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S1. Supplemental Analysis 
	
S1a.	A	Simplified,	Analytically	Tractable	Model	
	
To	try	to	isolate	the	essential	features	that	are	sufficient	to	explain	pre‐CP	and	CP	plasticity,	we	simplify	the	
model	presented	in	the	text	to	a	few	essential	ingredients.	The	main	ideas	we	want	to	capture	in	this	simple	
model	are	(1)	plasticity	occurs	through	a	combination	of	Hebbian	and	homeostatic	plasticity;	(2)	before	the	
maturation	of	inhibition,	there	is	sufficient	spontaneous	input	such	that	the	influence	of	rare	visual	input	is	
limited;	(3)	after	the	maturation	of	cortical	inhibition	at	the	onset	of	the	critical	period,	the	more	frequent	but	
weaker	spontaneous	activity	is	largely	suppressed	by	the	combination	of	inhibition	and	the	neuron’s	nonlinear	
input‐output	relation	(c.f.	Fig.	1B),	so	that	the	visual	input	plays	a	much	stronger	role	in	determining	weight	
development.	We	show	that	a	simple,	minimal	implementation	of	these	three	ideas	suffices	to	explain	the	main	
features	of	pre‐CP	and	CP	plasticity,	which	demonstrates	that	these	results	do	not	depend	on	other,	more	
complex	aspects	of	the	model	presented	in	the	text.	We	consider	a	linear	neuron	model	and	a	simple	plasticity	
rule,	which	together	allow	us	to	analytically	describe	the	determinants	of	model	behavior.	This	enables	us	to	
point	to	the	precise	relationships	that	are	needed	to	explain	pre‐CP	and	CP	behavior.	
	
For	a	linear	postsynaptic	neuron,	the	output	firing	rate,	y,	is	given	by	a	weighted	sum	of	input	firing	rates,	i.e.,	
y 


w 


x 	where	


x 	is	the	vector	of	input	firing	rates	and	


w 	is	the	vector	of	synaptic	weights.	We	consider	a	

simple	learning	rule	that	combines	Hebbian	and	homeostatic	plasticity.	The	Hebbian	term	is	driven	by	the	
covariance	between	pre‐	and	post‐synaptic	activities,	


xy 


x y ,	where	the	brackets	indicate	an	average	

over	input	activity	patterns	(Sejnowski	and	Tesauro,	1989).	A	homeostatic	component,	proportional	to	

w(y0  y ) ,	scales	synaptic	strengths	depending	on	the	difference	between	the	average	output	firing	rate	 y 	

and	a	desired	or	set‐point	firing	rate	y0.	The	proportionality	to	

w 	causes	the	homeostatic	term	to	

multiplicatively	scale	synaptic	strengths.	Such	homeostatic	scaling	has	been	experimentally	observed	
(Turrigiano	et	al.,	1998;	Stellwagen	and	Malenka,	2006),	including	in	the	visual	cortex	of	developing	animals	in	
vivo	(Desai	et	al.,	2002;	Mrsic‐Flogel	et	al.,	2007;	Kaneko	et	al.,	2008).	The	change	in	synaptic	weights	per	unit	
time	can	then	be	written	as	



w  Q


w w(y0  y ) ,	

where	Q 

x

xT 


x


xT 	is	the	input	covariance	matrix	(here,	


x 	is	a	column	vector	and	its	transpose	


xT 	is	

a	row	vector),	=1	Hz	is	a	constant	that	describes	the	strength	of	homeostasis	relative	to	Hebbian	plasticity,	η=1	
s2	is	a	learning	rate,	and	y0	=1Hz.		
	
As	in	the	main	text,	we	assume	that	the	postsynaptic	neuron	receives	only	spontaneous	input	90%	of	the	time	
and	receives	both	spontaneous	and	visual	input	10%	of	the	time.	In	this	simple	model,	we	do	not	explicitly	model	
how	inhibition	suppresses	the	contribution	of	spontaneous	activity	to	plasticity	relative	to	that	of	visual	activity,	
but	simply	assume	that	the	combination	of	cortical	inhibition	and	a	nonlinear	plasticity	rule	suppresses	synaptic	
plasticity	a	fraction	f	(0≦f≦1)	of	the	time	in	the	absence	of	visual	input.	Note	that	f	replaces	the	variable	m	from	
the	main	text	as	a	quantifier	of	effective	inhibitory	strength.	The	spontaneous	and	visual	inputs	are	Gaussian	

random	variables	that	have	means	
 (S ) 	and	

 (V )and	covariances	Q(S)	and	Q(V)	respectively.	Hence,	the	effective	
input	mean	and	covariance	are	given	by	
  0.1(

 (V ) 
 (S ) ) 0.9(1 f )

 (S )

,	

Q  0.1(Q(V ) Q(S ) )0.9(1 f )Q(S )

.	
The	factor	0.9(1‐f)	qualitatively	describes	the	percentage	of	time	Hebbian	plasticity	is	induced	in	the	absence	of	
visual	stimulus,	which	we	refer	to	in	the	main	text	as	the	gain	of	spontaneous	activity	for	Hebbian	plasticity.	
	
We	use	the	same	parameters	to	model	spontaneous	and	visually‐driven	input	activity	as	in	the	main	text.	In	
particular,	we	model	monocular	deprivation	(MD)	by	assuming	that	the	visual	component	of	deprived‐eye	
activity	is	decreased	in	strength	by	½,	while	the	distance	over	which	its	correlations	decay	is	multiplied	by	5	
(representing	the	blurring	effect	of	the	closed	eyelid,	as	has	been	observed	in	effects	of	eyelid	closure	on	cortical	
retinotopic	selectivity	in	vivo	(Faguet	et	al.,	2009)).	We	first	consider	two	extreme	values	of	inhibitory	strength	
to	model	the	pre‐CP	(f=0)	and	CP	(f=1),	which	yield	the	final	receptive	fields	of	the	two	eyes	shown	in	Fig.	S1A	for	



normal	rearing	(NR)	and	for	MD	of	the	contralateral	eye.	In	Fig.	S1B,	we	more	systematically	examine	the	
influence	of	inhibition	on	the	MD	effect.	During	the	pre‐CP	(weak	inhibition;	small	f),	MD	suppresses	both	eyes’	
responses	while	maintaining	the	dominance	of	the	closed	eye,	with	only	small	changes	in	CBI.	During	the	CP	
(strong	inhibition;	large	f),	MD	enhances	the	open‐eye	and	suppresses	the	closed‐eye	response	so	that	the	open	
eye	becomes	strongly	dominant	over	the	closed	eye,	with	correspondingly	large	changes	in	CBI.	MD	widens	the	
receptive	fields	relative	to	NR	both	during	the	pre‐CP	and	the	CP.	This	result	is	consistent	with	experiments	
(Smith	and	Trachtenberg,	2007).		
	
