined by the gradient (7), and choose, on average, the one with the 

largest information. Because information (6) as a function of components of the vector L 

has local maxima, smaller information values are accepted with Boltzmann probability, 

exp(─∆I/T), where ∆I is the decrease in information between the new and old trial vector 

measured in units of the information Ispike carried by the arrival of a single spike, and the 

parameter  T is called the effective temperature of the simulated annealing cooling 

scheme. Information values in these units are typically less than one (unless there is 

overfitting). Therefore, we start the simulated annealing scheme with T=1, and decrease 

it by a factor of 0.95 after each line maximization. If the search appears to have 

converged with a fraction precision of 5x10-5 and the effective temperature T≤10-5, then 

the effective temperature is increased by a factor of 5, but not to exceed the starting 

temperature value. This results in repeated “cooling” and “remelting”, and is equivalent 



to restarting the algorithm multiple times. We limit the total number of line 

maximizations to 3000. The best vector found in terms of information during the overall 

maximization procedure is taken as the most informative dimension L. Cross-validation 

is performed by leaving out 1/8 of data and treating that 1/8 as a test set. We compute 

information on the test set after every 100 line maximizations, and if the information 

value has dropped on the test set by 25% of its maximum value, the optimization 

procedure is stopped and the current filter taken as the MID. Such early stopping seldom 

occurs when we compute receptive fields from responses to natural scenes, but is 

common when receptive fields are computed from noise ensembles. This is due to the 

fact that the starting point, the STA, is very close to the optimal value when neural 

responses to the noise ensemble are analyzed. 

Because the MID method is based on a search in a high-dimensional space for an 

information maximum, there is of course a concern that our search might become stuck in 

a local maximum.  We believe this is not a concern for the following reasons.  First, as 

just noted, our search procedure is equivalent to restarting the search algorithm multiple 

times from multiple starting points, only the first of which is the STA, and we take the 

maximum of information over the entire search.  Second, in studies of model cells30 (and 

unpublished data), we have found that the error (measured as 1 minus the projection 

between the true model filter and the MID found by the search) decreases as 1/N where N 

is the number of spikes used to estimate the filter.  This is the dependence predicted 

theoretically30, and would not be expected to hold if the true maximum were not being 

found.  Third, we have previously verified on model cells that beginning with a random 

starting point rather than the STA does not produce better solutions.  The STA represents 



a natural choice of a starting point in that it is clearly a stimulus direction that carries 

nonzero information about the neuron's response. 

The MID method produces an unbiased estimate. 

In this section we provide a detailed derivation for the fact, first published in 

Ref.30, that the MID method produces unbiased estimates of neural filters within a single-

filter LN model. We will first consider the case of infinite data, and then go through 

details of the argument with finite data. 

While the MID filter can be calculated with respect to any particular pattern of 

spikes30, in this paper we have concentrated on finding filters associated with single 

spikes. Therefore we will do so in this section as well. Information carried by individual 

spikes about the incoming stimuli is given by37: 
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Because this is the information between single spikes and full, unfiltered, stimuli, 

information between spikes and stimuli filtered along any dimension may not exceed (8). 

To verify that the only filter that leads to an equal amount of information between spikes 

and stimuli filtered with it is the neural receptive field L, we invoke the main assumption 

of the single-filter LN model: P(spike|S)=P(spike|S*L), so that: 
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 The integration dDS with along all stimulus dimensions can be carried out separately 

along the relevant stimulus dimension, S*L, and along the rest of stimulus dimensions, 

which we denote as S┴: 
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which is precisely the information along the filter L, cf. Eq. (6). We have thus shown that 

information along the filter that represents the neural receptive field achieves the 

maximal information possible, Ispike and describes the encoding S→ S*L → spikes. 

Filtering along any other dimension V will correspond to encoding S→ S*V → S*L → 

spikes or S→ S*L → S*V → spikes and, by the data processing inequality (Cover and 

Thomas, John Wiley Inc. 1991), leads to a lower information processing value. The data 

processing inequality applies to stochastic inputs but presumes that we know exact 

probabilities such as P(S*L| spike) and P(S*V| spike). This shows that the MID method 

is unbiased in the limit of infinite data and stochastic neurons. 

 With finite data, we have only a limited number of samples to measure the 

probability distributions P(S*L| spike) and P(S| spike). With N spikes, our empirical 

estimates of these probability distributions  PN(S*L| spike) and PN(S| spike) will differ 

from experiment to experiment in such a way that the average across trials produces the 

true distribution and the variance across trials acquires a term of the order of 1/N: 

)spike|()spike|( SS PPN =         (9) 
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where we have used the properties of the binomial distribution; each particular stimulus S 

can occur with a spike anywhere between 0 and N times, if N is the total number of 

spikes. Similar relations can be used with other probability distributions involved. 

