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Early in development, the cat primary visual cortex (V1) is dominated by inputs driven by the contralateral eye. The pattern then
reorganizes into ocular dominance columns that are roughly equally distributed between inputs serving the two eyes. This reorganization
does not occur if the eyes are kept closed. The mechanism of this equalization is unknown. It has been argued that it is unlikely to involve
Hebbian activity-dependent learning rules, on the assumption that these would favor an initially dominant eye. The reorganization
occurs at the onset of the critical period (CP) for monocular deprivation (MD), the period when MD can cause a shift of cortical
innervation in favor of the nondeprived eye. In mice, the CP is opened by the maturation of cortical inhibition, which does not occur if the
eyes are kept closed. Here we show how these observations can be united: under Hebbian rules of activity-dependent synaptic modifica-
tion, strengthening of intracortical inhibition can lead to equalization of the two eyes’ inputs. Furthermore, when the effects of homeo-
static synaptic plasticity or certain other mechanisms are incorporated, activity-dependent learning can also explain how MD causes a
shift toward the open eye during the CP despite the drive by inhibition toward equalization of the two eyes’ inputs. Thus, assuming similar
mechanisms underlie the onset of the CP in cats as in mice, this and activity-dependent learning rules can explain the interocular
equalization observed in cat V1 and its failure to occur without visual experience.

Introduction
The question of the relative roles of genetic specification vs
activity-dependent self-organization in the development of cere-
bral cortex remains an important and controversial one. A key
system for studying these roles is the development of ocular dom-
inance columns in primary visual cortex (V1) (Crair et al., 2001;
Crowley and Katz, 2002; Huberman, 2007).

In cat V1, responses early in development are dominated by
the contralateral eye (Crair et al., 1998). Both physiologically and
anatomically (Crair et al., 1998, 2001), inputs from the ipsilateral
eye are restricted to patches within a continuous sea of
contralateral-eye inputs. Then, beginning at the end of the third
postnatal week, coincident with the onset of the critical period for
plasticity in response to monocular deprivation, the inputs from
the two eyes become roughly equalized and segregate into alter-
nating ocular dominance columns (Crair et al., 1998). This equal-
ization and segregation does not occur if the animal is deprived of
normal visual experience by binocular lid suture (Crair et al.,
1998). Nonetheless, it was repeatedly argued (Crair et al., 1998;
Crowley and Katz, 1999; Katz and Crowley, 2002) that this equal-

ization was unlikely to arise simply from Hebbian rules of synap-
tic plasticity, which are typically thought to play a major role in
activity-dependent self-organization (Katz and Shatz, 1996;
Miller, 1996; Swindale, 1996; Katz and Crowley, 2002; Mrsic-
Flogel et al., 2007). This was presumably based on the intuition
that, in a Hebbian competition between two inputs with similar
activities, the initially dominant input could not lose innervation
to the initially weak input. To our knowledge, no model has been
shown to explain this activity-dependent equalization of OD
columns.

In mouse V1, the onset of the critical period for monocular
deprivation plasticity coincides with, and depends on, a sufficient
maturation of intracortical inhibition (Hensch et al., 1998; Fagio-
lini and Hensch, 2000; Morales, 2002). The maturation of inhi-
bition and the associated onset of the critical period does not
occur if the eyes are not opened.

Here we show how these observations can be united: suffi-
ciently strong inhibition can force equalization of the two eyes
under a Hebbian rule. If recurrent intracortical connections are
inhibition-dominated, then activation of some cortical cells by
one eyes’ inputs evokes net inhibition that suppresses the simul-
taneous activation of other cortical cells. This suppresses patterns
in which a majority of cortex is driven by a single eye, leaving only
those in which the two eyes equally share cortex. If cortical acti-
vation tends to occur in periodic patterns, as has been shown in
developing V1 (Chiu and Weliky, 2002) and as will occur in
models using a “Mexican hat’’ pattern of excitation and inhibi-
tion, then a periodically alternating ocular dominance pattern
results. For this solution to be viable biologically, it must also be
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the case that imbalances of the two eyes induced by monocular
deprivation can lead to inequalities of the territories of the two
eyes, despite the drive of inhibition to equalize these territories.
We show that, in the simplest purely Hebbian models of plastic-
ity, this solution can work but is fragile, working only in fairly
restricted parameter regimes because synapses that do not drive
postsynaptic neurons stay weak under Hebbian plasticity. The
problem is that the simplest rules do not have robust means for
synapses that have approached zero strength to regain strength
after maturation of inhibition or MD. More complex plasticity
rules that deal with this problem can allow both inhibition-
mediated equalization of equally active eyes and monocular de-
privation effects to robustly occur. To illustrate this, we study a
simple modification of the model that incorporates homeostatic
plasticity, which forces the average activity level of the postsyn-
aptic cell to remain roughly constant (Turrigiano et al., 1998;
Maffei et al., 2004; Turrigiano and Nelson, 2004; Mrsic-Flogel et
al., 2007; Kaneko et al., 2008), as well as correlation-based plas-
ticity, and show that under it the entire developmental sequence
is more robustly replicated. An initial condition of synaptic
weights consisting of ipsilateral-eye-dominated patches in a con-
tinuous sea of contralateral-eye input is stable when inhibition is
weak. After maturation of inhibition, an equalized, periodically
alternating ocular dominance pattern emerges, but monocular
deprivation still causes an ocular dominance shift. In summary,
assuming that the onset of the critical period in cats coincides
with a maturation of inhibition that depends on the eyes being
open, as in mice, this and activity-dependent learning rules can
suffice to explain the interocular equalization observed at the
onset of the critical period in cats and its failure to occur under
binocular deprivation (Crair et al., 1998).