We	can	analytically	describe	the	model	outcome	as	follows.	The	only	stable	fixed	point	of	this	learning	rule	is	
proportional	to	the	principle	eigenvector	(the	eigenvector	with	largest	eigenvalue),	


v ,	of	the	input	covariance	

matrix	Q	(Oja,	1989;	Miller	and	MacKay,	1994),	which	we	take	to	be	normalized	to	unit	vector	length.	Assuming	
the	initial	set	of	synaptic	weights	is	not	perpendicular	to	


v ,	the	synaptic	weights	converge	to	a	steady‐state	

(fixed	point)	value	

wSS 	given	by	


wSS 

y0  /

v 



v ,	

where	
 


x 	and	λ>0	is	the	largest	eigenvalue	of	Q	(the	eigenvalue	corresponding	to	


v ).	We	further	assume	

that	there	are	no	negative	or	zero	correlations	between	presynaptic	neurons.	Then	the	principle	eigenvector,	

v ,	

has	no	negative	or	zero	elements	(this	is	known	as	the	Perron‐Frobenius	theorem),	which	guarantees	that	
steady‐state	synaptic	strengths	are	positive.		
	
The	interaction	of	Hebbian	and	homeostatic	plasticity	is	the	key	to	the	results.	As	we	can	see	from	the	fixed‐point	
solution	for	the	synaptic	weights,	the	effects	of	MD	arise	through	changes	in	the	principal	eigenvalue,	λ,	and	the	
normalized	eigenvector,	


v ,	which	are	determined	by	the	Hebbian	component;	and	through	the	change	in	the	

mean	presynaptic	activity	
 	and	thus	in	 v   ,	which	contributes	due	to	the	homeostatic	component.	Of	these,	

only	changes	in	

v 	differentially	affect	the	two	eyes;	the	other	changes	only	change	the	common	scale	factor	

applied	to	both	eyes’	weights.		
	
The	principle	eigenvector	of	the	input	covariance	matrix,	


v ,	which	is	also	known	as	the	principle	component	of	

the	input	activity,	represents	the	pattern	of	activity	–	the	set	of	relative	activities	across	input	neurons	–	that	has	
the	most	variance	in	the	input	activity	(the	absolute	activity	levels	are	then	determined	by	setting	the	vector	
length	of	


v 	to	1).	Because	of	positive	between‐eye	correlations,	this	pattern	involves	both	eyes’	inputs	being	

active.	If	the	two	eyes	have	equivalent	activities,	the	two	eyes	are	equally	strong	in	

v ,	but	to	the	extent	to	which	

the	deprived	eye	has	weaker	activity	than	the	non‐deprived,	the	deprived	eye	will	be	less	active	in	the	highest‐
variance	activity	pattern	and	so	will	be	weaker	than	the	non‐deprived	eye	in	


v .	The	highest‐variance	activity	

pattern	is	centered	on	the	receptive	field	center,	because	the	inputs	at	the	edges	of	the	receptive	field	have	fewer	
correlated	inputs	with	which	to	be	co‐active.	If	spatial	correlations	are	narrow,	this	pattern	is	more	tightly	
peaked	around	the	receptive	field	center,	while	broader	correlations	lead	to	a	spatially	broader	and	flatter	
activity	pattern.	Figure	S1A,	shows	the	final	receptive	fields	under	various	rearing	conditions,	which	in	each	case	
are	proportional	to	


v 	for	that	rearing	condition.	(The	number	of	inputs	is	larger	from	the	contralateral	eye	than	

from	the	ipsilateral	eye	as	assumed	in	the	main	text.)	Thus,	from	Fig.	S1A,	we	can	see	that,	upon	MD	to	the	
contralateral‐eye,	the	eigenvector,	


v ,	changes	its	profile	by	suppressing	the	deprived	eye	components	and	

facilitating	the	non‐deprived	eye	components.	At	the	same	time,	the	visual	input	through	the	closed	eyelid	
induces	more	spatially	uniform	input	correlation	and	flattens	and	spreads	the	eigenvector.		
	
The	eigenvalue	λ is	the	amount	of	variance	that	


v 	contributed	to	the	input	activity.	λ	decreases	under	MD	

because	of	the	loss	of	input	correlation.	This	decrease	of	λ reduces	

wSS 	and	thus	reduces	responses	to	both	

eyes.	On	the	other	hand,	due	to	the	loss	of	the	deprived‐eye	input	activity	through	
 ,	homeostatic	plasticity	

causes	non‐selective	growth	of	both	eyes’	responses.	Therefore,	the	deprived	eye	will	always	show	less	response	
than	the	non‐deprived	eye,	but,	depending	on	three	factors	‐‐	the	relative	strength	of	homeostasis,	the	degree	of	
reduction	of	the	deprived‐eye	input,	and	the	width	of	the	input	correlations	in	the	deprived	eye	‐‐	both	eyes’	
responses	could	be	suppressed,	both	could	be	enhanced,	or	the	deprived‐eye	could	be	suppressed	while	the	
other	eye	is	enhanced.	To	cause	both	eyes’	response	peaks	to	be	reduced	by	MD	during	the	pre‐CP,	we	used	
relatively	small			and	y0,	i.e.	relatively	weak	homeostatic	plasticity	and	a	relatively	low	activity‐set	point,	which	



enhances	the	effect	of	the	decrease	in	the	eigenvalue	relative	to	the	effect	of	homeostasis;	and	we	used	relatively	
wide	input	correlations	from	the	deprived	eye,	which	flattens	the	eigenvector.	Maturation	of	inhibition	
suppressed	the	spontaneous	component,	which	is	balanced	between	the	two	eyes,	and	thus	enhanced	the	
difference	between	the	two	eyes	under	MD	via	the	change	in	the	eigenvector,	


v .	

