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SUMMARY

Hebbian and homeostatic plasticity together refine
neural circuitry, but their interactions are unclear. In
most existing models, each form of plasticity directly
modifies synaptic strength. Equilibrium is reached
when the two are inducing equal and opposite
changes. We show that such models cannot repro-
duce ocular dominance plasticity (ODP) because
negative feedback from the slow homeostatic plas-
ticity observed in ODP cannot stabilize the positive
feedback of fast Hebbian plasticity. We propose a
model in which synaptic strength is the product of
a synapse-specific Hebbian factor and a postsyn-
aptic-cell-specific homeostatic factor, with each fac-
tor separately arriving at a stable inactive state. This
model captures ODP dynamics and has plausible
biophysical substrates. We confirm model predic-
tions experimentally that plasticity is inactive at
stable states and that synaptic strength overshoots
during recovery from visual deprivation. These re-
sults highlight the importance of multiple regulatory
pathways for interactions of plasticity mechanisms
operating over separate timescales.

INTRODUCTION

Hebbian plasticity and homeostatic plasticity are the two major

forms of activity-dependent plasticity that modify neuronal cir-

cuits (Turrigiano, 2008). We use ‘‘Hebbian plasticity’’ to refer to

plasticity that depends on the correlations between pre- and

postsynaptic activity such that excitatory synapses that effec-

tively drive a postsynaptic cell grow stronger while ineffective

synapses are weakened. This is a positive feedback process—

strong synapses grow stronger—that in models typically leads

to synaptic instability in the absence of additional biological con-

straints (Miller and MacKay, 1994; Turrigiano, 2008). Synaptic

homeostasis is a negative feedback mechanism that typically
involves nonspecific scaling of all excitatory or inhibitory synap-

ses onto a cell to oppose changes in overall activity levels. This is

thought to maintain activity levels within a dynamic range and,

more generally, to stabilize neuronal circuit function despite

the positive feedback of Hebbian plasticity (Turrigiano, 2008). It

is not known how these two forms of plasticity interact in biolog-

ical systems (Shepherd and Huganir, 2007; Turrigiano, 2011,

2008).

Ocular dominance plasticity (ODP) in primary visual cortex (V1)

has been a standard system in which to study experience-

dependent plasticity (Espinosa and Stryker, 2012). During the

critical period for ODP,monocular deprivation (MD)—the closure

of one eye—induces rapid weakening of responses to the closed

eye and subsequent strengthening of responses to the open eye

(Frenkel and Bear, 2004; Hofer et al., 2006; Mrsic-Flogel et al.,

2007). A recovery period with binocular vision following MD

causes both eyes’ response levels to return to normal. Recently,

three separable processes have been identified underlying this

plasticity in mouse V1 (Kaneko et al., 2008a, 2008b):

(1) Weakening of the closed eye’s responses is rapid, occur-

ring over the first 3 days of MD, and appears to be medi-

ated by Hebbian plasticity because of its dependence on

calcium entry through N-methyl-D-aspartate (NMDA) re-

ceptors acting on calcium calmodulin kinase type II

(Taha et al., 2002). This weakening shares other molecular

features of Hebbian long-term depression (LTD) (Heynen

et al., 2003; Yoon et al., 2009) but differs from LTD in its

dependence on protein synthesis (Lee et al., 2003; Shep-

herd and Huganir, 2007; Taha and Stryker, 2002). It is not

affected by blockade of tumor necrosis factor-a (TNF-a)

or the tropomyosin-related kinase B (TrkB) receptor (Ka-

neko et al., 2008a, 2008b).

(2) Strengthening of the open eye is slower, commencing

only after about 3 days, and appears to be mediated by

homeostatic synaptic scaling; it is specifically prevented

by blockade of TNF-a (but not of TrkB) (Kaneko et al.,

2008a, 2008b), which induces a global form of homeo-

static synaptic scaling (Stellwagen and Malenka, 2006).

TNF-a induces a uniform scaling up of the strengths of

excitatory synapses in response to a lowering of overall
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activity levels. This occurs without alteration in Hebbian

plasticity as assessed by the percentage changes of syn-

aptic strengths induced by long-term potentiation (LTP) or

LTD (Stellwagen and Malenka, 2006).

(3) Recovery from MD under binocular vision is specifically

prevented by blockade of TrkB (Kaneko et al., 2008a).

TrkB has a variety of actions on synaptic plasticity. It is

required for the growth of new synapses in neuronal cell

culture (Meyer-Franke et al., 1998) and is involved in sta-

bilization of Hebbian LTP (Figurov et al., 1996; Kovalchuk

et al., 2002; Lai et al., 2012; Sermasi et al., 2000; Tanaka

et al., 2008).

The slow onset of homeostatic scaling, relative to the fast

onset of Hebbian plasticity, poses a problem. Synaptic dy-

namics under Hebbian plasticity alone are typically unstable until

synaptic strengths (‘‘weights’’) are driven to saturation near

maximum or minimum allowed values (e.g., Miller and MacKay,

1994). In models that combine Hebbian with homeostatic plas-

ticity (or with mechanisms similar to homeostatic plasticity,

such as multiplicative normalization of synaptic strengths or

metaplasticity), homeostatic plasticity generally stabilizes a set

of unsaturated weights that would be unstable under Hebbian

plasticity alone (von der Malsburg, 1973; Bienenstock et al.,

1982; Oja, 1982; Cooper et al., 2004; Miller and MacKay, 1994;

Toyoizumi and Miller, 2009; Toyoizumi et al., 2013). However,

such stabilization fails if homeostatic plasticity is too slow

compared to unstable Hebbian plasticity (Cooper et al., 2004;

Zenke et al., 2013). This is an example of the more general result

that slow negative feedback cannot stabilize a fast, unstable

positive feedback process. Thus, the slow onset suggests that

homeostasis cannot stabilize Hebbian ODP.

To solve this problem, Hebbian plasticity must arrive on its

own at a stable steady state, and this stability must not be

disturbed by slow, ongoing homeostatic plasticity. We show

that this solution can be instantiated and the experimental results

robustly reproduced by a simple model in which the total synap-

tic strength is the product of two factors: a synapse-nonspecific

factor, applicable to the entire postsynaptic cell, controlled by

homeostatic plasticity and a synapse-specific factor controlled

by Hebbian plasticity. In addition to demonstrating the model’s

ability to account for existing results, we test several key predic-

tions of the model experimentally, including a lack of constitutive

but opposed Hebbian and homeostatic plasticity at a stable

state of the weights and a TNF-a-dependent overshoot of

formerly closed-eye weights upon reopening of the closed eye

after MD.
RESULTS

MD Effects on Single-Synapse Plasticity Models
in the Monocular Cortex
In monocular cortex, which receives input only from the contra-

lateral eye, similar dynamics of Hebbian and homeostatic plas-

ticity are seen as in binocular cortex. During the first 3 days of

MD, the strength of the closed eye’s input decreases by about

25%–30% in an NMDA receptor-dependent manner (Frenkel

and Bear, 2004; Heynen et al., 2003; Kaneko et al., 2008a). Dur-
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ing the subsequent 3 days of MD, the closed-eye input strength

homeostatically increases back to near-baseline levels, an in-

crease dependent on TNF-a (Kaneko et al., 2008b). Although

this dynamical behavior under MD is simple, existing models

cannot reproduce it, as wewill show, because homeostatic plas-

ticity that is slow enough to allow significant initial depression of

the synaptic weight is too slow to stabilize plasticity.

We consider in this section a very simple, one-synapse model

of monocular cortex: a single postynaptic cell with activity y re-

ceives a single input with synaptic strength w and activity x.

We assume the output activity is given by y =wx and take the

input activity x to be constant in each condition, x = 1 for normal

visual experience, and x<1 under MD (for simplicity we take

activities and weights to be unitless numbers). By assuming a

single input, we are in essence assuming that the synapses pro-

jecting to the monocular cortex are relatively homogeneous so

that w and x indicate the average synaptic strength from and

average activity of the LGN inputs from the contralateral eye.

Similarly, y indicates the average activity of monocular cortex.

Later in the paper we consider a heterogeneous population of in-

puts in binocular cortex and show that the conclusions reached

here are unchanged.

The BCM Rule
A learning rule that is commonly used to describe ODP and that

includes both Hebbian and homeostatic elements is the Bienen-

stock-Cooper-Munro (BCM) rule (Bienenstock et al., 1982;

Cooper et al., 2004). In this model, an active input ðx>0Þ un-

dergoes LTP if the postsynaptic activity y is greater than a

threshold q and undergoes LTD if y<q; this is the Hebbian

element. With the simple system considered here, this part of

the BCM rule can be written as

tw
dw

dt
= xyðy � qÞ; (Equation 1)

where tw is a time constant that sets the Hebbian learning rate.

The homeostatic element of the BCM rule arises through the

dynamic adjustment of q over time to keep average postsynaptic

activity near a set-point activity level, y0. q is a superlinear func-

tion of the average firing rate, typically q= y2=y0, where y2 is the

average of y2 over some averaging time. Taking this averaging

time to be tq, the dynamics of q can be written as follows:

tq
dq

dt
= � q+ y

y

y0
: (Equation 2)

When the model is switched to the MD condition, the weight

initially decreases and subsequently increases. Consider start-

ing at the fixed point for the normal ðx = 1Þ condition,

y = q=w= y0. Immediately after MD onset, input activity x, and

thus y =wx, is reduced, so y<q. This causes LTD under Equa-

tion 1 and, thus, further reduction in y. However, since y<y0, q

moves toward an equilibrium value yðy=y0Þ that is less than y.

Once q becomes less than y, the Hebbian rule causes LTP and

y rises.

The speed of the decrease in q, and thus of the switch from

LTD to LTP, is determined by the time constant tq (Equation 2).

The speed of LTD is controlled by tw (Equation 1). In order to

have significant initial LTD, tq must be sufficiently large, relative



A B C Figure 1. The Dynamics of the Synaptic

Strength under the BCM Learning Rule in

the Monocular Cortex during MD Initiated

at Time 0

(A–C) The synaptic strength w (red line) and the

activity-dependent threshold q (black dashed line)

were plotted versus time for homeostatic plasticity

that is the same speed as (A: tq = tw) or slower than

(B: tq = 3tw) Hebbian plasticity. The initial condition

ðt = 0Þ was set to the fixed point under normal

rearing (which is unstable for tq = 3tw, see C). For

faster homeostatic plasticity, there is little initial

depression of synaptic strength (A). When the ho-

meostasis is slowed, however, the normal-rearing

fixed point becomes unstable (c.f. C), and the

synaptic strength exhibits large oscillations under

MD (B). We took the set-point activity to be y0 = 1, which sets the units of activity. We set input activity x = 1 in the normal condition, x = 1=2 under MD. We set

tw = 0:2 days; numbers on the x axis represent days. (C) A systematic study of the BCM learning rule, as a function of input activity x and speed of homeostatic

plasticity, tq=tw. We characterized the dynamics of synaptic strength under MD by two variables: the depth of synaptic depression, measured as the strengthw�
at the first trough of synaptic strength relative to the pre-MD ðx= 1Þ strength ofw= 1 (green contour lines); and the stability of the fixed pointw= 1=x, as measured

by the stability index �Reltq (color plot; more positive values of the stability index indicate greater distances from instability; negative values mean the fixed

point is unstable). Here, l is the eigenvalue with greatest real part of the system linearized about the fixed point. For choices of x and tq=tw that reproduce

w� � 0:7, as in experiments, the synaptic strength dynamics are unstable for a wide range of x including the normal rearing condition x = 1. The results shown in

this figure are general and do not depend on any specific parameter choices (e.g., choosing x = 1 to represent normal rearing), as explained in Supplemental

Information Section S1.
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to tw, so that significant LTD occurs before q adapts.When tq=tw
is sufficiently small, q adapts quickly, before the synaptic weight

significantly changes, so that there is very little initial synaptic

depression (Figure 1A). However, as tq=tw is increased, the fixed

point under normal rearing becomes unstable even as the de-

gree of synaptic depression under MD (initiated with this unsta-

ble normal-rearing fixed point as initial condition) remains small

(Figure 1C; see also Supplemental Information Section S1, avail-

able online), and this MD leads to large oscillations of synaptic

strengths (Figure 1B). The oscillations arise because when y rea-

ches y0, q still reflects the earlier weight values, soweight change

continues in the same direction until q catches up. Instability oc-

curs when the threshold change is so slow that the threshold

never catches up (Cooper et al., 2004; Zenke et al., 2013)

(when tq=tw>1=ðx2y0Þ for Equations 1 and 2).