The deviation between the true filter and the MID filter obtained with a particular data 

set, δV, is proportional to the gradient of information (evaluated with finite data) at the 

position of the true filter: δV ~ ∇I(L).  Here we show that, as was stated in Ref.30, the 

gradient of information is zero, after averaging across trials, for the true filter. To verify 

this we represent information IN(L)=I(L)+δI N(L), as the information obtained with 

infinite data and the deviation from it due to finite sampling. The gradient of the 

information is zero at the true filter L. The deviation  
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where x=S*L, δPN(x|spike)=PN(x|spike)-P(x|spike) is the difference between the 

empirical and true distributions, and there is no need to consider noise in the stimulus 

distribution P(x) because it might be taken as the one actually used in the experiment. 

Next we take into account that the empirical distribution obeys a normalization 

constraint, such that ( ) 1spike =∫ xPdx N , and therefore ( ) 0spike =∫ xPdx Nδ , so 

that: 
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But the average of the empirical distributions is the true distribution (9), so 0=)(I N Lδ  

in the first-order approximation in the deviations between empirical and true 

distributions. The second-order approximation results, using the property Eq. (10), in a 



uniform correction:
spike

bins 1~
N

N)(I N
−Lδ , where Nspike is the number of spikes and Nbins is 

the number of bins used in estimating the probability distribution P(x|spike). Because this 

correction is independent of the direction in the stimulus space, it provides a zero 

contribution to the gradient at the position of the true filter. The second-order terms 

determine the variance of the MID filters on a trial-by-trial basis, because while the 

deviations themselves )(~ LV I∇δ  are proportional to the gradient of information, their 

variance )()(~ LLVV II jiji ∇∇δδ  is proportional to pairwise gradient correlations. 

Using Eqs. (11) and (10), one can show that the leading term determining this variance 

behaves as ~1/Nspike. The exact coefficient can be found in Ref. 30. This means that while 

different MID filters obtained based on different empirical distributions deviate from 

each other and from the true filter, these deviations have zero mean and finite variance 

that decreases as ~1/Nspike with increasing number of spikes. While there may be terms 

~Nspike
-2 describing a shift in the mean, these will be masked by a much larger effect of 

variance between estimates decreasing as ~Nspike
-1. This is what we mean by saying that 

the MID method is unbiased. Note that the gradient of information evaluated at the filters 

of the linear model (STA or decorrelated STA) will be non-zero, with terms of order 

O(1), which do not depend on the number of spikes and remain finite even in the limit of 

infinite data. 

 However there are ways in which the stimulus ensemble can influence the single 

MID even in a neuron that does not adapt, if the relevant subspace (RS) has two or more 

dimensions. In this case, as shown in Ref. 30, Appendix B, the single MID for that 

ensemble may include a component outside of the RS if the ensemble is such that the 



average stimulus given the projections along the relevant dimensions is not a linear 

function of each projection (as can occur for non-Gaussian ensembles). Any such effects, 

however, would be instantaneous and would not yield a time-dependence to the 

calculation of information as in Fig. 4. 

Details of stimulus presentation and filter analysis. The visual input signals were 

presented as two-dimensional spatiotemporal patterns of light intensities on a video 

monitor with a refresh rate of 120 Hz. The frame update rate was 60 Hz in the case of the 

white noise stimulus ensemble and 30 Hz in the case of the natural stimulus ensemble 

(our commercial cameras did not provide higher temporal resolution than that of 

television, which is 30Hz). No corrections were made for the camera nonlinear amplitude 

to intensity transformation function. 

The optimal orientation was determined from responses to a set of evenly spaced 

orientations at 10° intervals, with a spatial frequency of 0.5 cycles/degree and a temporal 

frequency of 2 Hz. The optimal spatial frequency was derived from responses to a set of 

moving gratings of optimal orientation and variable spatial frequencies (approximately 

logarithmically spaced between 0.1 and 4 cycles/degree).  

Spatial frequency profiles were obtained by taking the Fourier transform in time 

and, with zero-padding to 32x32, in space. Linear interpolation between pixels of the 2D 

transform was used to derive one-dimensional profiles along the preferred orientation of 

each cell. Before averaging across cells, the spatial frequency profiles of individual cells 

were normalized to unit length across all spatial and temporal frequencies. Identical 

procedures were used for receptive fields and stimuli comprising the input ensembles 

(averaging over all three frame subsequences, e.g. 1-2-3, 2-3-4, etc.).  



In Figure 3, the information I was calculated from jackknife estimates of the 

filters. For each cell, for either the natural or noise ensemble, eight jackknife estimates 

were derived, each from 7/8 of the data with the remaining 1/8 of the data serving as a 

test set on which the information was calculated. The mean of these 8 estimates was 

assigned as information I that cell and ensemble.  Ispike is calculated from responses to 50-

150 repetitions of an 11s-long segment of the natural or noise ensemble. Finite-size 

corrections37 were applied to both I and Ispike. As a control for the information calculation, 

we calculated natural MID filters for a series of model simple cells with a static filter 

where the number of spikes emitted over the course of the test set varied from 80-13,000. 

The calculated information, of course, decreased substantially at low numbers of spikes, 

but it did so similarly whether the filter was applied to the natural or the noise ensemble. 