	
This	simple	model	is	useful	to	understand	how	the	balance	of	spontaneous	and	visually	evoked	activity	
contributes	to	the	activity‐dependent	plasticity	in	the	course	of	development.	In	particular,	it	already	shows	the	
major	effects	we	are	trying	to	understand:	before	the	maturation	of	inhibition,	MD	slows	retinotopic	refinement	
and	reduces	both	eyes’	responses	without	causing	substantial	OD	shifts;	after	the	maturation	of	inhibition,	MD	
causes	strong	OD	shifts	as	well	as	a	slowing	of	refinement.	This	simple	model	does	not	achieve	a	confined	
receptive	field	(synaptic	weights	never	become	zero)	and	does	not	address	the	mechanism	by	which	inhibition	
modulates	the	balance	of	spontaneous	and	visually	evoked	activity.	In	the	main	text,	we	use	a	learning	rule	that	
yields	confined	receptive	fields	and	explicitly	model	how	maturation	of	inhibition	suppresses	the	relative	
contribution	of	spontaneous	component	over	the	visually‐evoked	component,	which	was	described	above	by	the	
factor	(1‐f).	
	
S1b.	Estimation	of	the	spontaneous‐to‐visual	activity	ratio	
	
In	the	main‐text,	we	estimated	the	spontaneous‐to‐visual	ratio	of	firing	rates	based	on	extracellular	recording	
from	behaving	mice.	We	also	explained	in	the	main‐text	that	this	ratio	is	likely	overestimated.	In	this	section,	we	
show	that,	under	simple	assumptions,	the	estimated	spontaneous‐to‐visual	ratio	has	a	monotonic	relation	to	the	
true	underlying	spontaneous‐to‐visual	ratio.	Assuming	that	the	visually	evoked	component	linearly	adds	to	
spontaneous	firing	rate,	the	true	spontaneous‐to‐visual	ratio	(the	spontaneous	firing	rate	divided	by	the	visually	
evoked	firing	rate	driven	by	natural	scenes)	can	be	written	rS/(rS+rV),	where	rs	is	the	spontaneous	firing	rate	and	
rV	is	the	increment	of	the	firing	rate	due	to	an	optimal	visual	stimulus.	On	the	other	hand	the	estimated	
spontaneous‐to‐visual	ratio	(the	baseline	firing	rate	divided	by	the	LED‐evoked	firing	rate)	is	described	by	
(rS+q*rV)/	(rS+q*rV+b*rV),	where	q	(0<q<1)	is	the	frequency	of	visual	input	under	the	free	viewing	condition	and	
the	factor	b*rV	with	a	constant,	b	(0<b<1),	describes	the	increment	of	firing	rate	by	the	LED	stimulus.	Letting	
k=rS/rV,	the	true	ratio	is	k/(k+1),	while	the	estimated	ratio	is	(k+q)/(k+q+b)=k’/(k’+1).with	k’=(k+q)/b.	It	is	now	
easy	to	see,	in	this	case,	that	both	the	true	and	the	estimated	spontaneous‐to‐visual	ratios	are	monotonically	
increasing	functions	of	k.	Thus,	one	ratio	is	a	monotonically	increasing	function	of	the	other,	and	vice	versa.	Note	
that	the	estimated	ratio	is	always	greater	than	the	true	ratio,	because	k’>k.		
	

S2. Supplemental Computational and Experimental Procedures 
	
S2a.	Circuit	model	
We	model	a	pyramidal	cell	in	V1	that	receives	input	from	N=1184	LGN	neurons.	The	presynaptic	neuron	i	
represent	input	from	either	contra‐	or	ipsilateral	eye,	ei{C,I},	and	from	a	particular	retinotopic	position,	


zi ,	

uniformly	spaced	on	a	square	grid	across	a	two‐dimensional	surface	of	

z  (z1, z2 ) |1 z1 1,1 z2 1 .	

The	first	NC	=28*28	presynaptic	neurons	represent	input	from	the	contralateral	eye	(ei=C)	and	the	other	NI	
=20*20	neurons	represent	input	from	the	ipsilateral	eye	(ei=I).	In	order	to	model	the	anatomical	bias	toward	the	
contra‐lateral	eye	observed	in	mice,	the	number	of	neurons	representing	the	contralateral	eye	input	is	about	
twice	larger	than	that	from	the	ipsi‐lateral	eye.	
	
S2b.	Input	statistics	
We	assume	that	the	input	has	both	a	spontaneous	component,	xi(S),	and	a	visual	component,	xi(V).	We	also	assume	
that	xi(S)	and	xi(V)	are	independent	Gaussian	random	variables	with	mean	i(S)	and	i(V)		and	covariance	Qij(S)	and	
Qij(V),	respectively.	The	neuron	receives	the	spontaneous	and	the	visual	input,	xi=xi(S)+xi(V),	10%	of	the	time,	and	
the	neuron	receives	only	the	spontaneous	input,	xi=xi(S),	90%	of	the	time.	This	10%	figure	indicates	that	the	visual	
input	is	sparse	(Vinje,	2000)	and	guarantees	a	significant	contribution	of	spontaneous	input	on	synaptic	
plasticity	during	the	pre‐CP.	Many	of	the	cortical	neurons	in	mice	are	orientation	selective	(Sato	and	Stryker,	
2008),	so	this	may	imply	that	the	optimal	visual	stimulus	with	a	preferred	orientation	at	a	preferred	retinotopic	
position	is	rare.	Under	the	normal	condition,	the	input	means	are	uniform	across	the	input	neurons	and	are	given	
by	i(S)=1	Hz	and	i(V)=2	Hz,	assuming	twice	as	strong	visual	input	as	spontaneous	input.	The	covariance	of	input	
depends	on	the	corresponding	eyes	and	also	on	the	retinotopic	distance,	|zi‐zj|,	of	the	two	presynaptic	neurons,	