In the BCMmodel, both dw=dt and dq=dt are zero at the fixed

point. However, biological weights will constantly fluctuate un-

der ongoing changes in activity. Such fluctuations induce desta-

bilizing Hebbian plasticity, which can only be stabilized by fast

homeostatic plasticity (i.e., fast changes in q). In this sense, the

BCMmodel requires that the two forms of plasticity are constitu-

tively active but opposed in the vicinity of any fixed point.

Addition of Stable Hebbian Terms and a Homeostatic
Term
To try to prevent loss of stability with slow homeostatic plasticity,

we next consider an intrinsically stable Hebbian rule. In addition,

we would like themodel to be physiologically realistic in three re-

spects in which the BCM rule is not. First, LTP and LTD should

saturate, whereas in the BCM rule there is no limit to synaptic

potentiation and LTD can reduce weights to zero. Second, in a

model with multiple synapses, homeostatic plasticity should

multiplicatively scale synaptic strengths, preserving the relative

strengths of different synapses, as suggested by homeostatic
scaling of the distribution of miniature excitatory postsynaptic

potentials (mEPSPs) (Turrigiano et al., 1998; Stellwagen and

Malenka, 2006; Kaneko et al., 2008b; Turrigiano, 2011). The

sliding threshold of the BCM rule does not producemultiplicative

changes in synaptic strengths. Third, homeostatic plasticity oc-

curs under blockade of activity through bath application of tetro-

dotoxin (TTX) or under blockade of NMDA receptors, both in vitro

(TTX, Turrigiano et al., 1998; NMDA block, Kaneko et al., 2008b;

both, Stellwagen andMalenka, 2006) and in vivo in V1 during the

critical period (TTX, Maffei and Turrigiano, 2008; NMDA, see Fig-

ure 7A). Under the BCM rule there is no plasticity when the pre-

or the postsynaptic firing rate is zero or when NMDA receptors

are blocked.

We again consider our one-input model of the monocular cor-

tex. We assume that synaptic strength is modified by the sum of

an LTP term, an LTD term, and a multiplicative homeostatic

term. LTP occurs when the product of pre- and postsynaptic ac-

tivities, xy, is greater than a fixed threshold q, while LTD occurs

for xy<q. To make the Hebbian plasticity intrinsically stable, the

LTP and LTD terms saturate when the weight w reaches a

maximal value wmax or minimal value wmin, respectively, consis-

tent with experiments suggesting a limited range of strengths of

individual synapses (O’Connor et al., 2005; Petersen et al.,

1998). A nonzero minimal weight value is important because

multiplicative homeostatic plasticity cannot potentiate synaptic

strength if it reaches zero. The homeostatic term changes the

weight to move the time-averaged postsynaptic activity y to-

ward the set-point value y0. This term induces weight change

proportional to w, which—once we consider multiple inputs—

will make the homeostasis multiplicative, scaling all weights by

a common factor rather than adding or subtracting a common

amount from all weights. A parameter g determines the strength

(or, equivalently, the learning speed) of homeostasis relative to

Hebbian plasticity.
Neuron 84, 497–510, October 22, 2014 ª2014 Elsevier Inc. 499



A B C Figure 2. Simulation Results of Plasticity in

the Monocular Cortex during MD, Using a

Learning Rule with a Stable Hebbian

Component and a Homeostatic Component

(Equations 3 and 4).

(A–C) The synaptic strength, w, and the average

postsynaptic activity, y, are plotted for stronger

MD (A; x = 0:5) and weaker MD (B; x = 0:73). For the

model to reproduce the experimental result, as in

(A), parameters must be tuned so that the dy-

namics remain relatively near the stable fixed point under Hebbian plasticity alone.When the combined Hebbian/homeostatic dynamicsmove sufficiently far from

that fixed point, the Hebbian dynamics are unstable and cannot be stabilized by slow homeostatic plasticity, yielding oscillations (B) or instability. The MD fixed

point in (A), though nonoscillatory, involves constitutive but opposed LTD and homeostatic plasticity so that blockade of Hebbian plasticity beginning at day 7 of

MD yields a marked homeostatic increase in weight (C). Parameters: wmax = 1;wmin = 0:6; tw = 0:3 day; ty = 3 days; y0 = 0:8; q= 0:6;g=0:23: x axis: time in days.
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We let ½x�+ represent the operation of setting negative values

to zero, that is, ½x�+ = x when x>0, and ½x�+ = 0 otherwise. Then

the equation for weight change is

tw
dw

dt
= ½wmax �w�+ ½xy � q�+
� ½w�wmin�+ ½q� xy�+ +gwð1� y=y0Þ:

(Equation 3)

The first term in Equation 3 is the LTP term, the second is the

LTD term, and the third is the homeostatic term. This equation

does not have the problems just noted for the BCM rule: in Equa-

tion 3, LTP and LTD both saturate, homeostatic plasticity

induces a multiplicative scaling of weights, and homeostatic

plasticity will occur even in the absence of pre- or postsynaptic

activity.

The delay in the signal driving homeostatic learning is deter-

mined by the time, ty, over which the postsynaptic activity is

averaged to produce y. Assuming an exponentially weighted

average with time constant ty, the equation for y is

ty
dy

dt
= � y + y: (Equation 4)

We choose parameters to reproduce the results of MD in the

monocular cortex (Kaneko et al., 2008b) (see Supplemental In-

formation Section S2). This model can reproduce fast LTD and

slow homeostatic plasticity in the monocular cortex under MD.

However, this outcome was fragile and sensitive to parameter

values. Figure 2A shows the simulated result of the plasticity

rule under strong MD ðx = 0:5Þ. The synaptic weight rapidly

decreased and reached about 70% of the pre-MD value after

2 days of MD. Delayed homeostatic plasticity then started, due

to the loss of postsynaptic activity, and scaled up the synaptic

strength to about 90% of the pre-MD value. This result is consis-

tent with the experimental observation. However, the result de-

pended sensitively on the input strength under MD. Figure 2B

shows a result of a simulation under weaker MD ðx = 0:73Þ. In
this case, the synaptic strength settled into a stable oscillation

(see phase plane analysis, Supplemental Information Section

S3, and Figure S1).

This behavior is similar to that of the BCM rule explored previ-

ously. The problem is a general one that does not depend on

arbitrary details of the implementation (e.g., use of a threshold

nonlinearity ½x�+ as opposed to more smooth nonlinearities);

for sufficiently slow homeostatic plasticity, there will be input

values yielding oscillations or instability. The saturation limits
500 Neuron 84, 497–510, October 22, 2014 ª2014 Elsevier Inc.
ensure that the Hebbian terms in Equation 3, by themselves,

have a stable fixed point. However, the system’s fixed point—

the steady-state values ofw and y of the entire system, including

the homeostatic term—may be at values of w distinct from this

Hebbian-only fixed point. When the two fixed points are suffi-

ciently far apart, small perturbations of w away from the fixed

point will be amplified by fast Hebbian positive feedback, and

the slow homeostatic negative feedback through change in y

either cannot catch up (instability) or takes a long time to catch

up (oscillations). In sum, system stability depends on choosing

parameters for which the Hebbian and system fixed points are

sufficiently near, but they are unlikely to remain near across mul-

tiple input values.We are once again facedwith the fact that slow

homeostatic plasticity cannot stabilize fast, unstable (positive

feedback) dynamics.

Even when the MD fixed point is near enough to the Hebbian

fixed point to prevent oscillations (Figure 2A), LTD and homeo-

static upscaling are constitutively active but cancelling. We

show in Section S2 of the Supplemental Information that such

constitutive plasticity always occurs at fixed points of Equations

3 and 4 for values of x outside of a finite range. As a result, if Heb-

bian plasticity is blocked, a large homeostatic change in the syn-

aptic weight will occur (Figure 2C), a possibility we now test.

Experimental Test I: Lack of Constitutive Plasticity
at Steady States
Aswe have just seen, plasticity models in which Hebbian and ho-

meostatic plasticity compete to directly alter a single factor, w,

make the general prediction that, for at least some rearing con-

ditions, Hebbian and system fixed points should not coincide.

This means that Hebbian and homeostatic plasticity are both

constitutively active at the system steady state, inducing equal

and opposite weight changes that cancel. While a rule might

have both forms of plasticity separately zero at one steady state,

it would require fine-tuning of parameters for separate cancella-

tions to occur at multiple steady states corresponding to

different rearing conditions.

To test this prediction experimentally, we blocked Hebbian

plasticity by a partial blockade of NMDA receptors using daily

intraperitoneal injection of a low dose of the NMDA receptor

inhibitor 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid

(CPP). This regime was shown to block NMDA-receptor-depen-

dent plasticity in mouse V1 (in the same strain of mice studied

here) during the critical period and in adulthood; it blocks
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Figure 3. Lack of Constitutive Plasticity at Steady States
(A and B) Hebbian plasticity and homeostatic plasticity are each separately inactive under normal rearing (A1 and B1) and after 6 days ofmonocular deprivation (A2

and B2). (A) Experimental designs. An NMDA receptor antagonist (CPP) or vehicle solution was injected intraperitoneally for 6 days under normal rearing (A1) or for

the last 4 days of a 10-day MD period (A2). (B) In each case, responses in binocular V1 to stimulation through each eye were unchanged by the NMDA receptor

block, suggesting a lack of ongoing plasticity in these conditions. Baseline response levels were indistinguishable in CPP and control animals (Figure S7). Data are

represented as mean ± SEM.
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NMDA-receptor-dependent expression of the immediate early

gene product Zif268 and blocks ODP in response to MD but

does not block visual behavior or the responses of neurons in

mouse V1 (Sato and Stryker, 2008). As we will discuss later, it

leaves homeostatic plasticity intact, while appearing to block

Hebbian plasticity, when applied during days 4–7 of MD

(Figure 7A). We injected CPP during each of two different,

approximately steady states during the critical period for ODP

in mice: during normal rearing and during the last 3 days of a

10-day MD (Figure 3). At each steady state, the blockade caused

no significant change in either eye’s response strength in V1, as

assessed with intrinsic signal imaging, relative to control animals

(daily vehicle injection), in contrast to the outcome seen in

Figure 2C. This indicates that Hebbian and homeostatic plasticity

are each separately nearly zero at each of the two steady states.

Note that this experiment does not speak against the BCM

model. In that model, all plasticity is stopped by NMDA receptor

blockade. However, we have noted other empirical problems

with the BCM model.

Our Proposed Solution: A Model with Hebbian
and Homeostatic Factors that Multiply
to Produce Synaptic Strength
We have seen that the observed combination of fast synaptic

depression and slow homeostatic plasticity after MD cannot be

robustly reproduced by traditional plasticity models in which

the Hebbian and homeostatic components directly compete to

control the same factor. Furthermore, the constitutive, equal,

and opposite forms of plasticity predicted to exist at a steady

state by models with separate, competing homeostatic and

Hebbian terms were not found experimentally.
This motivates our proposed solution: a model in which a syn-

apse-specific Hebbian factor, r, and a postsynaptic-cell-spe-

cific homeostatic factor, H, each with their own learning

dynamics, are multiplied to give the synaptic strength: w=Hr

(Figure 4A). LTP and LTD rapidly modify r in an NMDA-depen-

dent manner, while homeostatic plasticity more slowly modifies

H through the effects of TNF-a and perhaps other factors. This

model is consistent with the experimental result that the percent-

age of synaptic strength changes induced by Hebbian LTP or

LTD protocols were unchanged by modifications of homeostatic

plasticity (pretreatment with TNF-a or knockout of TNF-a recep-

tors; Stellwagen and Malenka, 2006).