Materials and Methods
Model. We model N � 100 pyramidal neurons in primary visual cortex
receiving input from LGN (see Fig. 1). These neurons are uniformly
distributed on a one-dimensional axis x (�1 � x� 1). The ends of this
one-dimensional axis are connected, i.e., we use periodic boundary con-
ditions. The model has only two inputs, one representing the contralat-
eral eye ( C) and one the ipsilateral eye ( I). Each V1 neuron receives a
connection from each of these two inputs.

We use this very simplified model because it contains the key ingredi-
ents needed to understand the problems of ocular dominance map for-
mation, and in particular of ocular equalization and the role of inhibition
in this process, while simplifying analysis and simulation-based param-
eter exploration. Our analysis of the 1-D system in terms of eigenmodes
and constraints (supplemental material, available at www.jneurosci.org)

generalizes directly to the two-dimensional case
(Miller et al., 1989; Miller and MacKay, 1994;
Miller, 1996; Erwin and Miller, 1998). Periodic
boundary conditions simply remove boundary
effects as an issue; since most of V1 is far from a
boundary as measured in units of the ocular
dominance spatial period, boundary condi-
tions are unlikely to play a critical role in the
processes we are studying. We consider only
two input lines, whereas in reality there are
many types of cells projecting to cortex (e.g.,
ON and OFF cells, and cells representing many
retinotopic positions). These multiple inputs
are important for studies of the organization of
structured receptive fields and multifeature
maps in visual cortex. However, when correla-
tions among these inputs are such that individ-
ual receptive fields show ocular dominance seg-
regation, then the arrangement of ocular
dominance across the cortex is determined by
intracortical interactions and the internal struc-

ture of receptive fields beyond the eye of dominance is irrelevant to this
process (Miller et al., 1989; Miller, 1996; Erwin and Miller, 1998). Thus,
a model in which inputs simply represent the two eyes is sufficient to
understand the arrangement of ocular dominance across the cortex,
which we are studying here.

At each time step, unrectified input firing rates ĥC and ĥI are drawn

from a two-dimensional Gaussian distribution with mean ��C

�I
� and co-

variance matrix ��C/� c/�
c/� �I/�

� with �C � �I � 10 Hz and � � 0.5 s, where

the variable c � 5 Hz parameterizes the strength of the covariance. The
variances, of the form �/�, are the variances of the average rate over a time
� of a Poisson process with mean rate �. Thus, this form of covariance
arises from imagining that the input firing rates averaged over a time
comparable to � are the relevant variables for the plasticity process [e.g.,
see Stryker (1986) and Butts et al. (2007) for evidence of long timescales
in early visual system plasticity], although similar covariance structure
might arise in other ways. The LGN input firing rates from the contralat-
eral and ipsilateral eyes in that time step are then given by hC � [ĥC]� and
hI � [ĥI]�. Here, [ � ]� is the half rectification function [x]� � x, x � 0;
� 0, otherwise.

The firing rate, r, of a V1 neuron at position xi and at time step t is
determined by self-consistently solving (see below)

r� xi� � � �
a�C,I

wa� xi�ha � ��� xi� �
2

N�
j

M� xi 	 xj�r� xj� 	 T�
�

.

(1)

Here, wC and wI are the synaptic weights of the contralateral and ipsilat-
eral input, and M(xi � xj) represents the strength and sign of intracortical
input between the cells at positions xi and xj (described in more detail
below). The noise variance is � 2 and � is a Gaussian random variable with
mean 0 and variance 1. As we explain in the Results, noise is required to
induce an OD shift after MD given lateral interactions with strong
enough inhibition to cause equalization. The noise level, �, is varied in
Results and its effects discussed. The factor 2/N represents the interval
between adjacent neurons (N neurons over a cortex of length 2), and is
chosen so that the total strength of intracortical input stays roughly fixed
as N changes. T � 1 Hz is a fixed threshold.

Equation 1 is solved by iteration, as follows. Let r(t) represent the
solution for the vector of firing rates across all spatial positions at time t,
and let r(t, n) represent the nth iteration toward the solution r(t). For t �
0, the first iteration, r(t, 1), is set to 0; for t � 0, it is set to the solution of
the previous time step. Then, for each n � 2, 3, . . . , r(t, n � 1) is used for
the right side of Eq. 1, and the resulting left side is r(t, n). Iterations
continue until the criterion �ri(t, n) � ri(t, n � 1)� � 10 �3([1/N]�iri(t,
n � 1)) is met for all i at n' nc. At this point the solution is taken to be

Figure 1. A schematic figure of the model. N cortical neurons are lined up on a one-dimensional axis x. Each neuron receives
feedforward input from both ipsilateral and contralateral eyes, and those synapses are modified according to activity-dependent
plasticity rules. The intracortical connectivity, M, is a function of the distance between two cortical positions and changes its profile
at the onset of the critical period when cortical inhibition matures.
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r(t)� r(t, nc). We used two parameter sets in the main text, described
below: for parameter set 1, convergence typically requires 20 –50 itera-
tions and never �70; for parameter set 2, convergence typically requires
10 –20 iterations and never �30. Our iteration criterion is very conser-
vative: simply running 20 iterations without an explicit convergence cri-
terion gave indistinguishable results with both parameter sets. The ran-
dom variables—the input from the two eyes and the noise �—are fixed
throughout the iterations for a given time step, but vary from time step to
time step.