i.e.,	Qij
(S ) Cov xi

(S ), x j
(S )  cei ,ej

i
(S ) j

(S )G(

zi 


zj, L) 	and	

Qij
(V ) Cov xi

(V ), x j
(V )  cei ,ej

i
(V ) j

(V )G(

zi 


zj, L) ,	where	G(


z, L)  1

2L2
exp  |


z |2

2L2









 	is	a	Gaussian	

distribution	with	isotropic	standard	deviation	L=0.06;	the	within‐eye	coefficients	are	set	to	 ceiej
 2L2 	so	that	

the	diagonal	components,	Qii
()  i

()i
() ,	are	invariant	to	the	width,	L,	of	the	correlation;	the	between‐eye	

coefficients	are	set	to	 ceiej
 0.5ceiej

	indicating	half	as	strong	between	eye‐correlation	as	the	within‐eye	

correlation.	Those	correlation	coefficients,	cei ,ej
,	are	common	to	both	spontaneous	and	visual	components.	The	

spatial	correlation	profile	is	modeled	as	a	Gaussian	function	of	the	retinotopic	distance	so	that	inputs	from	
nearby	retinotopic	positions	are	more	strongly	correlated	than	distant	ones.	This	spatial	correlation	structure	
produces	localized	(rather	than	full	field)	RFs	under	the	competitive	Hebbian	learning	rule,	which	will	be	
introduced	in	the	next	section.	The	interocular	correlations	are	based	on	the	observation	of	strong	inter‐ocular	
correlations	in	LGN	spontaneous	activity,	which	are	induced	by	cortical	feedback:	(Ohshiro	and	Weliky,	2006;	
Weliky	and	Katz,	1999).		
	
If	the	between‐eye	coefficient	for	the	visual	input	were	higher	than	that	of	spontaneous	input,	binocular	visual	
deprivation	would	reduce	between‐eye	correlations,	which	would	tend	to	shift	the	OD	toward	the	anatomically	
stronger	contralateral	eye	(for	example,	BD	during	the	pre‐CP	would	shift	OD	towards	the	contralateral	eye,	
contrary	to	the	observations	of	Smith	and	Trachtenberg,	2007).	The	assumption	that	the	spatial	structure	of	
covariance	is	the	same	in	spontaneous	and	visually	evoked	signals	was	introduced	for	simplicity.	The	model	
produces	similar	results	as	long	as	the	two	covariance	functions	have	similar	widths.	If	the	spontaneous	
covariance	is	much	wider	than	the	visually	evoked	covariance,	the	model	predicts	a	similar	level	of	retinotopic	
refinement	under	MD	and	under	monocular	inactivation	(MI)	during	the	pre‐CP,	because	the	visually	evoked	
covariance	driven	by	the	residual	input	through	the	closed	eyelid	under	MD	may	be	as	broad	as	the	spontaneous	
covariance	in	this	case.	This	runs	counter	to	the	findings	of	(Smith	and	Trachtenberg,	2007).	If	the	spontaneous	
covariance	is	much	narrower	than	the	visually	evoked	covariance,	the	model	predicts	that	refinement	of	
retinotopy	should	slow	or	reverse	after	maturation	of	inhibition,	which	again	runs	counter	to	the	experimental	
findings.	The	parameterization	of	the	input	covariance	proportional	to	the	input	mean	square	is	consistent	with	
the	multiplication	of	input	by	a	constant	factor.		
	
Only	the	visual	component	is	modulated	by	visual	deprivation.	Under	MD,	where	one	eyelid	is	closed	by	suturing,	

we	assume	that	the	visual	input	from	the	closed‐eye	is	described	by	 xi
(V )  AelG(


zi, Lel )* xi

(V ) ,	where	the	

original	visual	input,	xi(V),	is	convolved	by	an	eyelid	filter	 AelG(

zi, Lel ) .	The	closed‐eye	input	strength	is	reduced	

by	a	factor	of	Ael	=0.5	and	is	also	blurred	by	a	spatial	Gaussian	filter	with	Lel=0.3.	To	the	extent	to	which	the	
closed	eyelid	passes	light,	it	would	be	expected	to	filter	out	all	higher	spatial	frequencies	leaving	only	very	
blurry,	large‐scale	changes	in	luminance,	which	would	yield	greatly	broadened	correlations,	as	we	model.	In	our	
model	this	residual	visual	stimulus	is	important	to	explain	the	restricted	refinement	of	RF	under	MD	but	nearly	
normal	refinement	under	MI	as	observed	during	the	pre‐CP	(Smith	and	Trachtenberg,	2007).	Thus,	the	mean	

input	strength	from	the	deprived	eye	is	reduced	to	 i
(V )  Aeli

(V ) ;	the	within‐deprived‐eye	covariance	

becomes	 Qij
(V )  ceiej

i
(V )  j

(V )G(

zi 


zj, L2 2Lel

2 ) ,	where	ei	and	ej	are	both	the	deprived	eye;	and	the	

between‐eye	covariance	becomes	Qij
(V )  ceiej

i
(V )  j

(V )G(

zi 


zj, L2  Lel

2 ) ,	with	ei	the	deprived	eye.	The	

between‐eye	covariance	and	within‐deprived‐eye	covariance	have	standard	deviation	of	 L2  Lel
2 	and		

L2  2Lel
2 because	the	eyelid	filter	is	once	and	twice	convolved	with	the	normal	covariance,	respectively.	

Under	MI	by	pharmacologically	inactivating	retinal	activity	or	by	enucleating	one	eye,	the	visual	component	from	
the	inactivated	eye	becomes	zero,	which	corresponds	to	setting	Ael=0	in	the	MD	scenario.	The	spontaneous	
component	is	assumed	to	be	unchanged	under	MI	for	simplicity.	Note	that	we	are	modeling	spontaneous	activity	
in	LGN	(Ohshiro	and	Weliky,	2006;	Weliky	and	Katz,	1999)	rather	than	in	retina	as	the	source	of	spontaneous	
input.	
	