In our proposed model, the dynamics of r—the Hebbian dy-

namics—are stable by themselves, reaching a stable fixed point

for the given input statistics. We will assume this stabilization is

achieved through saturation of r at minimal and maximal al-

lowed values (O’Connor et al., 2005; Petersen et al., 1998),

but any stable Hebbian learning rule would suffice. The homeo-

static dynamics still involve slow learning, but because of

the relationship w=Hr, such slow dynamics will scale the

weights—including the minimal and maximal weights—to bring

the overall activity level toward the desired set point without

disturbing the intrinsic stability of the Hebbian dynamics. In

this model, the synaptic strength does not oscillate because

homeostatic plasticity is driven by the instantaneous activity

without the delays of slow time averaging. In the previous

models, the observed slowness of homeostatic plasticity had

to arise from slow time averaging rather than slow learning

because slow learning, which means small changes per unit

time, would have made the homeostatic term too weak to affect

learning. That is, under slow learning, the small changes in w
Neuron 84, 497–510, October 22, 2014 ª2014 Elsevier Inc. 501



A

B

C Figure 4. A Schematic Description of the

Two-Factor Model

(A) The ith synaptic strength is described by

wi =Hri, where H is a synapse nonspecific ho-

meostatic variable and ri is a synapse-specific

Hebbian variable. Hebbian plasticity rapidly

changes ri, while homeostatic plasticity slowly

changes H. The slow change in H can build up

without being overwritten by the fast Hebbian

effect. In models in which Hebbian plasticity

and homeostatic plasticity both directly change

synaptic strengths, homeostatic plasticity can-

not be slow without being overwritten. In the

model, both LTP and LTD are mediated by

NMDA-dependent calcium influx. In addition,

BDNF/TrkB signaling is assumed to be required

for LTP, and homeostatic plasticity is mediated

by TNF-a.

(B) A biophysical interpretation of separable fac-

tors whose product is the synaptic strength: four

overall factors (light blue) and corresponding

biophysical elements controlling them (dark

blue), including further breakup of some factors

into a product of subfactors. Our model could be

instantiated if H and r each control separate

subsets of these factors or subfactors.

(C) Simulation results of the two-factor model in the monocular cortex during MD and recovery from MD. Colored regions of plots (days 0–5) represent

periods of MD; white region (days 5–12) represents normal vision ðx = 1Þ. The plot illustrates the synaptic strength w (red line) and the maximal and minimal

possible synaptic strengths, Hrmin and Hrmax, which we term the limiting strengths, both represented by dashed lines. Changes in these limiting strengths

represent homeostatic plasticity, i.e., changes in the homeostatic factor H. When the weight w reaches a limiting strength, it indicates the Hebbian factor r

has reached its corresponding limiting value, rmax or rmin. The synaptic strength was rapidly depressed to the minimum value via the Hebbian component,

and then this minimum value was slowly potentiated by the homeostatic component. When the eye was reopened ðx = 1Þ after 5 days of MD, the synaptic

strength rapidly potentiated to the maximum value by LTP, and then this maximum value was slowly depressed by the homeostatic component. x axis: time

in days. Parameters used: q= 0:6, y0 = 1, rmax = 1, rmin = 0:6, tr = 0:2 days, and tH = 8:0 days.
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induced by homeostasis in any given time interval would have

been easily reversed by the larger changes induced by the

faster Hebbian plasticity.

This two-factor model is no doubt still a simplification—an

effective model—of the complex dynamics of synaptic learning

(e.g., Huganir and Nicoll, 2013), and determining the biophysical

basis of this model awaits further experimental work. However,

we suggest the following overall framework for interpreting the

model (Figure 4B). The postsynaptic density (PSD) is thought

to have a certain number of ‘‘slots’’ for alpha-amino-3-hy-

droxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs).

These slots are created by PSD structural proteins (Huganir and

Nicoll, 2013; Kessels and Malinow, 2009), some of which play

roles in homeostatic plasticity (Shin et al., 2012; Steinmetz and

Turrigiano, 2010; Sun and Turrigiano, 2011). The synaptic

strength, to the extent that it is determined by AMPARs, could

be understood as the product of four elements: (1) the area of

the PSD (which is increased by Hebbian LTP, which increases

spine size: Matsuzaki et al., 2004; Harvey and Svoboda, 2007;

Zhou et al., 2004; Kopec et al., 2007), (2) the density of AMPARs

bound to slots in the PSD, (3) the efficacy of the AMPARs, and (4)

the presynaptic efficacy, which also undergoes activity-depen-

dent modification (Atwood and Karunanithi, 2002; Kaneko

et al., 2010). If free AMPARs in the membrane and slots bind

with first-order kinetics, then the PSD density of bound AMPARs

can be further broken down as the product of (2a) membrane

AMPAR density, known to be increased by TNF-a (Beattie
502 Neuron 84, 497–510, October 22, 2014 ª2014 Elsevier Inc.
et al., 2002; Leonoudakis et al., 2008; Stellwagen and Malenka,

2006), (2b) PSD slot density, and (2c) slot/AMPAR binding affin-

ity. The latter two factors and AMPAR efficacy are likely altered

by modulations (e.g., phosphorylation) and/or changes in

composition of both AMPARs and PSD structural proteins. The

presynaptic efficacy likewise breaks down to a product of sub-

factors. In sum, if the homeostatic factor H and Hebbian factor

r each correspond to different subsets of these biophysical fac-

tors, then the product rH would correspond to the synaptic

strength.

Such a division of mechanisms fits well with the three working

models proposed by Huganir and Nicoll (2013) for how calcium-

calmodulin kinase type II (CAMKII) activation causes Hebbian

LTP. In their ‘‘PSD-centric’’ model, CaMKII alters PSD structural

proteins to increase the number of slots at the given synapse

(mechanism 2b). In their ‘‘receptor-centric’’ model, CaMKII

phosphorylates AMPAR complexes to increase their binding af-

finity to the slots (mechanism 2c). In their ‘‘insertion’’ model,

CaMKII drives exocytosis of vesicles containing glutamate re-

ceptors, increasing the density of AMPARs in the plasma mem-

brane (mechanism 2a). Under any of these models, Hebbian

plasticity might also control additional mechanisms and homeo-

stasis would control one or more complementary mechanisms.

To study our proposed two-factor model, we continue to

consider the framework of Figure 2A, a single presynaptic input

in monocular cortex. The Hebbian factor is modeled as in the

previous section so that LTP and LTD occur for xy>q and xy<q,



Neuron

Modeling Hebbian and Homeostatic Plasticity
respectively, and both are stabilized by saturation of r at

maximal or minimal values:

tr
dr

dt
= ðrmax � rÞ½xy � q�+ � ðr� rminÞ½q� xy�+ : (Equation 5)

The homeostatic term grows or decays if the activity is respec-

tively below or above the desired set-point level y0:

tH
dH

dt
=H

�
1� y

y0

�
: (Equation 6)

The proportionality to H on the right side of Equation 6 is not

important in practice but formally ensures that H remains posi-

tive. The speed of Hebbian and homeostatic learning are

controlled by the time constants tr and tH, respectively. Note

that H depends only on postsynaptic activity y, and not directly

on the synaptic weight, so that it provides a set point for y. In a

multisynapse model, this will mean that H is a postsynaptic-

cell-specific, rather than synapse-specific, factor.

These equations (and also those of a multisynapse model to

be studied below) can be shown to bemathematically equivalent

to a model similar to that of Equation 3 in which Hebbian and ho-

meostatic plasticity both compete to modify a single factor w,

but in which homeostatic plasticity also scales the maximal

and minimal allowed weights and, while slow, responds to

instantaneous rather than time-averaged postsynaptic activity

(Supplemental Information Section S5). The former point is crit-

ical for homeostatic plasticity to multiplicatively scale synaptic

strengths without disturbing intrinsic Hebbian stability and

without being overwritten by Hebbian plasticity. The latter point

is critical to stability: slow averaging introduces delays that can

yield oscillations of synaptic strength.

We will find that this simple model, like the previous model

(Figure 2), still has behavior that varies qualitatively with the

strength of MD (the value of x), although in the present case

this variation might be physiologically realistic (see Supple-

mental Information Section S6). The key difference, however,

will be that in the present model, the behavior is always stable,

approaching a stable fixed point (at which each form of plasticity

is separately zero) without oscillations. Further issues with the

behavior can be fixed by using a more complex plasticity model,

aswewill see in the next section, but the stability is intrinsic to the

framework of separable factors with a stable Hebbian compo-

nent (Supplemental Information Section S4). In the previous

model, instability was intrinsic to the framework for the reasons

outlined above and could not be fixed by amore complex model.

To simulate this model, we assumed that homeostatic learning

was quite slow relative to Hebbian learning to show that no insta-

bility results: tH was 40 times longer than tr (stability for any

value of tH=tr is shown in Supplemental Information Section

S4). Before MD, r was saturated at its maximal value, r= rmax.

We simulated MD ðx = 0:5Þ applied for 5 days (colored region),

followed by recovery with normal vision ðx = 1Þ for the next 7 days
(white region; Figure 4C). Behavior of the model for MD with in-

termediate values of x are examined in Supplemental Informa-

tion Section S6. During the 5 days of MD, the synaptic strength

was first decreased through Hebbian LTD, reaching about

70% of its initial value, and then was potentiated by homeostatic
plasticity, matching experimental results well (Kaneko et al.,

2008b). Restoration of normal vision at day 5 led to an overshoot

of synaptic strength: a rapid increase through Hebbian LTP, fol-

lowed by a slower decrease toward baseline through homeo-

static plasticity. This overshoot is a robust prediction of our

model given slow homeostatic and fast Hebbian plasticity:

homeostatic scaling H had increased to compensate for

decreased activity and Hebbian synaptic depression during

MD; recovery induces a rapid LTP of r, yielding an overshoot

of w= rH; H then slowly decreases to return the system to the

set-point activity. We present below an experimental test of

this prediction of an initial overshoot of synaptic strength

following restoration of normal vision.

So far, we have considered the MD result only in the monoc-

ular cortex and have also neglected the heterogeneity among

synapses, replacingmultiple synaptic strengths by a representa-

tive value. In the next section, we consider a more realistic

network model with multiple presynaptic neurons and consider

binocular as well as monocular cortex.

MD Effects in Multisynapse Plasticity Models
in the Binocular Cortex
We now consider multiple presynaptic neurons ðN= 500Þ projec-
ting to a postsynaptic neuron. The ith input contributes an

amount to the postsynaptic firing rate equal to the input’s firing

rate xi times its synaptic weight wi, and the postsynaptic firing

rate is the linear sum of these contributions: y =
PN

i = 1wixi. In

the binocular cortex, the postsynaptic neuron receives

NC = 310 synapses from the contralateral eye and NI = 190 syn-

apses from the ipsilateral eye. This ratio was chosen to repro-

duce the physiological ocular-dominance index (ODI) under

normal rearing (Kaneko et al., 2008b). The ith synaptic strength

is described by wi =HAiri, where Ai is the anatomical strength

of axonal arborization (Miller et al., 1989) (see Supplemental In-

formation Section S7.2) and is normalized as
P

iAi = 1 to keep

postsynaptic activity level roughly independent of the choice of

N; ri is the synapse-specific Hebbian factor, and H is the syn-

apse-nonspecific homeostatic factor characterizing the overall

scaling of synaptic strengths onto the given postsynaptic

neuron. The arborization function was introduced to reproduce

localized receptive fields with continuously decreasing magni-

tude toward their flanks. The presynaptic firing rates are drawn

from a Gaussian distribution with a specific mean and covari-

ance (see Experimental Procedures). Under the normal rearing

condition, the mean firing rates hxii are identical for all presynap-

tic neurons ðhxii= 1Þ. The input covariance specifies that two in-

puts at a given retinotopic separation are more correlated if they

are from the same eye compared to if they are from opposite

eyes, while the correlation of two inputs with given ocular identi-

ties decreases with their retinotopic separation. MD decreases

the input firing rates within the closed eye and the covariance be-

tween closed-eye and open-eye inputs by a factor f = 0:5 and de-

creases the covariance between closed-eye inputs by f2.

To show the robustness of our learning rule to noise, we

added a symmetric Gaussian random matrix (see Experimental

Procedures) to the covariance matrix. While this noise heteroge-

neously perturbs individual synapses, it has only negligible influ-

ence on ODP.
Neuron 84, 497–510, October 22, 2014 ª2014 Elsevier Inc. 503
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Wewill use a more complex learning rule than that used previ-

ously to reproduce quantitative aspects that the simpler rule of

Equations 5 and 6 could not account for. We emphasize that

our point in using this more complex rule is not to argue that it

captures the true, complex biological rules (see also discussion

of alternatives in Supplemental Information Section S7). Rather,

we only wish to demonstrate that (1) the separation of r and H

variables gives stability despite slow homeostatic plasticity,

with each form of plasticity separately zero at the network stable

state and (2) suitable plasticity rules can then replicate the bio-

logical behavior without disturbing these features.