The strength of the intracortical connection is only a function of the
difference of two neurons’ cortical positions and is set to a difference of
Gaussians (DOG):

M�	x� � MA� 1

�2
��
2

exp� 	
	x2

2��
2 � 	

R

�2
��
2

exp� 	
	x2

2��
2 �� (2)

with �� � 0.05 and �� � 0.20. Here, MA parameterizes the strength of
recurrent versus feedforward contributions to r, while R is the ratio of the
integral of the inhibitory part of the DOG to the integral of the excitatory
part of the DOG. Thus, for R � 1, each cell receives equal strengths of
total inhibitory and total excitatory input. The specific choices of �� and
�� are not important to the results; all that is important is that, when
inhibition is strong enough to yield equalization (see Results), the DOG
select a nonzero spatial frequency whose cycle length spans a reasonable
number of cells (so that effects of the discrete grid of cells do not become
crucial) but spans only a fraction of the total grid (so that there can be at
multiple cycles of each eye’s dominance within the grid). The ranges of
MA and R that give appropriate outcomes are described in Results. For
the Hebbian model of synaptic plasticity with subtractive constraints,
described below, for which only a narrow range of MA gives appropriate
outcomes, the range of MA that works varies as the ratio of ��/�� varies.

The DOG function is not meant to be a realistic model of cortical
connectivity, which is three-dimensional and cell specific and develops
along with the geniculocortical weights. However, it should be noted that
a DOG can be achieved with short-range inhibitory connections and
longer-range excitatory connections, as is observed in cortex, if feedback
inhibition (the product of E3I and I3E weights) is sufficiently strong,
and either E3E connections fall off more quickly with distance than E3I
connections, or the two have the same distance dependence but inhibi-
tion is fast relative to excitation (the latter scenario is discussed in Kang et
al., 2003; Pinto and Ermentrout, 2001).

More generally, the model requires only that the patterns of cortical
activity have appropriate relative strengths of periodic activity and of
spatially uniform (or low-spatial-frequency) activity, with the latter be-
ing suppressed relative to the former by inhibition. The DOG is a simple
way to achieve this, but any circuitry that achieves this will yield the same
model behavior. Given that ocular dominance segregation occurs and
that low-spatial-frequency activity is relatively suppressed, ocular dom-
inance will then tend to develop with a spatial period across cortex
matching the spatial period of the cortical activity. Consistent with these
more general ideas, periodic patterns of activity exist in V1 relatively early
in development; these patterns are found in monocular as well as binoc-
ular cortex, so that they are not simply a consequence of ocular domi-
nance segregation; and the early and weak physiological segregation of
ocular dominance occurs with a spatial period that appears to match the
spatial period of this activity (Chiu and Weliky, 2002).

We model the onset of the critical period (CP) as an increase in R. For
simplicity, this increase occurs abruptly in the model, but this is not
necessary for the results. During the CP, we model monocular depriva-
tion (MD) to the contralateral eye as reductions in �C and in c by a
common factor fMD � 1/10 unless otherwise stated. The between-eye
correlation, c, is set to a nonzero value even during MD here, but setting
this to zero did not change the results (data not shown). Nonzero intero-
cular correlations during MD could arise due to residual visual signals
thorough an eyelid and/or due to correlations induced by cortical feed-
back to LGN, as has been observed in pre-CP ferret LGN (Weliky and
Katz, 1999).

We focused on two sets of parameters in this paper. The values of those
parameters at different developmental phases (each phase, before CP,

during CP, and during MD, has 1.0 
 10 5 time steps) are summarized in
Table 1. The reasons for these values are established in the Results.

Learning rule. The initial condition for synaptic weights is “islands” of
ipsilateral inputs in a “sea” of contralateral inputs, illustrated in Figure
2b. The synaptic strengths between the V1 neurons and LGN inputs are
updated at each time step by one of two activity-dependent synaptic
update rules. The first learning rule is a simple Hebbian learning rule with
a subtractive normalization constraint, which forces the total synaptic
strength received by a postsynaptic cell to remain constant (Miller et al.,
1989; Miller and MacKay, 1994; Erwin and Miller, 1998). In the uncon-
strained Hebbian learning rule, the change dwa(xi) in the synaptic
strength wa(xi) in one time step (where a � C, I is the index describing
either the contralateral or the ipsilateral eye) is described by

dwa� xi� � �ha�r� xi� 	 �r�� xi��, (3)