S2c.	A	plasticity	rule	and	a	neuron	model	



The	firing	rate	of	the	postsynaptic	neuron	is	described	by	y	and	the	firing	rate	of	the	ith	presynaptic	neuron	is	

described	by	xi.	The	output	firing	rate	is	given	by	 y  wixi mynb

i1

N










,	where	[]+	is	a	threshold	nonlinearity	that	

rectifies	negative	arguments	to	guarantee	positive	firing	rates,	wi	is	synaptic	strength	from	the	presynaptic	
neuron	i,	m	is	the	inhibitory	synaptic	strength	from	the	neighboring	neurons,	and	 ynb 	is	a	long‐term	average	

firing	rate	of	the	neighboring	neurons.	Although	the	average	firing	rate	of	the	neighboring	neurons	is	generally	
different	from	the	average	firing	rate	of	the	output	neuron	 y ,	we	assume	a	homogeneous	population	of	neurons	
and	approximate	 ynb 	by	 y 	(See	the	following	for	the	definition).	Thus	mynb  my 	describes	the	strength	of	
inhibitory	input	to	the	output	neuron;	we	model	the	maturation	of	inhibition	by	increasing	m	at	the	onset	of	the	
CP	from	m=0	to	m=5	if	not	stated	otherwise.		
	
Learning	rule	and	temporal	averages	
We	introduce	two	kinds	of	averages:	First	 F 	describes	the	instantaneous	average	with	respect	to	the	input.	

Next,	F 	describes	a	long‐term	running	average	with	a	time	constant	=1	(this	corresponds	to	200	time	steps	in	

simulations:	see,	following),	i.e.,	F(t)  e(tt ')/



t F(t ')dt ' .	We	consider	in	this	paper	an	activity	dependent	

learning	rule	for	excitatory	synapses	within	the	constraint	that	synaptic	strengths	are	positive,	i.e.,	wi≧0.	
Synaptic	strengths	are	modified	by	the	following	plasticity	rule:	

wi  x i f (y)  a x i f (y) wi (y0  y ) ,	where	f(y)=[y‐]+	is	a	threshold‐linear	function	with	
threshold	=2	Hz,	=1.0*10‐3Hz‐2	is	a	learning	rate,	a=1.001	is	a	constant	slightly	larger	than	unity	to	cause	
synaptic	competition,	=2Hz	is	a	constant	that	sets	the	strength	of	homeostatic	plasticity,	and	y0=1.2	Hz	is	the	set	
point	of	the	output	firing	rate	for	the	homeostatic	plasticity.	If	some	synaptic	strengths	are	updated	to	negative	
values,	they	are	set	to	0	instead	to	guarantee	positive	strengths.	The	visual‐plus‐spontaneous	input	is	presented	
with	probability	q=0.1	(Pattern	1)	and	the	spontaneous‐only	input	with	probability	1‐q	(Pattern	2).	We	update	
synaptic	strength	by	q wi 1

 (1 q) wi 2
	at	each	time	step	of	duration	t=5.0*10‐3,	where	1	and	2	

describes	the	instantaneous	averages	under	the	two	patterns.	This	way	of	updating	synapses	using	the	average	
change	is	justified	when	the	learning	rate	is	sufficiently	slow	compared	to	the	typical	duration	of	each	pattern	so	
that	synaptic	strengths	are	relatively	constant	during	the	repeated	sampling	of	the	patterns.	
	
This	learning	rule	is	a	combination	of	Hebbian	and	homeostatic	plasticity.	The	first	term	

xi f (y)  a xi f (y) 	is	a	Hebbian	term	that	modifies	synaptic	strengths	according	to	the	correlation	of	pre‐	

and	postsynaptic	activity.	The	parameter	a	controls	the	size	of	the	RF	(the	area	with	nonzero	synaptic	strengths)	
and	also	determines	the	sensitivity	to	weak	input	correlation.	If	a=1,	any	nonzero	correlation	between	xi	
(presynaptic	factor)	and	f(y)	(postsynaptic	factor)	can	potentiate	synapses	and	the	size	of	the	RF	tends	to	
become	large.	On	the	other	hand,	for	a>1,	the	synaptic	strength	of	an	ineffective	input	is	steadily	decreased	by	
the	Hebbian	term,	so	we	need	to	introduce	a	lower	limit	of	zero	for	synaptic	strength,	wi≧0,	for	all	i,	so	that	such	
synaptic	strengths	do	not	take	negative	values.	If	a	is	too	large,	the	learning	depends	only	on	the	strongest	peak	
of	the	correlation	and	becomes	insensitive	to	the	correlation	width.		
	
The	nonlinearity,	f(y)=[y‐]+,	suppresses	Hebbian	plasticity	when	the	output	firing	rate	is	smaller	than	the	
Hebbian	threshold,	.	To	see	how	inhibition	suppresses	the	contribution	of	the	spontaneous	component	along	
with	the	Hebbian	threshold,	it	is	useful	to	consider	a	special	case	of	a=1.	Because	xi	is	jointly	Gaussian,	the	
Hebbian	term	in	this	case	is	also	described	(the	Bussgang	theorem)	as	