The behaviors we wish to capture with the plasticity rules are

as follows (further explained in Supplemental Information Sec-

tion S7). (1) TNF-a-dependent ODP: during days 3–7 of MD,

there is continuing ODP toward the open eye in wild-type ani-

mals, but not in TNF-a knockouts (Kaneko et al., 2008b). Since

homeostatic plasticity alone would equally scale both eyes and

thus cause no ODP, this suggests that TNF-a-dependent

homeostatic plasticity induces further Hebbian plasticity after

Hebbian plasticity would otherwise be saturated. (2) Saturation

of homeostatic plasticity: under MD in monocular cortex,

homeostasis only returns synaptic strength to near its original

level, which would not restore original activity levels under

continuing MD. (3) Delay in homeostatic onset: no potentiation

of open-eye responses is seen in binocular cortex until after

day 3 of MD (Kaneko et al., 2008b). Under the simple rule of

Equation 6, homeostatic plasticity, while slow, was active from

the initiation of MD, yielding significant homeostatic plasticity

by the time of maximal LTD (evident as the rise of rminH by day

2 in Figure 4C).

To account for TNF-a-dependent ODP, we modified the rule

for changes in the Hebbian factor by adding H dependence to

rmin:

tr
dri
dt

= ðrmax � riÞ½fi�+ � ðri � rminðHÞÞ½�fi�+ : (Equation 7)

Here, tr = 0:2 day is a characteristic time scale; fi is the pre-

post covariance minus a threshold, fi =Cov½xi; y� � q with

q= 0:6, and rmax = 1. We set rminðHÞ= 0:7 for H%1 and

= 0:7H�1=2 for H>1, which allows homeostatic plasticity to

induce continued LTD and thus continued ODP after LTD has

initially saturated. If rmin is constant, there would be no ODP

once LTD is saturated, while if rmin � H�1 there would be no ho-

meostatic strengthening of depressed synapses in monocular

cortex (because continued LTD would cancel homeostatic up-

scaling). Apart from these constraints, the exact functional

form of rminðHÞ does not matter for the results.

To impose saturation of TNF-a-dependent homeostatic plas-

ticity (Beattie et al., 2002), we first note that without saturation,

homeostatic dynamics that reach the set point y0 can be written

tHdH=dt = � H+Htarget with HtargethHy0=hyi. Here, hyi is

the instantaneous (i.e., very short timescale) mean activity

(used in place of y simply to average out the Gaussian input

noise). To achieve saturation, we can modify the dynamics to

tHdH=dt = � H+FðHtargetÞ with some saturating nonlinearity F.

To impose a delay in homeostasis, we assume that, after activity

decreases (e.g., due to MD), increase of the homeostatic factor

H from the baseline level of 1 is delayed until a threshold
504 Neuron 84, 497–510, October 22, 2014 ª2014 Elsevier Inc.
amount (which we take to be 1) of an underlying factor h has

accumulated:

H=Maxðh;1Þ: (Equation 8)

h is a factor that builds to a saturating value >1 when activity is

below its set-point value. For example, h might be inversely

related to the sensing of glutamate concentrations over time

by glial cells (Stellwagen and Malenka, 2006) and would induce

a proportional increase in TNF-a release once it is above a

threshold. H would reflect the resulting TNF-a concentration.

Note that Equation 8 incorporates the experimental result that

TNF-a is only involved in upscaling strengths in response to

too-low activity and not in downscaling strengths in response

to too-high activity (Stellwagen and Malenka, 2006). To ensure

adequate delay in homeostatic onset, h should decay to a base-

line level well below 1 when this activity is at or above its set-

point value. We take this baseline level to be zero. Note that

these assumptions could not solve the problems of oscillations

or instability in conventional models (Equations 1, 2, 3, and 4),

because those models would not work with delayed homeostat-

ic onset. In those models, the dynamics yield a fixed point that

would be unstable under Hebbian plasticity alone. Therefore,

for the baseline condition to be stable, they require ongoing

fast homeostatic responses to return weights to the fixed point

after small weight fluctuations.

Putting these assumptions together, we use the following rule

(along with Equation 8) for changes in the homeostatic factor:

th
dh

dt
= � h+F

�
Htarget

�
: (Equation 9)

Here, FðxÞ is a monotonically increasing function that is 0 for

x%1 (so that h returns to its baseline value of 0 once the homeo-

static constraint is achieved), jumps from 0 to 1 when x exceeds

1, and then increases roughly linearly with x until it saturates at

around 2 (Equation S16 and Figure S5A). We take the time con-

stant of homeostatic plasticity to be th = 4 days.

We modeled MD of the contralateral eye initiated at day 0, fol-

lowed by reopening of that eye at day 7, in binocular cortex. The

model reproduced rapid LTD of the closed-eye synapses and

slow homeostatic potentiation of the open-eye synapses

(Figure 5). Hebbian LTD reduced closed-eye response by about

30%after 3 days ofMD by reduction of the closed eye’s Hebbian

factors ri (Figures 5A, 5B, and 5D). At the same time, the reduc-

tion of activity (Figure 5F) caused h to start increasing from the

baseline value of 0. After about 4 days of MD, h reached the

threshold value of 1, and homeostatic potentiation via increase

of H was initiated (Figure 5E). The open-eye response accord-

ingly was unchanged for the first 4 days but was potentiated

by about 30% after 7 days of MD (Figures 5A and 5D). The ho-

meostatic increase of H then started lowering the Hebbian satu-

ration limit rmin and decreased the closed-eye Hebbian factors,

inducing additional ODP during MD days 3–7 (Figure 5C). After

restoration of normal visual input at day 7, the closed-eye synap-

ses showed rapid LTP (Figures 5A, 5B, and 5D) while homeostat-

ic plasticity decreased back to baseline slowly (Figure 5E) so that

synaptic weights overshot their final level and then gradually

decreased back to it, as we saw in the previous model of



A

D E F

B C Figure 5. Simulation Results in the Binoc-

ular Cortex before, during, and after MD

MD was started at day 0, and the closed eye was

reopened at day 7.

(A) Synaptic strengths wi are shown as a function

of developmental time. From bottom to top, there

are 500 rows, which we label i= 1;.; 500, with the

ith row showing the time course of the strength of

weight wi. Indices i = 1;.;310 are from the closed

eye (contralateral eye, labeled C) and

i = 311;.; 500 are from the open eye (ipsilateral

eye, I). See (D) for time course of the summed

weights.

(B) The Hebbian factors ri.

(C) The ocular-dominance index (the value 1

means contralaterally dominated and the value �1

means ipsilaterally dominated; see Experimental

Procedures).

(D) Traces of the sum of weights from the closed

eye (red) and the open eye (blue), normalized to

have an initial value of 1. We refer to this as the

normalized visual response because it represents

the relative visual response through each eye that

would be assayed by an experimenter at any given

time.

(E) The homeostatic factor H (black) and the un-

derlying glial factor h (green).

(F) The average postsynaptic activity hyi during

ongoing plasticity.
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monocular cortex (Figure 4C). Simulation of MD in themonocular

cortex using the present model (Supplemental Information Sec-

tion S8) produced a result very similar to that of the single-syn-

apse model presented in the previous section (Figure 4C).

In addition to explaining the MD results in wild-type mice, we

also applied the model to ODP under various forms of inactiva-

tion (Figure 6). We modeled blockade of TrkB receptors (Kaneko

et al., 2008a) as a lack of Hebbian potentiation (we removed the

first LTP term from the right side of Equation 7), whether due to a

direct block of LTP or to block of anatomical addition of synap-

ses. This is based on the fact that BDNF/TrkB signaling is

required for growth of synapses in neuronal cell culture

(Meyer-Franke et al., 1998) and for stabilization of LTP in hippo-

campus (Tanaka et al., 2008; Kovalchuk et al., 2002; Figurov

et al., 1996; Lai et al., 2012) and visual cortex (Sermasi et al.,

2000). This reproduced the experimental results in TrkB-inacti-

vated mice (Kaneko et al., 2008a): MD effects (both the initial

LTD and the subsequent homeostatic potentiation) were normal,

but the recovery from MD after reopening the closed eye was

blocked (Figure 6A).

To model partial NMDA blockade during MD days 3–7, we

assumed noHebbian plasticity in the corresponding time interval

(interval shaded green in Figure 6B). Purely homeostatic poten-

tiation then equally scaled both eyes without changing ODI.

The elimination of closed-eye LTD led to increased closed-eye

potentiation, which in turn led to slightly less overall homeostatic

upscaling than normal, slightly reducing open-eye potentiation.

To model TNF-a blockade, we assumed that H remained con-

stant at 1 without any homeostatic adjustment. Simulations then

showed little or no change in open-eye synapses over 7 days of
MD (Figure 6C), as observed in TNF-a knockout (KO) mice (Ka-

neko et al., 2008b). Furthermore, the model predicts that the

overshoot of the previously closed-eye synapses during the re-

covery phase in wild-type mice (c.f., Figure 5) should be absent

in TNF-a KO mice. Reopening of the previously closed eye

causes that eye’s Hebbian factors to be potentiated to the satu-

rating value rmax. In the absence of prior homeostatically induced

increase in H, this simply returns those synapses to their original

values without any overshoot.

Experimental Tests II: Hebbian Depression of Closed-
Eye Synapses during 3–7 Days of MD and Homeostasis-
Dependent Overshoot of Closed-Eye Responses during
Recovery from MD
As we have noted, our proposed solution makes several robust,

qualitative predictions that are independent of the model

complexities that we added to more precisely match details of

development. These predictions, which have not previously

been tested, are as follows: (1) blockade of Hebbian plasticity

during MD days 3–7 should reveal purely homeostatic plasticity,

involving equal percentage increases in each eye’s strengths

with no change in ODI (as in Figure 6B) and (2) after MD for

7 days, long enough to yield homeostatic potentiation of synap-

ses, restoration of normal vision should cause a TNF-a-de-

pendent overshoot of closed-eye response above the pre-MD

baseline, before it ultimately returns to the baseline (as in Figures

4C and 5D; compare Figure 6C).

We tested these predictions using intrinsic signal imaging from

the binocular region of mouse V1 during MD and recovery, with

results as predicted by the model (Figure 7). With intraperitoneal
Neuron 84, 497–510, October 22, 2014 ª2014 Elsevier Inc. 505
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Figure 6. Results of MD, Days 0–7, and Re-

covery, Days 7–10, under Various Inactiva-

tion Conditions

Conventions are as in Figure 5.

(A) Simulation of TrkB-inactivated mice, modeled

as an absence of LTP. MD effects (both LTD and

homeostatic plasticity) were normal, but synaptic

strengths did not recover under binocular vision.

(B) Simulation of partial NMDA blockade during

MD days 3–7, modeled as no Hebbian plasticity

during colored interval. This stopped ODP,

increasing closed-eye strengthening (due to block

of LTD) and slightly decreasing open-eye

strengthening.

(C) Simulation of TNF-a inactivation, modeled as H

remaining constant at H= 1. No homeostatic

potentiation of the open-eye synapses occurred.

As a result, overshoot of synaptic strengths did not

occur during the recovery period.

Neuron

Modeling Hebbian and Homeostatic Plasticity
injections of the NMDA receptor blocker CPP during MD days 3–

7, equal potentiation of the two eyes occurred without change in

ODI and with increased closed-eye potentiation and reduced

open-eye potentiation (Figure 7A). This is consistent with the

idea (Figure 6B) that CPP blocked Hebbian LTD of the closed

eye, revealing purely homeostatic plasticity, which is equal in

the two eyes, while reducing the overall strength of homeostatic

plasticity. Furthermore, normal recovery from MD produced the

predicted overshoot of closed-eye responses followed by slow

recovery to baseline, whereas if homeostatic plasticity had

been blocked during MD by cortical infusion of sTNFR1 (soluble

TNF receptor, which scavenges TNF-a), this overshoot did not

occur (Figure 7B). Note that during normal recovery, both closed-

and open-eye synapses showed a similar degree of potentiation

from the pre-MD baseline at 24 hr, when the peak of the closed-

eye overshoot was measured, and both recovered to near the

pre-MD baseline, without further change in ODI (not shown),

over the next 24 hr. This is consistent with the idea that, at

24 hr, both eyes have saturated Hebbian LTP and are scaled

by the same homeostatic factor and that over the next day this

homeostatic factor subsides to baseline (as in Figure 5D).