where � is a constant coefficient for the LTP/LTD threshold (see below
for explanation), r� is the running average of the output firing rate, up-
dated at each time step by

	r�� xi,t� � �r� xi,t� 	 r�� xi,t 	 1�� (4)

with  � 0.02. This means that the average is a discrete version of an
exponential average across previous time steps with time constant 50
time steps. This is a long enough averaging time to obtain a reasonable
(not too noisy) estimate of the average firing rates under the input en-
semble for fixed weights, and short enough that it can track changes in
average firing rates due to changes in weights. The learning rate is set to
� � 2.0 
 10 �5/Hz 2. This number is fairly arbitrary. This rate should be
small enough that learning is shaped by the average input statistics (that
is, a reasonable sample of the input ensemble is seen over a time in which
weight change is negligible), rather than having large changes in weights
induced by individual input instantiations (“one-shot learning”). It
should also be small enough that the discrete-time dynamics we use well
approximates continuous-time dynamics. Both will be true if the time
constant is small enough that making it smaller, while making the num-
ber of time steps proportionately larger, does not appreciably change the
results. The value used is far below this threshold. Otherwise the number
is simply chosen to make the outcome for a given condition (pre-CP,
post-CP, post-CP-with-MD) equilibrate in the 10 5 time steps we used for
each condition.

One interpretation of the plasticity rule of Equation 6 is that the
amount of postsynaptic activity needed to cause potentiation varies de-
pending on the mean postsynaptic rate r�. However, it can also be inter-
preted as a statistical model of the relative rate of individual potentiation
and depression events that themselves have fixed requirements for pre-
synaptic and postsynaptic activities. Under simple models of spike-
timing-dependent plasticity (STDP) (Song et al., 2000; Gerstner and
Kistler, 2002) [but e.g., see critique in Lisman and Spruston (2005)],
potentiation occurs when postsynaptic spike follows presynaptic spike
within a fixed window, the rate of which depends on pre–post correlation
(the product of the mean presynaptic and postsynaptic spike rates plus
the covariance between them), while depression occurs when postsynap-
tic spike occurs within a fixed window before the presynaptic spike, the
rate of which only depends on the product of mean presynaptic and
postsynaptic spike rates. (Input temporal correlations may lead the de-
pression rate also to have some dependence on pre–post covariance, but
we neglect that here.) After averaging over the input ensemble for a given
value of weights, Equation 3 says that the weight change depends on the
difference between the pre–post correlation, represented in our rate
model by the term har, and the product of the presynaptic and postsyn-

Table 1. The values of parameters before the CP, during the CP, and during MD

Parameter set 1 Parameter set 2

Before CP CP/MD Before CP CP/MD

MA 1.1 1.1 0.8 0.8
R 0.3 1.2 0.3 1.0
� 10 Hz/� 10 Hz/� 1 Hz/� 1 Hz/�
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aptic mean rates, represented here by the term har�. The parameter � in
Equation 6, which determines the relative size of the two terms, corre-
sponds to the ratio of the absolute value of the integral of the negative or
depressing part of the temporal function describing STDP (this function
tells the weight change for a given time interval between presynaptic and
postsynaptic spikes) to the integral of the positive or potentiating part
[e.g., see Song et al. (2000), where the depressing part is assumed to have
the larger integral].

We use � � 0.3 for the simulations in the main text. This corresponds
to the assumption that, when inputs and outputs are uncorrelated, po-
tentiation strongly dominates over depression. This assumption appears
to be true for plasticity based on spike bursts in early development in the
LGN (Butts et al., 2007), and more generally the potentiating part of the
STDP temporal function may have larger integral than the depressing
part in some cortical systems [Abbott and Nelson (2000), their Fig. 2a].
As we will show, this assumption is important for monocular deprivation
effects to arise along with equalization under the Hebbian learning rule
with subtractive normalization. The second learning rule we will study
gives a more robust solution to this problem with a more firmly estab-
lished biological basis.

The normalization constraint is imposed by setting the total change
	wa(xi) in the synaptic strength per time step to

	wa� xi� � dwa� xi� 	
1

2
�dwC� xi� � dwI� xi��. (5)

This ensures that 	wC(xi) � 	wI(xi) � 0, and thus that the sum of
ipsilateral- and contralateral-synaptic strengths at each location xi,
wC(xi) � 	wI(xi), is constant. Equation 5 can be rewritten

	wa� xi� �
�

2
�ha 	 hb��r� xi� 	 �r�� xi��, (6)

where b is the opposite eye to a. For this learning rule, synapses change
their values within limits that keep synapses excitatory and bounded: the
minimum and the maximum values are wmin � 0 and wmax � 2, respec-
tively. If a change in a synaptic weight under the above rules would exceed
these limits, the weight is instead set to the limit. This can cause the

subtractive weight normalization constraint to be violated. The lower
weight limit enforces the biological fact that geniculocortical synapses are
excitatory. Without an upper weight limit, the weights can grow arbi-
trarily large (because weights hitting the lower limit violate the normal-
ization constraint), so the upper limit is imposed to prevent this, but the
precise value of this limit does not affect results.