Cov xi,h wixi

i




















 gCov xi, wixi

i










 ,	where	Cov	denotes	covariance,	h(u)  umy   	is	a	

threshold‐linear	function,	and	the	gain	factor,	 g  h ' wixi

i










 ,	modulates	the	magnitude	of	Hebbian	

plasticity.	Hence,	apart	from	the	non‐trivial	multiplication	factor	g	that	depends	on	the	inhibitory	strength,	this	
learning	rule	is	equivalent	to	the	standard	Hebbian	plasticity	rule	for	a	linear	neuron	model	(Oja,	1989;	
Sejnowski	and	Tesauro,	1989;	Miller	and	MacKay,	1994).	The	gain	factor	g	describes,	with	the	current	set	of	



parameters,	the	percentage	of	time	the	output	firing	rate	exceeds	the	Hebbian	threshold,	which	decreases	
rapidly	when	the	net	input	falls	below	the	Hebbian	threshold.	Hence,	weighted	by	the	probability	of	receiving	
visual	input	q,	the	net	Hebbian	change	of	synaptic	strengths	is	described	by	

qg1


c1  (1q)g2


c2 

g2

g1

q

c1  (1q)


c2   1 g2

g1









q

c1 ,	

where	

c1	and	


c2 	are	the	standard	linear	Hebbian	factors	(Cov


x,

w 


x  )	and	g1	and	g2	are	the	gain	factors	

under	Pattern	1	(with	visual	input)	and	Pattern	2	(without	visual	input),	respectively.	We	can	see	that	the	
spontaneous‐to‐visual	ratio	of	gains,	g1/g2,	linearly	interpolates	two	extreme	conditions:	the	pre‐CP‐like	
modification,	q


c1  (1 q)


c2 ,	where	both	patterns	with	and	without	visual	input	contribute	to	Hebbian	

plasticity,	and	the	CP‐like	modification,	q

c1 ,	where	only	the	visual	pattern	contributes	to	Hebbian	plasticity.	The	

switching	from	pre‐CP	like	modification	to	CP‐like	modification	robustly	arises	upon	maturation	of	inhibition	if	
the	following	conditions	are	satisfied.	During	the	pre‐CP,	the	spontaneous	input	should	have	a	larger	
contribution	to	plasticity	than	the	sparse	visually	driven	input.	Because	the	input	covariance	is	proportional	to	
the	square	of	the	mean	input	firing	rate	in	the	model,	this	gives	the	condition	that,	before	inhibitory	maturation,	

q ( (S ) )2  ( (V ) )2  (g2 / g1)(1q)( (S ) )2 .	At	the	onset	of	the	CP,	maturation	of	inhibition	should	

significantly	reduce	the	contribution	of	the	spontaneous	input	to	plasticity	by	suppressing	the	spontaneous‐to‐
visual	ratio	of	gains,	g1/g2.	This	gives	the	condition	that,	after	inhibitory	maturation,	

q ( (S ) )2  ( (V ) )2  (g2 / g1)(1 q)( (S ) )2 .	This	analysis	also	well	describes	the	outcome	when	the	

constant	a	is	greater	than	but	close	to	1	(c.f.	Fig.	3F).		
	
This	analysis	makes	clear	that	the	key	requirement	for	the	transition	from	pre‐CP	to	CP	plasticity	is	that	the	

maturation	of	inhibition	should	strongly	reduce	the	ratio	of	gains,	
g2

g1

.	This	reduction	in	ratio	will	be	achieved	if	

inhibition	is	strong	enough	to	largely	eliminate	V1	spontaneous	activity.	It	will	also	be	achieved	if	inhibition	is	
weaker	so	that	weak	spontaneous	activity	remains,	but	the	contribution	of	that	spontaneous	activity	to	Hebbian	
plasticity	is	suppressed	relative	to	the	contribution	of	visually‐induced	activity	(or	equivalently,	the	contribution	
of	visually‐induced	activity	is	enhanced	relative	to	the	contribution	of	spontaneous	activity).	The	function	f(y)	we	
use,	which	is	zero	(no	contribution	to	Hebbian	plasticity)	for	y	less	than	the	threshold	θ,	yields	relative	
suppression	of	plasticity	for	low	firing	rates	and	thus	for	spontaneous	activity	relative	to	visually‐induced	
activity.	This	could	arise	if	low	postsynaptic	firing	rates	yield	calcium	entry	too	weak	to	evoke	LTD	or	LTP	as	in	
(Artola	et	al.,	1990)(however,	the	physiological	conditions	that	induce	LTD	are	controversial	(Huang	et	al.,	2005;	
Hager	and	Dringenberg,	2010;	Froc	et	al.,	2000;	Jiang	et	al.,	2003)).	Alternatively,	relative	enhancement	of	the	
contribution	of	visually‐induced	activity	could	be	achieved	if	the	function	f(y)	nonlinearly	enhances	Hebbian	
synaptic	changes	for	larger	postsynaptic	firing	rates.	This	has	been	observed:	there	is	an	increase	in	LTP	per	
postsynaptic	spike	for	higher	postsynaptic	firing	rates	(Sjöström	et	al.,	2001).	
	
The	second	term,	wi (y0  y ) ,	is	a	homeostatic	term	that	scales	synaptic	strengths	and	shift	the	output	firing	
rate	into	an	appropriate	range	around	y0.	When	the	average	output	rate,	 y ,	is	greater	than	the	set	point,	y0,	this	
term	scales	down	the	synaptic	strengths;	otherwise	scales	up	the	strengths	to	compensate	for	perturbations	to	
the	average	activity	level.	This	kind	of	homeostatic	synaptic	scaling	has	widely	been	observed	(Sejnowski	and	
Tesauro,	1989).	Although,	the	Hebbian	term	alone	is	typically	unstable	(strong	synapses	tend	to	drive	the	
postsynaptic	neuron	harder	and	grow	even	stronger)	and	can	saturate	all	nonzero	synaptic	strengths	to	their	
maximum	strength,	the	homeostatic	term	controls	the	overall	scaling	of	synapses	and	sets	the	strengths	
proportional	to	the	Hebbian	term,	yielding	a	bell	shaped	tuning	curve	in	the	current	setting.	Thus,	the	parameter	
values	of	the	coefficient		and	the	set	point	y0	only	contribute	to	the	scaling	of	strengths	without	influencing	their	
relative	strength.		
	