DISCUSSION

Hebbian and homeostatic plasticity work in tandem refining

neural circuitry, but their interactions have been unclear. In this
506 Neuron 84, 497–510, October 22, 2014 ª2014 Elsevier Inc.
paper, we have studied the dynamic inter-

action of fast NMDA-receptor-dependent

Hebbian plasticity and slow TNF-a-medi-

ated homeostatic plasticity as found in

ocular dominance plasticity (ODP) (Ka-

neko et al., 2008b). While our studies

were based on specific, simplified

models, they revealed more general prin-

ciples that we now summarize.

In most existing models, the two forms

of plasticity each modify the same factor,

the synaptic strength. An equilibrium is
reached when the changes induced by the two are equal and

opposite, meaning that homeostatic plasticity is stabilizing a

set of strengths that would be unstable under Hebbian plasticity

alone. We have shown that these models fail to robustly repro-

duce ODP because slow homeostatic negative feedback cannot

stabilize fast Hebbian plasticity, which is a positive feedback

process (Cooper et al., 2004; Zenke et al., 2013).

We show instead that ODP can robustly be captured by a

model in which the two forms of plasticity modify separate fac-

tors whose product is the synaptic strength. Each form of plas-

ticity then separately reaches its own stable state. This allows

homeostatic plasticity to scale synaptic strengths slowly without

needing to stabilize Hebbian plasticity. This model is consistent

with the apparently multiplicative scaling of weights by homeo-

static plasticity (Turrigiano et al., 1998; Stellwagen and Malenka,

2006; Kaneko et al., 2008b) and the independence from TNF-a

levels of the percentage change in weights induced by LTP

and LTD (Stellwagen and Malenka, 2006), and it has natural bio-

physical interpretations (Figure 4). Themodel can equivalently be

regarded as one in which both processes directly modify the

synaptic strength, but with two new features. (1) Homeostatic

plasticity responds to instantaneous activity, rather than to de-

layed activity signals (e.g., due to slow temporal averaging),

which lead to oscillations and instability. The slowness of ho-

meostatic plasticity then results from slow learning (small weight

changes per unit time) and/or delayed onset, neither of which
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Figure 7. Experimental Verification of Model Predictions for MD and Recovery

(A) Injection of NMDA receptor antagonist CPP during days 3–7 of contralateral-eye MD reveals pure homeostatic plasticity, as judged by equal multiplicative

upscaling of both eyes’ responses with no further shift in ODI (upper right panel). Upper left panel indicates the experimental schedule. CPP added closed-eye

potentiation and reduced open-eye potentiation (lower panels) as in Figure 6B (compare with Figure 5D). Baseline response levels were indistinguishable in CPP

and control animals (Figure S7).

(B) Upon recovery from MD, there is a TNF-a-dependent overshoot (blocked by sTNFR1, which scavenges TNF-a) of the closed-eye weight from its pre-MD

baseline level before it returns to baseline.MD,monocular deprivation; BV, binocular vision (to induce recovery of closed-eye responses). Bottom: change relative

to day 0 baseline. *p <0:05, **p <0:01, between CPP- and vehicle-injected animals in (A) between sTNFR1- and vehicle-treated animals in (B) (two-way ANOVA

followed by multiple comparisons with Bonferroni correction). Data are represented as mean ± SEM.
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could stabilize fast unstable Hebbian plasticity and, thus, neither

of which could be used in existing models. (2) Homeostatic plas-

ticity also scales the minimal and maximal strengths, allowing

multiplicative scaling of all strengths and allowing Hebbian plas-

ticity, which ceases at these limiting strengths, to remain in its

own stable state while homeostatic plasticity proceeds. The

model can account for ODP in response to MD in both monoc-

ular and binocular cortices and under various inactivation

conditions.

The model makes several predictions that we verified experi-

mentally. First, it predicts that both forms of plasticity should

be inactive at a steady state of the strengths. We tested this pre-

diction in mouse V1, blocking Hebbian plasticity either during

normal rearing or during days 7–10 of MD during the critical

period for monocular deprivation. In both cases, the blockade

did not alter synaptic weights, indicating that both forms of plas-

ticity were inactive under these conditions. Second, blocking

Hebbian plasticity during MD 3–7 days revealed pure homeo-

static potentiation of both eyes without any ODP, including

closed-eye potentiation and reduced open-eye potentiation

(Figure 7A), as the model predicts (Figure 6B). Finally, we verified

(Figure 7B) the predictions that during binocular recovery after

6 days of MD, the previously closed eye’s synaptic strengths

will overshoot their pre-MD baseline before returning to baseline

(Figure 5D) and that this overshoot will not occur if TNF-a-medi-

ated homeostasis was blocked during MD (Figure 6C). In the

model, overshoot occurs because eye reopening causes rapid
potentiation of the Hebbian factor from its MD-depressed state,

while the homeostatic factor only slowly decreases from its MD-

elevated state.

A similar two-factor learning rule was previously indepen-

dently studied in a model of the development of V1 orientation

selectivity and its contrast invariance (Pool and Mato, 2010).

That paper motivated the rule simply as a means of modeling

multiplicative homeostatic scaling and did not address the

dynamical issues we address here.

Additional Contributions to Cortical Plasticity
Many other mechanisms are likely to contribute to cortical plas-

ticity besides the interaction of fast Hebbian and slow ho-

meostatic plasticity studied here. For example, here we did

not model plasticity in synapses to or from inhibitory neurons

(e.g., Gandhi et al., 2008; Kuhlman et al., 2013; Maffei et al.,

2006) or in intrinsic intracortical synapses (e.g., Trachtenberg

and Stryker, 2001). We have focused on physiological ODP,

ignoring mechanisms of anatomical plasticity such as branching

and retraction of axons (Antonini and Stryker, 1993; Trachten-

berg and Stryker, 2001). A variety of mechanisms not con-

sidered here may contribute to closing the critical period for

MD-induced ODP (reviewed in Bavelier et al., 2010; Espinosa

and Stryker, 2012). Cho et al. (2009) found in layer 4 that

open-eye potentiation after MD is NMDA dependent. Our re-

sults partially reconcile this with the result of Kaneko et al.

(2008b) that such potentiation depends on TNF-a, showing
Neuron 84, 497–510, October 22, 2014 ª2014 Elsevier Inc. 507
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that partial NMDA blockade reduces open-eye potentiation by

eliminating closed-eye LTD and thus reducing homeostatic up-

scaling. However, Hebbian LTP, laminar differences, or other

facts might also play roles (further discussed in Supplemental

Information Section S7.1). We have modeled only TNF-

a-dependent homeostatic plasticity, which mediates scaling

up of strengths in response to reduced activity, while ignoring

separate mechanisms that scale synapses down in response

to hyperactivity (Stellwagen and Malenka, 2006) and other

forms of homeostatic plasticity (Turrigiano, 2011).

Functional Significance
The slow activation of TNF-amaymechanistically result from the

diffusive signaling interactions between neurons and glia (Stell-

wagen and Malenka, 2006). Is there a functional reason, a

computational benefit, for evolution to select this slow means

of maintaining an activity set point? Consider an extreme

example: if very fast homeostatic plasticity always set the post-

synaptic activity to a constant set point, this would prevent cod-

ing of differing signals with differing firing rates. Similarly, for

Hebbian plasticity to learn stimulus statistics that change over

minutes, hours, or a day, it may be important that homeostatic

plasticity not substantially change activity statistics over these

timescales.

Maintaining these two processes through separable factors al-

lows dynamic range for coding to be maintained while allowing

Hebbian mechanisms to freely learn synaptic patterns without

interference. It allows stable weight patterns to be maintained

without constitutively active but cancelling Hebbian and homeo-

static plasticities, whichmight bemetabolically costly. Finally, as

we have seen, it allows dynamic range to be maintained slowly,

relative to Hebbian learning, without oscillations or instability.

Thus, the dynamical interaction we propose here may describe

a key biological principle underlying memory and learning in

neuronal circuits.
EXPERIMENTAL PROCEDURES

Mathematical Model

The single-input models are detailed in Results. Formodels withN= 500 inputs

we label inputs by i, i = 1;.; 500. The eye that drives a given input is indicated

by ei˛fC; Ig (C, contralateral eye; I, ipsilateral eye). In simulations of monocular

cortex, ei =C for all i. In simulations of binocular cortex, ei =C, i = 1 : 310; ei = I,

i = 311 : 500, which reproduces the experimentally observedODI of about 0.25

under normal vision (Kaneko et al., 2008b). Inputs are uniformly spaced on a

1D retinotopic axis, with zi the retinotopic position of the ith input (0%zi<1

ci). In monocular cortex, zi = ði � 1Þ=500. In binocular cortex, zi = ði � 1Þ=310
for i = 1 : 310 and zi = ði � 311Þ=190 for i = 311 : 500.

Input Statistics with Multiple Presynaptic Neurons

The input firing rates are assumed to be Gaussian random variables with mean

hxii and covariance ~Qij of the form:

~Qij =qei ;ej hxii
�
xj
�
exp

"
� ðzi � zjÞ2

2s2
q

#
: (Equation 10)

The correlation magnitudes are qC;C =qI;I = 1, qC;I =qI;C = 0:5; sq = 0:2. The

mean firing rates are hxii= 1 for normal rearing and hxii= 0:5 for contralateral

inputs under MD. To demonstrate the robustness of our plasticity rule to noise

and to reproduce some biological heterogeneity, we added noise to the covari-

ance matrix, i.e.,Qij = ~Qij + 2ðxi + xjÞ, where fxig is a set of independent random
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Gaussian variables with unit variance. Note that, while this noise perturbs indi-

vidual synapses, it does not affect ODP.

Visual Response and Ocular Dominance Index

The visual response C or I of the contralateral or ipsilateral eye, respectively,

was defined as the sum of that eye’s synaptic strengths. The ocular dominance

index was ODI= ðC� IÞ=ðC+ IÞ.

Simulation Methods

Numerical simulations in Figures 1, 2, 3, and 4 (except Figure 1C) used Math-

ematica (using NDSolve, which uses the Livermore Solver for Ordinary Differ-

ential Equations Adaptive [LSODA] approach). Other simulations used Matlab

(a modified Rosenbrock formula of order 2).

In Vivo Experiments

All procedures were approved by the Institutional Animal Care and Use Com-

mittees at University of California San Francisco, in compliance with the NIH

guide for the care and use of laboratory animals. C57BL/6 male mice (Charles

River Laboratories) were used. Day 0 in all experiments is P25. Eyelid suture,

visual stimulation, repeated optical imaging of intrinsic signals, and quantifi-

cation of response amplitude and ocular dominance were performed as

described (Kaneko et al., 2008b). For the partial NMDA blockade experi-

ments, intraperitoneal injections of 3-(2-Carboxypiperazin-4-yl)propyl-1-

phosphonic acid (CPP, Tocris Bioscience) (15 mg/kg) or the vehicle solution

were made every 24 hr for the duration, as indicated in Figures 3 and 7. To

inhibit TNF-a signaling, recombinant soluble TNF receptor 1 (R&D Systems)

at the rate of 8.57 mg/hr or the vehicle solution was continuously infused

into the cortex using an osmotic minipump (Alzet model 1002) during MD

as indicated in Figure 7. For details of in vivo procedures, see Supplemental

Information Section S9.
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S1 BCM learning rule: Why the results of Fig. 1C are

general

In Fig. 1C, we showed the behavior of the BCM rule plotted against x, the value of the
input activity during MD, and τθ/τw, the speed of homeostatic plasticity relative to Hebbian
plasticity. Here we show that those results are general, independent of assumptions as to
the values of the model parameters.

To see this, we transform the variables of the BCM learning rule (Eqs. 1-2). Let [t] denote
units of time. If x, y, y0 and θ all have units of firing rate or 1/[t], and w is dimensionless,
then for dimensional consistency Eq. 1 should take the form

τw
dw

dt
= kxy(y − θ) (S1)
1



where k is a constant with units of [t3]. In Eq. 1, we implicitly worked in units in which
k = 1. Taking the BCM equations to be Eqs. S1 and 2, we define the dimensionless variables
ηx ≡ wx/y0, ϕ ≡ θ/y0, αx ≡ kx2y0τθ/τw, and s ≡ t/τθ. We have indexed ηx and αx by x
because their values will change when the input activity levels x change, as under MD. In
terms of these dimensionless variables we can rewrite the BCM equations as

dηx
ds

= αxηx(ηx − ϕ) (S2)

dϕ

ds
= −ϕ+ η2

x, (S3)

whose unique fixed point is ηx = ϕ = 1. For a fixed x, the stability of the fixed point depends
only on the dimensionless parameter αx, and the behavior of the model more generally is
characterized entirely by αx and the initial values of ηx and ϕ at t = 0.