Another learning rule is described by a Hebbian learning rule with a
homeostatic constraint, which forces the average activity level of the
postsynaptic cell to remain roughly constant (Turrigiano et al., 1998;
Maffei et al., 2004; Turrigiano and Nelson, 2004; Mrsic-Flogel et al., 2007;
Kaneko et al., 2008). In this case, the changes in synaptic strength are
given by

	wa� xi� � �ha�r� xi� 	 � � xi�� 	 ��wa� xi��
2� (7)

with a sliding threshold � � r� 2/r0. The learning rate is set to � � 5.0 

10 �6/Hz 2 (a quarter the size used for the previous rule to keep the rates
of monocular deprivation effects approximately equal in the two rules),
the reference firing rate is r0 � 10 Hz, and the synaptic decay coefficient
is � � 10 Hz 2 for ha � 1 Hz and � � 0 otherwise. The dependency of � on
presynaptic activity makes the learning rule consistent with observations
that LTD does not occur when there is no presynaptic activity (Ritten-
house, 1999; Frenkel and Bear, 2004; Heynen, 2003). Setting � to a con-
stant does not change the results of this paper except for the fMD � 0
behavior in Figure 7. The nonzero value of � sets the speed of effects of
MD on the deprived eye and also determines the maximum synaptic
weight. [After this work was completed, Linden et al. (2009) suggested a
different interpretation of the monocular inactivation experiment.]
Other factors are as in the previous rule.

The learning rule of Equation 7 is a combination of Hebbian plasticity
and homeostatic regulation because the postsynaptic threshold separat-
ing LTP from LTD changes faster than linearly with the recent mean
postsynaptic firing rate (whereas in Eq. 3, this dependence is linear). The
activity-dependent threshold � with a faster-than-linear dependence on r�
is a key feature of the BCM learning rule (Bienenstock et al., 1982; Cooper
et al., 2004). It has the effect of causing a nonspecific increase in synaptic
weights if r� �� r0 and a nonspecific decrease in synaptic weights if r� �� r0,
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Figure 2. The evolution of synaptic weights using a Hebbian learning rule with subtractive weight normalization (Eq. 6). A, The evolution of synapses carrying information from the contralateral
(top) and ipsilateral (bottom) eye. Synaptic strengths are shown as color, ranging from zero (blue) to maximal (dark red). Vertical axis is position along the one-dimensional cortical grid. Horizontal
axis is time: the CP starts at time 1 (10 5 iterations), and MD of the contralateral eye is initiated at time 2 (2 
 10 5 iterations). B–E, Snapshots of the synaptic strengths from the contralateral eye
(red) and from the ipsilateral eye (blue) at different times: initial state, time 0 (B); before CP, time 1 (C); during CP but before MD, time 2 (D); and after MD, time 3 (E). Vertical axis, Synaptic strength;
horizontal axis, position along the cortical grid.
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thus forcing the average activity to approach r� � r0. Thus, it provides a
simple mathematical implementation of a homeostatic constraint. This
particular, sliding-threshold form of the homeostatic rule is not critical
to the results; we have obtained similar results with a rule in which the
homeostatic constraint was enforced by a term separate from the LTP/
LTD term (see Discussion). The decay term ��(wa(xi)) 2 ensures that
synapses with small but nonzero presynaptic activity (ha � 1 Hz) decay
back to zero in the absence of sufficiently strong pre/post correlations.
This ensures that, under monocular deprivation, the deprived-eye syn-
apses weaken before the open-eye synapses strengthen. Again, this can
alternatively be addressed by using separate homeostatic and LTP/LTD
terms (see Discussion). For this learning rule we only enforced a mini-
mum value of synaptic strength, wmin � 0. Again, if a change in a synaptic
weight under the above rule would exceed this limit, the weight is instead
set to wmin. We set no explicit maximum value because the weight decay
term keeps synaptic weights from growing too large.

Results
We begin by describing the basic intuition and mathematics be-
hind our results, then demonstrate the results in simulations.

To understand how sufficiently strong inhibition can force
equalization, we rely on the following basic intuition about Heb-
bian rules (Miller, 1990, 1996). If activation of cortical location A
tends to cause excitation of cortical location B, then inputs to A
tend to promote development of coactive inputs to B. This is
because the inputs to A tend to activate the A cells, hence to cause
excitation at B, and hence to assist coactive inputs at B in becom-
ing strengthened by a Hebbian mechanism. Conversely, if activa-
tion of cortical location A tends to cause inhibition of cortical
location B, then inputs to A tend to suppress development of
coactive inputs to B. Now suppose recurrently driven inhibition
becomes strong enough that the integrated effect on any one
cortical location of activating all of cortex is inhibition. Assuming
interactions are sufficiently localized, this means that a large
enough region dominated by one eye will tend to suppress devel-
opment of that eye’s inputs at the center of the region, which in
most competitive scenarios will lead to development of the other
eye’s inputs there. Thus, any large region dominated by one eye
must break up and allow emergence of the other eye’s inputs.