There was no significant difference between the information about the natural ensemble 

and about the noise ensemble for any choice of nonlinearity, that is, for any signal-to-

noise ratio.  
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Supplementary Figure 1 

This figure shows the spatial frequency profiles of receptive fields from the two example 

cells of Figure 1. Spatial frequency sensitivity at zero temporal frequency (a,c) and at 10 

Hz (b,d).  Red indicates filter derived from responses to noise ensemble, blue indicates 

filter derived from responses to natural ensemble. The second of the two example cells is 

typical in all respects. The first of the two cells is atypical in that it did not change its 

sensitivity at low spatial frequency between natural and noise stimulation at 0 Hz, but 

exhibited an appropriate change in its tuning at 10 Hz, see Supplementary Figure 2. 

 Supplementary Figure 2 

Spatial frequency sensitivity on a cell-by-cell basis for the first 9 spatial frequencies from 

Figure 2 (here called k1 to k8 from lowest to highest) for temporal frequencies of 0 and 

10 Hz respectively. P-values on top of each graph show significance in sensitivity 

differences of filters derived from noise vs. natural stimulation. Color for each cell codes 

sensitivity to noise filter at lowest frequency (k1) and is retained in the plots of higher 

frequencies. The two example cells of Supplementary Figure 1 are marked as a ‘+’ and an 

‘X’ respectively.  Note that the cell marked by a ‘+’ is atypical in its behavior at 0Hz. 

Supplementary Figure 3. 



Panels (a,b) show that the nonlinear input/output function f(x)=P(spike|x)/P(spike) 

associated with the MID filters for two exemplary cells of Figure 1 overlap under natural 

(solid) and noise (dashed) stimulation when stimulus projection x along the 

corresponding receptive fields is measured in units of its standard deviation (x-axis). For 

comparison, in Figure 1 we plot the input/output function f(x) scaled by the firing rate, 

P(spike|x) – the probability of a spike in 33ms window given a stimulus projection value 

x along the receptive field. Therefore the difference in scale for the nonlinearities 

observed between natural and noise conditions in Figure 1, as for example cell 856 2, 

reflects only a change in the mean firing rate under the two conditions. Panels (c,d) show 

the probability distributions of projections x for natural (solid) and noise (dashed) 

stimulation. 

Supplementary Figure 4.  

The increase in information on a cell-by-cell basis when the noise filter is applied to the 

noise vs. natural ensemble (a) or when the natural filter is applied to the natural vs. noise 

ensemble (b). Panels (c,d) show this effect in units of Ispike. Notations are as in Figure 3.  

Supplementary Figure 5. Coarse evolution of adaptive neural filters. (a,d) 

Comparison of neural filters derived from the first half (a,d), middle half (b,e) or last half 

(c,f) of stimulation with noise and natural inputs. Notations are as in Figure 2(a,d).  In 

panels (g,h) we plot only natural filters to show that they overlap. In panels (i,j) we 

compare three of the noise filters derived from the first half of the data (magenta), middle 

half of the data (yellow), and last of the data (red) to the natural filters of the last half of 

the data. With time, noise neural filters diverge from natural filters. 



Supplementary Figure 6. (a) The neural filter derived from the middle half of natural 

stimulation is applied to the first and last quarter of the natural input ensemble. Notations 

are as in Figure 4. The solid line is an exponential fit, dashed lines show one standard 

deviation based on the Jacobian of the fit, p=0.007. The remaining panels show that the 

relevant statistical properties of the input ensemble are stable and cannot account for the 

time dependence seen in Figure 4. Here we show the mean and standard deviations (in 

arbitrary units) for natural and noise input stimuli filtered differently: (b) natural stimuli 

(first half of the data) filtered with natural neural filters computed from second half of the 

data; (c) natural stimuli (all duration) filtered with noise neural filters; (d) noise stimuli 

(all duration) filtered with natural neural filters; (e) noise stimuli (first half of the data) 

filtered with noise neural filters obtained from the second half. 

Supplementary Figure 7 

Information carried by the noise filter about the neuron's response, as a function of time 

after exposure to the noise ensemble (a) or natural stimulus ensemble (b). Information 

values were evaluated along the noise filter derived from the second half (a) and from full 

recording (b) of noise stimulation. No significant time dependence could be established. 

Notations are as in Figure 4. Left and right blue bars show average information carried by 

noise filter about responses to noise ensemble (taller bar) or natural ensemble (shorter 

bar). Note that the average information values computed for the short time segments for 

the noise filter applied to the noise ensemble (a) are all smaller than the average 

information computed over the whole noise ensemble (right bar in a).  This suggests that 

these short-time estimates are too noisy to be reliable in the case of the noise filter, which 



may provide another reason that we could observe no trend for the noise filter.  A similar 

problem can be seen in (b). Note that a similar problem did not arise for the natural filter 

(main text, figure 4): short-time estimates were equal in size to the estimate over the 

whole ensemble after adaptation. We used the filter from the full recording in (b) (unlike 

in main text, figure 4, where the same filter was used in (a) and (b) for consistency) 

because the short-time estimates for the filter from the second half of the recording 

showed an even stronger tendency to have low information values; using the full 

recording helps fight noise and so improves the situation, but not sufficiently. 
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