We assume that the input activity is x0 under normal vision and is reduced by a factor
of f to xMD = fx0, 0 < f < 1, at the onset of MD. We take the initial condition under MD
to be the normal-vision fixed point. This initial condition, ηx0 = ϕ = 1, becomes ηxMD

= f ,
ϕ = 1 under MD. Hence, dynamics of this rule under MD are completely characterized by f
and αxMD

, or equivalently by f and αxMD
/f 2 = αx0 . That is, regardless of the choices of the

parameters x0, y0, k, τθ, and τw, any models with the same f and αx0 will show exactly the
same behaviors of ηx0 and ϕ under normal rearing and of ηxMD

and ϕ under MD.
In Fig. 1C, since we took x0 = 1, the y-axis value x = fx0 was equal to f for that model,

so the y-axis can more generally taken to be f . Since we also took k = 1 and y0 = 1 in
that model, the x-axis value τθ/τw was equal to αx0 for that model, so the x-axis can more
generally taken to be αx0 . The illustrated behaviors depend only on f and αx0 and so these
plots, with the axes taken to be f and αx0 , are identical for any instantiation of the BCM
model regardless of the specific choices of the underlying parameters that give the particular
values of αx0 .

In particular, Fig. 1C illustrates w∗, the value of the synaptic strength w at the first
trough of synaptic weight under MD relative to its initial value at the onset of MD. From
the definition ηxMD

= wfx0/y0 and the fact that f , x0, and y0 are not changing as MD
proceeds, we see that the value at the first trough relative to the initial value is the same
for ηxMD

as it is for w, so the plotted values of w∗ vs. f and αx0 are identical for any
model. Fig. 1C also illustrates the stability or instability of the MD fixed point, which is
determined simply by f and αx0 , and measures the degree of stability by −Reλτθ where λ
is the eigenvalue with largest real part of the BCM equations linearized about the MD fixed
point. This stability measure is based on the following: if λ̃ is the corresponding eigenvalue
of the dimensionless BCM equations, the amplitude of the corresponding eigenvalue develops

in time as eλ̃s = e
λ̃ t
τθ = eλt where the eigenvalue of the original equation is related to that

of the dimensionless equation by λ̃ = λτθ. Thus, the stability index is simply −Re λ̃, which
depends only on f and αx0 .

The BCM rule often includes saturation of Eq. S1 at high y, rather than unlimited,
quadratic-in-y growth of dw

dt
. Therefore it is important to note that our conclusions would

not be affected by incorporating such saturation. First, the stability of the fixed point,
2



y = wx = θ = y0, is determined by the local properties of Eq. S1 in the vicinity of the
fixed point, whereas – to allow sufficient LTP – saturation must occur at values of y well
above the fixed-point value. Thus saturation will not affect stability. Next, the value w∗ of
the synaptic strength at the first trough is invariant to the y > θ part of Eq. S1 because,
starting from the baseline fixed point, the synapse never undergoes LTP until it reaches w∗.
Taking these points together, the conclusion of Fig. 1C, that it is impossible to make the
adjustment of θ in the BCM rule slow enough to allow realistic closed-eye depression yet fast
enough to avoid oscillations or instability, would not be altered by incorporating saturation
of Eq. S1 at high y.

S2 Parameter choices for the model that adds stable

Hebbian terms and a homeostatic term; Related to

Fig. 2

We choose parameters of Eqs. 3–4 to reproduce the results of MD in the monocular cortex
(Kaneko et al. 2008b). We choose input activity to be x = 1 before MD (and x < 1
during MD), and set wmax = 1. These choices are arbitrary, setting the scale for the other
parameters. The minimum synaptic strength is set to wmin = 0.6 because LTD experiments
typically depress synapses by ∼30% and, more generally, a few days of MD does not eliminate
all synapses. The timescale for plasticity, τw = 0.3 day, is chosen so that the synaptic
strength reduces to about 70% of the pre-MD value within 3 days of MD in the absence
of homeostatic modulation (that is, if ȳ is held constant). The timescale for averaging the
postsynaptic activity, τȳ = 3 days, is chosen so that homeostatic plasticity significantly
potentiates the synapse after approximately 3 days of MD. Parameters y0 = 0.8 and θ = 0.6
are taken from an appropriate range, within which the results do not significantly change. If
y0 � 1, then homeostatic plasticity cannot be strong enough to provide sufficient homeostatic
potentiation under MD and, at the same time, weak enough to not strongly suppress synaptic
strength during normal rearing, which causes synapses to undergo LTD to saturation in
the normal condition and thus eliminates MD-induced LTD. If y0 > wmax, then Hebbian
and homeostatic plasticity terms are separately zero during normal rearing, which causes
a problem when binocular cortex is considered (see discussion below of “condition 1”). If
θ is too small, no Hebbian depression happens under a reasonable MD condition, and if θ
is too large, the synapse is strongly depressed even under the normal condition. Finally,
the magnitude of homeostatic plasticity γ = 0.23 is chosen so that, after MD and LTD,
homeostatic plasticity returns visual response to about 90% of the pre-MD value as in the
experimental observations. Larger or smaller γ lead to larger or smaller final weight values,
respectively.

While the above discussion suggests that alternative parameters cannot solve the model’s
problems, we cannot fully explore the parameter space of this model. Nonetheless, we can
argue that the conclusions we have reached are general and parameter-independent. These
conclusions are: (1) for some ranges of input the Hebbian and system fixed points will not
3



coincide, meaning that the two forms of plasticity are constitutively active but opposed; (2)
where this is true, NMDA blockade should reveal strong weight changes due to homeostatic
plasticity; and (3) when the two fixed points are sufficiently far apart, oscillations and/or
instability should be seen in the vicinity of the system fixed point. Points (2) and (3) follow
from point (1).

The generality of point (1) can be seen from computing the range of input x that allows
a fixed point without constitutive plasticity; for the remaining x, any fixed point will have
constitutive plasticity. To compute the fixed points, we use y = wx and the fact that at
the fixed point y = ȳ, so that, given w at the fixed point, ȳ = wx. Fixed points without
constitutive plasticity will have w = y0/x (the condition for no homeostatic plasticity). The
condition for no Hebbian plasticity is then either

1. wx2 > θ and w ≥ wmax, i.e. y0x > θ and y0 ≥ wmaxx, or θ/y0 < x ≤ y0/wmax.

2. wx2 < θ and w ≤ wmin, i.e. y0x < θ and y0 ≤ wminx, or y0/wmin ≤ x < θ/y0.

3. wx2 = θ, or y0x = θ.

For values of x outside of these ranges – that is, for x > Max(θ/y0, y0/wmin), x <
Min(y0/wmax, θ/y0), or y0/wmax < x < y0/wmin (the latter condition translates to wmin <
w < wmax, i.e. it is true whenever the fixed-point w is strictly inside the Hebbian bounds) –
any fixed point must have constitutive, opposed Hebbian and homeostatic plasticity, i.e. the
system and Hebbian-only fixed points will not coincide. For example, for the parameters we
used in the main text, fixed points will have constitutive plasticity for all values of x except
0.75 ≤ x ≤ 0.8.

Furthermore, both Hebbian and homeostatic plasticity must be constitutively active at
least under the normal rearing condition (x = 1) to reproduce ODP. If x = 1 satisfies
condition 1 or 2, Hebbian plasticity is not active in the normal condition. The summed
synaptic strength is determined by the homeostatic constraint y = y0. Then, if we consider
inputs from two eyes in binocular cortex, any relative strengths of the two eyes – that
is, any ODI – with the given summed synaptic strength will be a fixed point so long as
Hebbian plasticity remains saturated for both eyes. But this causes a problem: so long
as Hebbian plasticity remains inactive. perturbations of the ODI, e.g. due to brief MD,
will never recover but will simply persist, which is against experimental observations. In
addition, if x = 1 satisfies condition 2, there is an additional problem. In this case, Hebbian
depression is already saturated during normal rearing. Hence, MD cannot induce further
Hebbian depression.

S3 Phase-plane analysis of two models of MD in the

monocular cortex; Related to Figs. 2 and 4

Here we use phase-plane analysis to gain an intuition for the reasons that the single-factor
model of Eqs. 3-4, which involved Hebbian and homeostatic terms competing to control
4



changes in w, tended to show weight oscillations. We similarly show in phase-plane analysis
why the two-factor model of Eqs. 5-6 does not oscillate, an issue we examine more rigorously
in the next section of the Supplemental Information, in which we analyze the stability and
origin of oscillations of the model of Eqs. 3-4.

We begin with the single-factor model. The differences in stability of Figs. 2A vs. 2B can
be intuitively understood from the phase plane plots of Fig. S1A,B. The arrowed lines show
the direction of change in the variables (w, ȳ) (their time derivatives) for each given value
of (w, ȳ), while line colors indicate the strength of the derivatives, from strongest (blue) to
weakest (red). The fixed point of the dynamics, where both derivatives are zero, is given by
the intersection of the two black lines: the solid black line represents the locus of points for
which dw

dt
= 0 (the w nullcline), while the dashed black line represents the locus for which

dȳ
dt

= 0 (the ȳ nullcline).
The generalized stability of the fixed point, by which we mean whether the fixed point

is approached without significant oscillations, is largely determined by the stability of the
flow in the w direction (with ȳ fixed) at the fixed point: for small perturbations in the w
direction from the fixed point, is the w-component of the flow in the opposite direction of the
perturbation, back toward the fixed point (stable flow in the w direction) or is it in the same
direction of the perturbation, away from the fixed point (unstable flow in the w direction)?
A B
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Figure S1: Phase-plane plots of Eqs. 3-4 for x = 0.5 (A) and x = 0.73 (B). The two axes specify
values of averaged postsynaptic activity ȳ and synaptic weight w, and the lines with arrows show
the direction of change in these two variables from each given point in the plane. The colors of the
lines indicate the strength of the derivatives at each point, proceeding red to yellow to green to
blue from weakest to strongest. (Strength is assayed as the length of the gradient vector dw

dt ŵ+ dȳ
dt

ˆ̄y
where ŵ and ˆ̄y are unit-length vectors pointing along the w-axis and ȳ-axis respectively.) The solid
black line shows the w-nullcline (the locus of points along which dw

dt = 0) and the dashed line shows

the ȳ-nullcline (the locus of points along which dȳ
dt = 0).
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Figure S2: Phase plane analysis of the plasticity model of Eqs. 5-6.

Conventions as in Fig. S1. White regions correspond to regions of very small derivatives.
If the flow is unstable in the w direction, then, because homeostatic plasticity (changes in ȳ)
are slow relative to Hebbian changes, oscillations (or instability) will result: the perturbation
will lead to large changes in w before slow changes in y lead to a reversal in the direction of
changes in w (a crossing of the w nullcline), which in turn leads to a large change in w in the
opposite direction as y slowly changes in the opposite direction, etc. Because the derivative
dw
dt

is positive below the w nullcline and negative above the w nullcline, the flow in the w
direction is unstable if the fixed point is on a positive-sloping portion of the w nullcline, as
in Fig. S1B, while it is stable if the fixed point is on a negative-sloping portion of the w
nullcline, as in Fig. S1A. The w nullcline transitions from negative to positive slope with
increasing w. As x is increased there is a range of x for which the fixed point is found on
the positive-sloping region of the w nullcline, leading to oscillations for slow homeostatic
plasticity.

In contrast, phase-plane analysis of Eqs. 5-6 (Fig. S2) shows that the fixed point always
occurs at one of the two limiting values of ρ, as is clear directly from Eq. 5, and that the
flow in the ρ direction is always stable at these limiting values (as is also clear directly from
Eq. 5).