The	induction	of	homeostatic	plasticity	is	known	to	be	relatively	slow	compared	to	the	loss	of	responsiveness	
from	the	deprived	eye	(Turrigiano	et	al.,	1998;	Maffei	et	al.,	2004;	Mrsic‐Flogel	et	al.,	2007;	Kaneko	et	al.,	2008;	
Ibata	et	al.,	2008).	According	to	these	experiments,	we	introduced	a	long‐term	running	average,	 y ,	of	the	output	
firing	rate.	Because	the	homeostatic	term	compares	 y 	to	the	set	point,	it	takes	about	the	averaging	time	
constant		to	adapt	its	strength	after	a	sudden	change	in	the	input	statistics	caused	by	visual	deprivations.	



However,	if	this	adaptation	rate	1/	is	too	slow	compared	to	the	learning	speed	of	the	synaptic	update	rule,	this	
generally	causes	the	oscillation	of	synaptic	strengths	–	the	homeostatic	term	drive	synapses	beyond	the	set	point	
until	 y 	has	been	updated	‐	and	learning	does	not	converge.	Note	that	replacing	the	long‐term	averaged	firing	
rate,	 y ,	by	an	instantaneous	average,	q y

1
 (1q) y

2
,	does	not	alter	the	fixed	point	of	the	learning	rule,	

and,	hence,	does	not	alter	main	results	presented	in	this	paper.	
	
S2d.	Receptive	field	width,	Response	strength,	Contra‐bias	index,	and	Gain	
In	Fig.	S3,	we	plotted	several	quantities,	defined	as	follows.	The	width	of	the	RF	is	the	standard	deviation	of	the	

spatial	distribution	of	synaptic	strength	from	each	eye,	i.e.,	Widthe  Ri
2wi

i{i|eie}

 wi

i{i|eie}

 ,	where	i	

indexes	the	inputs	and	Ri	is	the	retinotopic	distance	from	the	RF	center	and	ei{C,I}	the	eye	(either	contralateral	
or	ipsilateral)	of	the	ith	input.	The	response	strength	from	each	eye	was	measured	by	the	maximum	synaptic	
strength	times	the	density	of	synapses	(Ne	synapses	in	the	retinotopic	area	of	4),	i.e.,	
Responsee  max

i{i|eie}
wi *(Ne / 4) .	We	take	response	strength	proportional	to	the	peak	of	the	RF,	rather	than	

the	sum	over	the	RF,	because	we	are	comparing	principally	to	measurements	(Smith	and	Trachtenberg,	2007)		
from	optical	imaging,	in	which	each	pixel	measures	response	over	a	local	collection	of	cells,	using	narrow	bars	
(relative	to	RF	sizes)	for	stimuli,	which	will	drive	only	a	small	portion	of	an	RF	at	any	given	time.	Given	nonlinear	
input/output	functions	in	which	stronger	inputs	yield	supralinearly	stronger	responses,	due	to	threshold	and/or	
noise,	the	strongest	responses,	driven	by	neurons	stimulated	on	their	RF	peaks,	will	tend	to	dominate	the	optical	
response.	The	contra‐bias	index	was	CBI=ResponseC/(ResponseC+ResponseI).	The	gain	was	the	percentage	of	time	
the	output	activity	exceeded	the	Hebbian	threshold,	as	described	above	in	the	section	describing	the	learning	
rule.	
	
S2e.	Extracellular	recording	from	freely	behaving	mice		
To	acquire	extracellular	spikes,	tetrodes	of	four	nichrome	wires	(13	um)	were	stereotaxically	implanted	into	the	
binocular	zone	of	V1	(at	lambda,	3.0	mm	lateral	to	the	midline).	Signals	from	each	electrode	were	band‐pass	
filtered	(0.15	–	9	KHz)	and	digitized	at	40	KHz	(MAP	system,	Plexon,	TX).	The	electrode	tip	positions	were	
verified	histologically	using	Nissl	staining.	Isolation	of	single	units	was	performed	manually	using	a	multi‐
dimensional	cluster	cutting	software	(Off‐line	sorter,	Plexon).	Clusters	of	spikes	with	a	clear	refractory	period	(>	
2	ms)	were	included	in	the	analysis.	Putative	pyramidal	neurons	were	discriminated	by	waveform	features	
(spike	width,	shape,	and	autocorrelation	(Barthó	et	al.,	2004)).	Periodic	full‐field	visual	stimuli	were	provided	by	
a	light	emitting	diode	(LED,	peak	510nm,	5000	mcd)	on	the	ceiling	of	the	recording	chamber.	Peri‐event	time	
histograms	were	made	using	NeuroExplorer	(Nex	Technology,	MA).	Diazepam	(in	50%	propylene	glycol/saline;	
20	mg/kg	i.p.)	was	administered	acutely	under	halothane	anesthesia.	Chronic‐treated	GAD65‐KO	(KOc)	mice	
received	repeated,	daily	intracerebroventricular	injections	over	six	consecutive	days	around	P28	and	then	later	
were	implanted	with	electrodes	for	recording	as	adults	(>	P60).	
	