Mathematically, this can be seen from the analysis of simple
models of ocular dominance development involving a Hebbian
learning rule and conservation of total postsynaptic strength
(Miller et al., 1989; Miller, 1990; Erwin and Miller, 1998) [see also
Swindale (1980), their Appendix, and supplemental material,
available at www.jneurosci.org]. It was shown that, if input cor-
relations are such as to lead to the development of ocular domi-
nance segregation, the overall period of this segregation is deter-
mined by an intracortical interaction function K(x) describing
the influence of activity at one cortical location on activity at
another location a distance x away. In particular, the growth of a
periodic pattern of ocular dominance with period 2
/k occurs at
a rate K̃(k) � (1 � M̃(k))�1, where M(x) describes the strength
and sign of connection between two neurons separated by dis-
tance �x� and M̃(k) is the Fourier transform of M(x) at frequency
k. In this picture, all patterns with nonzero k involve a periodic
oscillation between the eyes (the “AC’’ patterns) and thus involve
overall equality of the two eyes. Inequality can arise only if the
pattern with k � 0 (the “DC” pattern—the pattern in which one
eye dominates everywhere) can grow. The growth rate of the DC
pattern is K̃(0) � (1 � M̃(0))�1, where M̃(0) is proportional to
the integral over space of the intracortical connectivity: M̃(0) �
�dxM(x). Thus, for dominant inhibition, M̃(0) � 0, and as the
dominance of inhibition increases, M̃(0) becomes increasingly
negative and the corresponding growth rate K̃(0) becomes in-

creasingly small. If the growth rate of the DC pattern K̃(0) is
sufficiently small relative to those of the fastest-growing AC pat-
terns K̃(k) with k � 0, then, given reasonable nonlinearities (for
example, limiting the synaptic strengths to remain positive and
smaller than some maximum), the pattern with k � 0 will be
suppressed in favor of patterns with nonzero k. This causes any
inequality between the eyes to be eliminated (for further analysis,
see supplemental material, available at www.jneurosci.org). The
basic intuition behind this analysis—that if a given location re-
ceives strong enough net inhibition from all other locations, this
prevents overall domination by a single eye—is likely to be robust
across a variety of proposed ocular dominance models.

An additional requirement for a realistic model is that, al-
though the strong inhibition enforces overall equality of the two
eyes when they have equal activities, it still allows the develop-
ment of inequality in response to monocular deprivation (MD).
Let us refer to the two eyes as the open and the closed eye, even
before MD is initiated. Once inhibition matures and the two eyes
equalize, activation of the open eye elicits net inhibition in col-
umns dominated by the closed eye. This is due both to inhibition
from columns dominated by the open eye and to the fact that
open-eye inputs to the closed-eye columns have become very
weak. After MD is initiated, it remains true that activation of the
open eye leads to inhibition of cells that were dominated by the
closed eye, even if MD leads to loss of strength of the closed-eye
inputs. Thus, for an OD shift to occur under MD, something
must strengthen open-eye inputs to closed-eye columns even
when they cannot drive the postsynaptic cell, as has been ob-
served in experiments (Mioche and Singer, 1989). These inputs
must be strengthened to the point that they can drive the cell
when the open eye is activated despite the inhibition from open-
eye-dominated columns. We show that noise in postsynaptic fir-
ing can contribute to this, and more generally, homeostatic plas-
ticity can accomplish this. Since this work was largely completed,
it has indeed been shown that homeostatic plasticity is the mech-
anism causing strengthening of the open eye after MD (Kaneko et
al., 2008). (Homeostatic weakening of inhibition onto these cells
could be part of this process, but for simplicity we do not model
inhibitory plasticity here.)

We demonstrate the effectiveness of these ideas in simulations
of a one-dimensional grid of cortical cells each receiving two
inputs, one representing each eye, where the weights of the input
synapses develop under simple learning rules (see Fig. 1). We
model N � 100 excitatory layer 4 neurons in primary visual cor-
tex, which are uniformly distributed on a one-dimensional axis x
(�1 � x � 1), where each neuron is labeled by its cortical posi-
tion x. Each V1 neuron receives input from both the contralateral
(C) and the ipsilateral ( I) eye, from other V1 neurons through
intracortical connections, and additional noisy input modeled as
Gaussian random noise with mean 0 and variance � 2. For sim-
plicity we consider the feedforward connections from a given eye
to a cortical cell to be described by one effective input, which has
been shown to be adequate to understand the development of
patterning across cortex of ocular dominance when input corre-
lations are appropriate to yield ocular dominance segregation
(Miller et al., 1989; Miller, 1990, 1996). These feedforward syn-
aptic strengths from the contralateral and ipsilateral eyes to a
neuron at position x are described by wC(x) and wI(x), respec-
tively, and they are subject to activity-dependent plasticity (see
Materials and Methods). The strength of the intracortical con-
nection between two neurons is modeled as a function of the
difference of their positions and is set to a difference of Gaussians
(DOG). As discussed in Materials and Methods, the key require-
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ment is not that cortical circuitry be described by a DOG, but that
the cortical circuitry produce periodic patterns of activity, as has
been observed (Chiueliky and Weliky, 2002), with the balance
between periodic and spatially uniform patterns of activity vary-
ing appropriately with inhibition. The DOG is a simple circuitry
that achieves this. Two important parameters characterize this
DOG: MA represents the strength of recurrent versus feedforward
contributions to postsynaptic activities, whereas R is the ratio of
the integral of the inhibitory part of the DOG to the integral of the
excitatory part of the DOG. We model the onset of the critical
period (CP) as a threefold to fourfold increase of cortical inhibi-
tion (Morales et al., 2002). Hence, R changes from an excitation-
dominated profile (R � 1) to a balanced or inhibition-dominated
one (R � 1).