S4 Stability of the two-factor, single-synapse model of

plasticity; Related to Fig. 4

Here we analytically demonstrate the stability of the fixed point and lack of oscillations in
approaching the fixed point of the two-factor, single-synapse plasticity model of Eqs. 5-6.
Before more generally analyzing stability, we consider the dynamics in the limit of infinitely
slow homeostasis (τH/τρ → ∞). For simplicity, we set τρ = 1 (which just sets the units of
6



time), so our equations are

dρ

dt
= (ρmax − ρ)[xy − θ]+ − (ρ− ρmin)[θ − xy]+ (S4)

dH

dt
=

1

τH
H(1− y/y0) (S5)

with w = ρH and y = wx. Analyzing these equations for τH →∞ gives an intuitive picture
of why, even in the limit of extremely slow homeostasis, there are no oscillations and at most
one overshoot of the synaptic weight, as shown in Fig. 5B.

Because of the assumption τH →∞, we can assume that ρ always moves rapidly (relative
to the slow timescale of homeostasis) to a stable fixed point of Eq. S4 for a given value of
H, before H changes appreciably. For each H, these stable fixed points of ρ are given by

ρ(H) =

{
ρmax whenH > θ

ρmaxx2

ρmin whenH < θ
ρminx2

(S6)

(Fig. S3A). Therefore, the synaptic strength converges rapidly to ρ(H)H (Fig. S3B). Note
that ρ = ρmax and ρ = ρmin are both stable fixed points when θ

ρmaxx2
< H < θ

ρminx2
, so in this

case the choice between these two values of ρ depends on history. Nonetheless, there exists
a unique value of H that achieves a particular synaptic strength w = ρ(H)H (Fig. S3B).

The slow change in H can then be described as occuring with ρ always at its stable fixed
point, so that y = wx = ρ(H)Hx. The dynamics of Eq. S5 can then be written

dH

dt
=

1

τH
H[1− ρ(H)Hx/y0] (S7)

Thus, H evolves so that ρ(H)H approaches y0/x (H = 0 is an unstable fixed point). Be-
cause there is only one value of H that achieves this, the final fixed point is unique and
stable. Therefore, even when homeostatic plasticity becomes infinitely slow, there should
be no oscillations of weights, but only at most one rapid transition between ρmax and ρmin,
depending on the initial value of ρ, until synapses converge (described further in legend of
Fig. S3).

Now, we analyze the stability of the fixed point of Eq. S4 for finite τH . Changes in τH do
not change the locations of the fixed points, but could change their stability. However, since
we saw that the fixed points are stable even for τH →∞, and H provides negative feedback,
it would be very surprising if reductions in τ rendered the fixed point unstable, and we will
find that this does not happen.

The fixed point depends on the sign of φ0 ≡ xy0 − θ, and is given by: (i) (ρ,H) =
(ρmax,

y0
ρmaxx

) if φ0 > 0 and (ii) (ρ,H) = (ρmin,
y0

ρminx
) if φ0 < 0. We will prove that the fixed

point is stable and without oscillations in either case. Following standard procedures for

calculating stability, we consider a small perturbation

(
δρ
δH

)
from the fixed point, and

consider the linearized dynamics about the fixed point:

d

dt

(
δρ
δH

)
= J

(
δρ
δH

)
(S8)
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Figure S3: The two-factor model shows at most one overshoot of the synaptic weight before
it converges. (A) When the homeostatic plasticity is much slower than Hebbian plasticity, the
Hebbian component ρ converges rapidly for each H to its maximum value ρmax = 1 (red line) or
minimum value ρmin = 0.6 (blue line). When θ

ρmaxx2
< H < θ

ρminx2
those two values are bistable and

ρ depends on its history. The dashed purple line shows the separatrix (unstable fixed points). (B)
The combination of ρ and H that achieves the homeostatic constraint wx = y0, i.e. ρH = y0/x, is
unique. Under this dynamics, the synaptic weight ρH moves monotonically along whichever stable
branch it starts on toward the stable fixed-point value y0/x; if this value can only be reached on
the other branch, the weight jumps to the other branch (at constant H) when it reaches the end of
the first branch, and then evolves monotonically along the second branch to the fixed point. The
combination of ρ and H changes accordingly along the stable branches in (A). Thus, there is a
monotonic evolution to the fixed point except for possibly one jump between the two branches.

where J is the Jacobian matrix of Eqs. S4-S5 (if rρ and rH are the right-hand sides of Eqs. S4

and S5, respectively, then J =

(
∂rρ
∂ρ

∂rρ
∂H

∂rH
∂ρ

∂rH
∂H

)
), evaluated at the fixed point. The stability

is then determined by the eigenvalues of J . We will find that the eigenvalues are all real,
indicating no oscillatory behavior around the fixed point, and negative, indicating stability.

(i) ρ = ρmax and H = y0
ρmaxx

if φ0 > 0: In this case the Jacobian matrix is

J =

(
−φ0 0
− γy0
ρ2maxx

−γ

)
, (S9)

and the two eigenvalues are −φ0 and −γ, which are both negative and real.

(ii) ρ = ρmin and H = y0
ρminx

if φ0 < 0: In this case the Jacobian matrix is

J =

(
φ0 0
− γy0
ρ2minx

−γ

)
, (S10)
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and the two eigenvalues are φ0 and −γ, which are both negative and real. Hence, the fixed
point is stable and shows no oscillatory behavior around the fixed point in either case.

S5 Mathematical relationship between the two factor

and conventional model; Related to Figs. 2 and 4-6

In order to better understand this rule and to compare it to the previous rule of Eq. 3, we
calculate dw

dt
= H dρ

dt
+ dH

dt
ρ.

S5.1 Single-synapse model

We use Eqs. 5-6 to obtain the following mathematically equivalent formulation of the model:

τρ
dw

dt
= (Hρmax − w)[xy − θ]+ − (w −Hρmin)[θ − xy]+ +

τρ
τH
w

(
1− y

y0

)
(S11)

τH
dH

dt
= H

(
1− y

y0

)
(S12)

Equation S11 has a form similar to Eq. 3 and is expressed as a sum of three terms, which
correspond to the LTP, LTD, and homeostatic terms of Eq. 3 (with the homeostatic learning
speed γ now explicitly represented as τρ

τH
). We will refer to the first two terms as the Hebbian

terms and the third as the homeostatic term. Note that the factor H that scales the maximal
and minimal weights is a postsynaptic-cell-specific factor that is shared across synapses if
multiple synapses are considered, while the constants ρmax and ρmin might vary from synapse
to synapse. The differences between Eq. S11 and Eq. 3 are:

1. The upper and lower limits of the synaptic strength, Hρmax and Hρmin, are not fixed
but are modified by homeostatic plasticity (Eq. S12).

2. The homeostatic term is driven by the instantaneous postsynaptic firing rate as opposed
to the running-average of the postsynaptic firing rate in Eq. 3. Thus, there is no delay
in the homeostatic term; as we have seen, delays can cause oscillations of synaptic
strength.

3. A minor difference is that Eq. S11 uses linear functions (Hρmax−w) and (w−Hρmin),
whereas Eq. 3 uses threshold-linear functions [wmax−w]+ and [w−wmin]+. Thresholding
would not alter the dynamics in Eq. S11 because the synaptic weight under Eqs. S11-
S12 is always restricted to Hρmin ≤ w ≤ Hρmax. This may not be obvious under
Eqs. S11-S12, but is obvious from the equivalent Eqs. 5-6 and the relationship w = ρH.

Thus, our proposed model can equivalently be understood as one in which Hebbian and
slow-but-instantaneous homeostatic plasticity both compete to modify w, but in addition
homeostatic plasticity continually modifies the minimal and maximal weight values. With
9



homeostatic modification of limiting weight values, the Hebbian terms in Eq. S11 approach
a stable state of zero plasticity with weights saturated at their limiting values, and this state
remain undisturbed as homeostatic plasticity proceeds until it too reaches zero. For this
reason, Eqs. S11-S12 generically reach a steady state in which there is no constitutive plas-
ticity (i.e., Hebbian and homeostatic plasticity are each separately zero), as is perhaps more
obvious from the equivalent Eqs. 5-6, whereas the seemingly very similar Eq. 3 generically
reaches a steady state in which Hebbian and homeostatic plasticity are each constitutively
active but opposed (i.e. their sum is zero, but the terms individually are not zero).

S5.2 Multi-synapse model

We now use Eqs. 7-9 to compute dw
dt

. We define the step function Θ(x) by Θ(x) = 0, x ≤ 0;
Θ(x) = 1, x > 0. Note that parameters ρmax and ρmin may vary across synapses though we
do not make this explicit here. Then our equations become1

τρ
dwi
dt

= (Hρmax − wi)[φi]+ − (wi −
√
Hρmin)[−φi]+

+Θ (H − 1)
τρ
τh
wi

(
−1 +

1

H
F

(
Hy0

〈y〉

))
(S13)

H = Max(h, 1) (S14)

τh
dh

dt
= −h+ F

(
Hy0

〈y〉

)
(S15)

Equation S13, like Eq. S11, is the sum of an LTP, an LTD, and a homeostatic term.
Equation S13 is more complex than Eq. S11 for two reasons: the H-dependence of ρmin man-
ifests as a

√
H rather than H scaling of the minimum weight (with the understanding that

H ≥ 1, Eq. S14); and the dependence of H on h manifests as the complex homeostatic plas-
ticity term. Despite this complexity, Eq. S13 has the same three properties as we described
above for Eq. S11. Thus, the multi-synapse model can again be equivalently understood
as one in which Hebbian and slow-but-instantaneous homeostatic plasticity both compete
to modify w, but in addition homeostatic plasticity continually modifies the minimal and
maximal weight values. This again leads to a steady state in which Hebbian and homeo-
static plasticity are each separately zero (no constitutive plasticity), for the same reasons
just outlined for the single-synapse model.

S6 Parameter dependency of the simple two factor model;

Related to Fig. 4C

In Fig. 5C, we considered relatively strong deprivation, x = 0.5, applied for 5 days. Here, we
considered a weaker deprivation, x = 0.75, maintained for a long period (Fig. S4A). This led

1We neglect the fact that the homeostatic term in Eq. S13 is also nonzero if H = h = 1 and dh
dt > 0. This

condition holds only for an infinitesimal amount of time and hence contributes negligibly to Eq. S13.
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Figure S4: Simulation results of the two-factor model in the monocular cortex during mild MD.
The conventions are as in Fig. 4C but input is stronger during MD. (A) For intermediate input
activity during MD, the weight was depressed by Hebbian plasticity to the minimum strength,
but in this case the slow homeostatic potentiation during continued MD ultimately brought the
pre- and postsynaptic correlation xy = wx2 above the LTP threshold θ. This induced LTP to the
maximum synaptic value, followed by slow homeostatic decrease of this maximum value. (B) For
large input activity during MD, there was no LTD. The synaptic strength remained at the maximal
value and homeostatic plasticity slowly increased the maximal value to compensate for the slight
loss of input.
to a similar trajectory of initial LTD followed by slow homeostatic scaling up of the weights.
However, when we allowed the deprivation to continue for an extended period, the scaling
brought the synaptic strength across the LTP/LTD threshold. At that point, just as in the
case of recovery in Fig. 5C, rapid LTP increased ρ until it reached its maximal value, after
which homeostatic plasticity slowly reduced the synaptic strength.

Next, we considered still weaker deprivation, x = 0.9 (Fig. S4B). In this case, the decrease
in the input firing rate was small enough that the LTP/LTD threshold was not crossed, so
there was no initial LTD and ρ remained at ρmax. Homeostatic plasticity slowly compensated
for the reduction of the input by potentiating the synapse.

The strongest deprivation robustly yields the behavior we are seeking to explain: fast LTD
followed by slow homeostatic compensation (Fig. 5C). For weaker deprivation, alternative
behaviors are seen. The overshoot of synaptic strength after long periods of intermediate-
strength deprivation (Fig. S4A) depends on homeostasis strengthening synapses sufficiently
to cross the Hebbian LTD/LTP threshold, and this in turn depends on model details. It
would not occur, for example, if an appropriate maximum value were imposed on H. Home-
ostatic strengthening in response to mild deprivation (Fig. S4B) might accurately describe
the homeostatic strengthening of excitatory synapses in response to visual deprivation that
occurs in layer 4 of rat visual cortex before the opening of the critical period for MD-induced
ODP (Maffei et al. 2004). Before the opening of the critical period, visually-driven activity
is likely to be weak relative to spontaneous activity (Toyoizumi et al. 2013), so that the
11



effects of deprivation on cortical activity may be relatively weak.