	
S2f.	LTD	Experiments	
Electrophysiological	recordings	in	vitro	were	obtained	at	P24–35,	using	our	standard	methods	(Renger	et	al,	
2002).	In	brief,	coronal	slices	(350	μm)	of	binocular	mouse	visual	cortex	were	cut	and	incubated	(>1	h,	33°C)	in	
equilibrated	(95%	O2/5%	CO2)	artificial	cerebrospinal	fluid	(ACSF),	containing	(in	mM):	119	NaCl,	2.5	KCl,	1.3	
MgSO4,	10	NaH2PO4,	26.2	NaHCO3,	2.5	CaCl2,	and	11	glucose.	Slices	were	transferred	to	a	recording	chamber	
superfused	with	the	same	ACSF	(33°C).	A	two‐pathway	experiment	was	designed	in	which	standard	coronal	
slices	were	split	from	white	matter	up	to	layer	4	(Renger	et	al,	2002).	Half‐maximal	field	potentials	evoked	from	
layer	4	by	a	bipolar	glass	stimulating	electrode	filled	with	ACSF	were	recorded	through	a	glass	electrode	filled	
with	1	M	NaCl	(1–3	MΩ)	in	layer	2/3.	The	independence	of	inputs	stimulated	from	either	side	of	the	cut	was	
confirmed	by	additive	responses	in	layer	2/3	showing	no	interaction	when	closely	paired	stimuli	(<	50	msec)	
were	presented	across	the	two	sites.	Stable,	baseline	responses	were	recorded	(>25	min,	0.1	Hz)	before	applying	
low‐frequency	stimulation	(LFS;	900	pulses,	1	Hz)	to	induce	LTD	on	the	test	pathway,	while	the	other,	control	
pathway	was	switched	off	during	conditioning.	To	determine	saturated	LTD	levels,	repeated	LFS	(3x)	was	
applied	to	one	pathway	in	a	separate	set	of	un‐split	WT	and	KO	slices.		
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Fig.	S1:	Results	of	modeling	a	linear	postsynaptic	neuron	with	a	simple	plasticity	rule,	Related	to	Fig.	2‐3.	
Results	of	modeling	a	linear	postsynaptic	neuron	with	a	simple	activity‐dependent	plasticity	rule,	for	which	the	
final	receptive	field	is	proportional	to	the	principle	eigenvector	of	the	input	covariance	matrix.	(A)	The	final	
receptive	field	from	either	eye	(C:	contralateral;	I:	ipsilateral)	is	shown	under	normal	rearing	(NR)	and	under	
monocular	deprivation	(MD)	of	the	contralateral	eye,	during	the	pre‐CP	(f=0)	and	the	CP	(f=1).		The	bottom	
panels	show	peak‐normalized	one‐dimensional	horizontal	sections	of	the	two‐dimensional	receptive	fields	
shown	in	the	upper	panels	(NR:	black;	MD:	red;	contra	eye:	solid;	ipsi	eye:	dashed).	(B)	Quantifications	of	the	MD	
effect	on	the	receptive	fields,	as	a	function	of	the	strength	of	inhibition	f.	The	left	two	panels	plot	the	ratio	of	the	
value	under	MD	to	the	value	under	NR	of	the	peak	response	(left)	and	the	receptive	field	width	(middle).	The	
right	panel	shows	the	contralateral‐bias	index	(CBI)	under	NR	(black)	and	under	MD	(red).	See	Supplemental	
Computational	and	Experimental	Procedures,	S2d	for	definitions	of	response,	width,	and	CBI.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	



	
Fig.	S2:	Baseline	and	LED‐evoked	firing	rates,	Related	to	Fig.	4.	
Baseline	firing	rates	(A)	and	LED‐evoked	firing	rates	(B)	in	Wild‐type	mice	(WT),	GAD65‐KO	mice	(KO),	and	
GAD65‐KO	mice	that	were	chronically	treated	with	diazepam	(KO	chronic	Dz).	Many	animals	are	recorded	
without	any	acute	diazepam	treatment	(dark‐blue	dots).	In	order	to	study	the	effect	of	enhanced	inhibition	on	
visual	response	ratio,	a	small	subset	of	animals	was	recorded	before	(blue	dots)	and	after	(red	circles)	acute	
administration	of	diazepam.	Each	mark	shows	firing	rate	from	one	recording	unit.	Note	that	the	sets	of	recording	
units	before	and	after	the	diazepam	treatment	were	not	always	identical	because	some	recording	units	were	
lost/gained	during	the	acute	administration	of	diazepam.	
	
	
	
	
	
	

	
Fig.	S3:	The	cumulative	distributions	of	the	bias‐corrected	spontaneous‐to‐visual	ratio	of	firing	rates,	Related	to	
Fig.	4.	
The	cumulative	distributions	of	the	bias‐corrected	spontaneous‐to‐visual	ratio	of	firing	rates	in	GAD65‐KO	mice	
(KO)	and	GAD65‐KO	mice	acutely	treated	with	diazepam	(KO+Dz),	for	two	differerent	choices	of	underlying	
parameters.	The	underlying	true	spontaneous‐to‐visual	ratio	of	firing	rates	were	estimated,	as	described	in	Sec.	
S1b,	from	the	experimental	data	presented	in	Fig.	4D.	The	estimation	was	based	on	the	assumed	frequency,	q=0.1,	
of	visual	input	under	behaving	conditions,	the	unknown	effectiveness,	b	(0<b<1),	of	the	LED	stimulation	in	



comparison	to	the	preferred	visual	stimulus	for	individual	cells,	and	the	unknown	Hebbian	threshold,	.	The	
estimation	of	the	true	spontaneous‐to‐visual	ratio	of	firing	rates	for	majority	of	cells	fell	in	a	regime	that	
reproduced	pre‐CP	and	CP	plasticity	for	KO	and	KO+Dz	animals,	respectively,	if	the	parameters	b	and		were	
chosen	appropriately.	There	was	a	range	of	b	that	achieves	this	for	a	given	choice	of	Hebbian	threshold	values,	of	
which	one	in	the	middle	of	the	range	was	chosen	for	each	choice	of		illustrated	here	(c.f.	Fig.	3E),		=2.0	Hz	(A)	
and		=2.5	Hz	(B).	Cells	in	the	light‐blue	and	yellow	areas	showed	large	enough	and	almost	no	ocular	dominance	
shift,	respectively,	in	the	simulation	of	Fig.	3E.	
	
	
	
	
	
	

	
Fig.	S4:	LTD	is	intact	in	GAD65‐KO	mice,	Related	to	Discussion		
(A)	Only	the	test	pathway	was	persistently	depressed	by	LFS	(black	circles),	revealing	a	clear	LTD	in	GAD65‐KO	
mouse	visual	cortex	(n	=	6	slices).	Moreover,	unaltered	control	responses	(white	circles;	**	p	<	0.01,	t	test	40	min	
post‐LFS)	verified	independence	of	the	two	pathways	as	well	as	general	health	of	the	KO	slices,	confirming	our	
original	observations	(Hensch	et	al,	1998).	Scale	bar,	500	V,	5	msec.	(B)	Equal	saturation	of	LTD	by	repeated	
LFS	(3x)	to	one	pathway	in	WT	and	GAD65‐KO	mice	(n	=	7	slices	each,	p<0.6,	t	test).	Error	bars	are	SEM.	
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