Hebbian learning rule with a subtractive
normalization constraint
We first simulate development under a Hebbian learning rule
with subtractive normalization of the total postsynaptic weight
on a cell (Fig. 2), using the parameter set 1 (see Materials and
Methods). The modification of synapses at each time step de-
pends on the covariance between the postsynaptic and presynap-

tic firing rates, subject to a constraint that
the total synaptic strength to each cell is
held constant, which forces a competition
between the eyes (Miller et al., 1989;
Miller, 1990; Erwin and Miller, 1998) (see
Materials and Methods). Each synapse is
potentiated or depressed until it saturates
to the upper or lower bound of synaptic
strength (wmax � 2 and wmin � 0, respec-
tively). We take as our initial condition the
strong bias observed in pre-critical-period
cats (Crair et al., 1998): ipsilateral “is-
lands” in a “sea” of contralateral inputs
(Fig. 2B). Development before the critical
period, modeled as a period in which in-
tracortical inhibition is relatively weak
(the integral of intracortical inhibition is
3/10 of that of intracortical excitation, that
is, R � 0.3), leads synapses to go to the
maximum or minimum allowed values
with no change in the overall,
contralateral-dominated pattern (Fig.
2C). Initiation of the critical period, mod-
eled as an increase of the strength of intra-
cortical inhibition (the integral of intra-
cortical inhibition becomes 1.2 times that
of intracortical excitation, R � 1.2), slowly
leads to an equalization of the two eyes
(Fig. 2D). Although inhibition drives the
two eyes to have equal innervation, mon-
ocular deprivation (MD) of the contralat-
eral eye causes a shift in favor of the open,
ipsilateral eye (Fig. 2E). Here, MD of the
contralateral eye is modeled as a reduction
in its activity (mean, variance, and covari-
ance with the open eye) by a factor fMD �
1/10 (see Materials and Methods).

The outcomes under this rule are sen-
sitive to parameter choices in at least two
ways. First, they are very sensitive to the
parameters describing intracortical inter-

actions. If MA, the strength of recurrent connections relative to
feedforward, is too weak after the CP (such as MA � 1.0; we used
MA � 1.1 in Fig. 2), then equalization of the eyes does not occur
after the onset of the CP (Fig. 3A). Much stronger inhibition
during the CP is required in this case for the equalization of OD
columns (R � 1.8 equalizes but R � 1.6 does not: data not
shown). On the other hand, if MA is too strong (such as MA �
1.2), then given weak initial inhibition (R � 0.3), the system
becomes unstable. Strong MA together with stronger inhibition at
the beginning to prevent instability (e.g., MA � 1.2 and R � 0.5
during pre-CP) tends to equalize the OD columns from the be-
ginning of the simulation even before further maturation of in-
hibition (data not shown). Only a narrow band of MA yields
ocular dominance equalization only upon the maturation of in-
hibition. Moreover, with this model and these parameters, the
inhibitory strength does not merely need to equal excitation in
the intracortical connections, but actually needs to exceed it (we
use R � 1.2); R � 1.0, which represents equality of total excitatory
and total inhibitory strength, does not lead to equalization (see
Fig. 3B).

Note that equalization can occur even with relatively weak
inhibition when recurrence is strong enough that the system is
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Figure 3. Parameter dependence of the development of OD columns using a Hebbian learning rule with subtractive weight
normalization (Eq. 6). Panels plot synaptic strengths in color as a function of cortical position, x, and simulated time steps as in
Figure 2 A. Explicitly mentioned parameters are changed, whereas the other parameters are as in the parameter set 1. The learning
rule of Equation 6 is sensitive to parameter choices: with intracortical connections that are too weak, MA � 1.0, the two eyes do
not equalize even after the maturation of inhibition (A); with inhibition during the CP that is too weak, R � 1.0, the two eyes do
not equalize (B); with too little noise, � 2 � 3 Hz/�, almost no OD shift is observed during the simulated MD (C). D, For balanced
LTP and LTD, � � 1.0, no OD shift is observed after MD.
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close to instability, for the following reason. With weak inhibi-
tion, the fastest-growing pattern is an “AC’’ pattern with period
2
/kmax for kmax � 0, but the Fourier transform of the intracor-
tical connection function at this frequency, M̃(kmax), is only
slightly larger than that of the “DC” pattern, M̃(0). With weaker
recurrence, this difference is not sufficient to cause equalization.
However, moving the system close to instability means that
M̃(kmax) becomes close to 1 so that the largest growth rate (1 �
M̃(kmax))�1 becomes both arbitrarily large and arbitrarily larger
than the growth rate (1 � M̃(0))�1 of the DC mode, leading to
equalization.