S7 Model modifications for the multi-synapse model;

Related to Figs. 5 and 6

S7.1 Modification of the homeostatic and Hebbian rules

For the multi-synapse plasticity models, we used a more complicated homeostatic rule than
the simpler rule of Eq. 6, and incorporated H-dependence of ρmin into the Hebbian rule, to
try to solve several problems of the simpler rule:

• There is continued ODP towards the open eye during 3-7 days of MD that is TNF-α
dependent (it does not occur in TNF-α KO animals nor in animals in which TNF-α
receptors are blocked) (Kaneko et al. 2008b). To model this effect, we incorporated a
reduction of ρmin with increases of the homeostatic variable H, so that increases of H
allowed further LTD. The dependence on H should be weaker than a 1/H dependence
because, otherwise, homeostatic scaling could not potentiate synapses in a depressed
state.

Other factors could also contribute to TNF-α-dependent ODP, but we restricted to
a single factor for simplicity. These other factors include: (1) a similar increase in
ρmax with increasing H could allow TNF-α-dependent LTP of the open eye; (2) there
could be a minimal, threshold level of pre-post covariance for inducing LTD, so that
LTD stops at an intermediate weight level initially as LTD lowers the covariance, but
resumes as TNF-α-dependent homeostatic plasticity increases the covariance; (3) Bet-
ter representation of the stochasticity of neural activity and plasticity should allow a
broader distribution of synaptic strengths in the normal state. Then, after 3 days of
MD, a larger percentage of open-eye synapses would be in the LTD state than in our
model despite an overall shift toward LTP, and similarly a larger percentage of closed-
eye synapses would be in the LTP state despite a shift toward LTD. Homeostatic
strengthening of response might lead Hebbian plasticity to squeeze these distributions,
adding to TNF-α-dependent LTP of the open eye and LTD of the closed eye. (Note
that factors like stochastic broadening of the synaptic distribution and/or a minimal
covariance threshold for LTD are also necessary to explain why LTP and LTD proto-
cols work, e.g. why in the normal state all synapses are not already saturated at the
potentiated state before the protocol is applied, assuming that individual synapses are
generally saturated (O’Connor et al. 2005, Petersen et al. 1998). Note also that our
model fails to quantitatively account for the strength of decrease in open-eye potenti-
ation induced by NMDA blockade. This could be fixed by factors (1) or (3) above or
by further modifications of the homeostatic rule, but we neglected this for simplicity.)

• In the simple rule, homeostatic plasticity, while slow, was active from the initiation
of MD. As a result, significant homeostatic plasticity had already occurred at the
12



time of maximal LTD (evident as the rise of ρminH by day 2 in Fig. 4C). While this
caused no problem for the single-synapse model of monocular cortex studied previ-
ously, in a binocular cortex model this would mean that some potentiation of open-eye
responses would already be visible at that time, unlike experiments (Kaneko et al.
2008b). This might be explained by LTD of the open eye that offsets homeostatic
potentiation, but this is unlikely because no depression of open eye responses is ob-
served in TNF-α knockout mice (Kaneko et al. 2008b). To explain this, we assumed
a more complex homeostatic rule that delays the onset of homeostatic plasticity until
a threshold amount of an underlying factor is accumulated. Other factors we did not
consider, such as necessity of a threshold amount of activity deviation from the set
point before homeostatic plasticity begins, could also or alternatively be involved.

• Stellwagen and Malenka (2006) showed that TNF-α signaling is required for scaling
up of synaptic weights in response to activity blockade, but not for scaling down of
synaptic weights in response to excess activity induced by inhibitory blockade. To
capture this, we modified the rule so that H can increase from a baseline level of 1
(representing scaling up from baseline) but cannot decrease below 1 (meaning that
scaling down from baseline is not achieved by modification of H).

• Homeostatic plasticity does not appear to perfectly compensate for activity changes.
The homeostatic increase seems to be a scaling up of about 30% from the level at day 3,
both in monocular and binocular cortex, which in monocular cortex restores synaptic
weights to near the pre-MD level (Kaneko et al. 2008b); this would not be sufficient to
restore activity to its pre-MD level under continuing MD. To match this, we made the
growth of H a saturating function of the ratio of actual to set-point activity, preventing
full compensation for the activity decrease. This could also be explained by a lack of
activation of homeostatic plasticity by activity deviations from the set point of less
than a threshold amount.

To capture these ideas, we assumed the more complex homeostatic rule of Eqs. 8–9. In
Eq. 9, F (x) (Eq. S16) is a monotonically increasing function that is 0 for x ≤ 1, jumps
from 0 to 1 when x exceeds 1 and then increases roughly linearly with x until it saturates
at around 2. The mathematical form used was

F (x) = [1 + tanh(x− 1)]Θ(x− 1.01) (S16)

where Θ(z) is a step function, Θ(z) = 1 for z ≥ 0, = 0 otherwise. The shape of this function
is illustrated in Fig. S5A. The argument of F is chosen to be Hy0/ 〈y〉 so that, if F did not
saturate (e.g., if F (x) = x), the stable fixed point of homeostatic plasticity, starting from
a condition with y0/ 〈y〉 > 1, would be 〈y〉 = y0. That is, the homeostatic rule restores the
set-point activity for smaller decreases of activity, but saturation prevents full restoration
for larger decreases of activity.
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Figure S5: (A) The nonlinear function F used in Eq. 8 to update h. This function is monotonically
increasing, jumping from 0 to 1 at x ≈ 1 and then smoothly saturating at around 2. (B) The arbor
function A used in the multi-synapse plasticity models for binocular cortex in the expression for
synaptic strength wi = HAiρi. The value of Ai (Eq. S17) is shown vs. index value i, where indices
i = 1, . . . , 310 are from the closed eye (contralateral eye, labeled ‘C’) and i = 311, . . . , 500 are from
the open eye (ipsilateral eye, ‘I’).
S7.2 The arbor function

The axonal arborization function Ai describes the anatomical density of axon branches to
the postsynaptic neuron from a given presynaptic neuron i. The arborization strengths are
given by

Ai ∝
1

1 + exp(3[(zi − 0.5)2/(0.2)2 − 1])
, (S17)

where the overall strengths are normalized according to
∑N

i=1 Ai = 1. The shape of this
function is illustrated in Fig. S5B for the binocular case and in Fig. S6C for the monocular
case.

S8 MD results of the two-factor, multi-input model in

the monocular cortex; Related to Fig. 5

Here we examine the results of MD in monocular cortex for the multi-input model of Eqs. 7-
9 (Fig. S6). MD to the contralateral eye was started at day 0 and the eye was re-opened
at day 7. Initial LTD induced rapid decrease of the Hebbian factors, ρ, and homeostatic
potentiation was induced by the delayed increase of the homeostatic factor H. Homeostatic
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Figure S6: Simulation result in the monocular cortex before, during, and after MD using the
model of Eqs. 7-9. We considered 500 inputs from the contralateral eye, which was closed during
MD. MD was started at day 0 and the closed eye was re-opened at day 7. (A) Synaptic strengths
wi are shown as a function of developmental time. (B) The Hebbian factors ρi. (C) The arbor
function Ai. (D) The normalized visual response (defined as in Fig. 5). (E) The homeostatic factor
H (black) and h (green). (F) The average postsynaptic firing rate 〈y〉.
plasticity was absent for the first few days of MD because it took time for h to reach the
threshold value of 1. After the re-opening of the contralateral eye, the model showed an
overshoot of synaptic strengths (Fig. S6A,D), as in the single-synapse model of monocular
cortex and in the multi-input model of binocular cortex. As in those cases, this behavior
occurred because, after restoring normal visual input, the Hebbian component ρ potentiated
rapidly and the homeostatic factor H more slowly decayed back to its baseline.

S9 Experimental Methods; Related to Figs. 3 and 7

In vivo experiments: C57BL/6 wild type breeders were purchased from Charles River
Laboratories (Hollister, CA) and bred as needed. Animals were maintained in the animal
15



facility at University of California San Francisco and used in accordance with protocols
approved by the UCSF institutional Animal Care and Use Committee. Total of 47 C57BL6
male mice were included for the analysis.

Monocular deprivation (MD) was performed by suturing shut the right eyelid (contralat-
eral to the imaged hemisphere) at P25 as described (Kaneko et al. 2008b). The initial day
of imaging was described as day 0 and other days are numbered sequentially from there.
To produce recovery from effects of MD, vision was restored to the closed eye by simply
removing the suture. All mice were kept under standard housing conditions with free access
to food and water between recordings.

NMDA blockade: Two days prior to recording baseline responses, a custom stainless steel
plate for head fixation was attached to the skull with dental acrylic under isoflurane anesthe-
sia as described (Kaneko and Styker, 2014). Animals were given a subcutaneous injection of
carprofen (5 mg/kg) as a post-operative analgesic. The competitive NMDA receptor antag-
onist (R,S)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) (Tocris Bioscience)
was dissolved in saline at a concentration of 1 mg/ml and the drug solution was injected
intraperitoneally at a dose of 15 mg/kg roughly every 24 h, as described (Sato and Stryker
2008). The first injection in each experiment was performed right after the imaging of the
corresponding day. On subsequent days, injections were made around 9AM, and imaging, if
done, occurred 1-6 hours after injection (1 hr for the first mouse imaged, 6 hr for the last
mouse imaged on given day). As expected, baseline response levels were indistinguishable in
CPP and control animals (Fig. S7).

TNF-α blockade: Intracortical infusion of soluble TNF receptor-1 (sTNFR1, R&D Sys-
tems, Inc. Minneapolis, MN) was performed as described (Kaneko et al. 2008b, except that
implantation was done on day 0). Briefly, on day 0, immediately after baseline imaging, we
implanted a cortical cannula that was connected with an Alzet osmotic minipump (model
1002) filled either with vehicle solution (PBS containing 0.1% bovine serum albumin as a
carrier) or 35 mg/ml of sTNFR1. This was followed immediately by eyelid suture. Infusion
continued during days 0-5 of 6-day MD. On day 5, the cannula and minipump were removed
and response magnitudes (MD-5d) were then recorded. On day 6, vision was restored to
the closed eye by simply removing the suture to produce recovery from effects of MD, and
responses were recorded 24 and 48 hours after reopening the closed eye.

Repeated optical imaging of intrinsic signals and quantification of ocular dominance were
performed as described (Kaneko et al. 2008a). Briefly, during recording mice were anes-
thetized with 0.7% isoflurane in oxygen applied via a home-made nose mask, supplemented
with a single intramuscular injection of 20-25 g chlorprothixene. Intrinsic signal images were
obtained with a Dalsa 1M30 CCD camera (Dalsa, Waterloo, Canada) with a 135x50 mm
tandem lens (Nikon Inc., Melville, NY) and red interference filter (610 ± 10 nm). Frames
were acquired at a rate of 30 fps, temporally binned by 4 frames, and stored as 512x512 pixel
images after binning the 1024x1024 camera pixels by 2x2 pixels spatially. The visual stim-
ulus for recording in the binocular zone, presented on a 40x30 cm monitor placed 25 cm in
front of the mouse, consisted of 200-wide bars, which were presented between -50 and 150 on
the stimulus monitor (00 = center of the monitor aligned to center of the mouse) and moved
16
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Figure S7: The CPP results in Figs. 3B and 7A remain identical when the results are shown in
terms of the absolute amplitude of visual response (∆F/F ∗ 104). Conventions as in Figs. 3B and
7A.
continuously and periodically upward or downward at a speed of 100/sec. The phase and
amplitude of cortical responses at the stimulus frequency were extracted by Fourier analysis
as described (Kalatsky and Stryker, 2003). Ocular dominance index (ODI) was computed
as (R−L)/(R+L), where R and L are the peak response amplitudes through the right eye
and the left eye, respectively, as described (Kaneko et al. 2008a). Response amplitude at
each time point in individual animals was an average of at least 4 measurements.

Statistical analyses: For changes after monocular deprivation or recovery from depriva-
tion, the response magnitude in individual animals was normalized to the baseline magni-
tude, followed by calculating group average and S.E.M. Response magnitudes and ocular
dominance index data were analyzed by a two-way ANOVA to determine the effects of phar-
macological treatments (CPP or sTNFR1) and of manipulations of visual experiences (ND,
MD, or binocular recovery) in Prism 6 (GraphPad Software, CA). For multiple comparisons,
Bonferroni corrections were used.
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