Second, for MD to lead to an OD shift despite inhibition
strong enough to cause equalization, active synapses need to have
a strong advantage over less active synapses. To achieve this (Fig.
2E), we needed to use a learning rule in which LTP strongly
dominates over LTD (� � 0.3: see Materials and Methods) along
with noise in postsynaptic neuronal response. Without these two
elements, equality of the two eyes is maintained even after one
eye’s activity is strongly reduced (see Fig. 3). This is because,
during MD, neurons in the patches dominated by the closed eye
receive more lateral inhibition than excitation as a result of open
eye input. Therefore, the activity levels of these neurons during
open-eye input are lower than their threshold level, leading to
depression of the open-eye synapses onto them. This prevents
any MD shift toward the open eye. Larger noise along with a
nonlinear input– output relation enables those neurons to be
sometimes active in the presence of lateral inhibition. If LTP
dominates over LTD, even random presynaptic and postsynaptic
activity leads more active inputs to show relatively greater poten-
tiation than less active inputs. When this is combined with a
constraint preserving total synaptic strength, the result is that
relatively more active synapses are potentiated while less active
synapses are depressed. This allows MD shifts to occur (Fig. 2E).

These considerations explain why we used parameter set 1 (see
Materials and Methods) for this model, which included high
noise and a large critical period R and MA. Using parameter set 2
(see Materials and Methods) with this model does not yield
equalization of the two eyes (see supplemental material, available
at www.jneurosci.org).

The biological relevance of the dominance of LTP over LTD
assumed here is certainly questionable, but some systems have
temporal windows for spike-timing-dependent plasticity (STDP)
in which integrated potentiation appears larger than integrated
depression [Abbott and Nelson (2000), their Fig. 2a; Butts et al.
(2007)]. More generally, there must be some additional mecha-
nism that leads open-eye synapses to strengthen during MD even
when they cannot drive the postsynaptic cell, as observed in ex-
periments (Mioche and Singer, 1989). A more plausible mecha-
nism, and one that in fact seems to drive potentiation of the
open-eye during MD (Kaneko et al., 2008), is homeostatic plas-
ticity, to which we now turn.

Hebbian learning with a homeostatic constraint and
weight decay
We reasoned that the fragility of the result presented in the last
section is likely to be induced by the simplicity of the learning rule
studied, and that more complex biological learning rules may be
more robust. One simple mechanism, though probably not the
only one, that can be added to a Hebbian rule to support such
robustness is activity homeostasis (Turrigiano et al., 1998; Maffei
et al., 2004; Turrigiano and Nelson, 2004; Mrsic-Flogel et al.,
2007; Kaneko et al., 2008): the requirement that cortical cells
adjust their weights to maintain roughly constant overall levels of

average activity. Both maturation of inhibition and MD will in-
duce a reduction in the activity level of either all cells or closed-
eye columns, respectively, and the homeostasis will oppose this
by potentiating unsaturated synapses. This strengthens the ini-
tially weak ipsilateral-eye synapses and the weak open-eye syn-
apses in closed-eye columns, allowing them to more robustly
recover from their weakness and compete. Thus, given ho-
meostasis, even relatively weak cortical connections that are suf-
ficiently inhibition-dominated can equalize the two eyes’ inner-
vations in cortex, and a pattern in which the innervations of the
two eyes are equal can be destabilized by monocular deprivation
even with low noise, as we now show.

In Figure 4 we show the same set of simulations as in Figure 2
but now using a learning rule (Eq. 7) with a homeostatic con-
straint rather than a weight-conservation constraint. The homeo-
static constraint keeps the mean activity level of each postsynaptic
cell roughly constant. For fixed input activities, this behaves sim-
ilarly to the weight-conservation constraint, but if input activities
are decreased by maturation of inhibition or by MD, the homeo-
static constraint increases the total weight received by the cell to
bring the postsynaptic activity back to the set point. As an imple-
mentation of a homeostatic rule, we used an LTP/LTD threshold
that slides faster than linearly with the mean postsynaptic activity,
as in the BCM learning rule (see Materials and Methods), but this
particular implementation is not critical to the results (see Dis-
cussion). We also add a weight-decay term to the learning rule for
inputs with nonzero activity, which causes synaptic weights of
these inputs to decay in the absence of Hebbian or homeostatic
strengthening. This term causes closed-eye synapses to shrink
after MD before open-eye synapses grow, as observed experimen-
tally (Mioche and Singer, 1989; Frenkel and Bear, 2004; Mrsic-
Flogel et al., 2007; Kaneko et al., 2008). This rule is far more
robust than the previous, so we now use parameter set 2 (see
Materials and Methods), in which noise levels are low, total excita-
tory and inhibitory strength are equal (R � 1) during the critical
period, and the parameter controlling the overall strength of recur-
rent connections, MA, is slightly smaller than before, for reasons
described below. This learning rule also works with parameter set 1
(see supplemental material, available at www.jneurosci.org).

The simulation proceeds much as in the previous case (Fig. 4).
Before the critical period, the initial condition of ipsilateral is-
lands in a contralateral sea (Fig. 4B) is stable (Fig. 4C). Initiation
of the CP, modeled as a strengthening of inhibition, leads to the
equalization of contralateral- and ipsilateral-eye columns (Fig.
4D). Application of MD leads to the expansion of the open-eye
territory and the gradual shrinking of the closed-eye territory
(Fig. 4E).

With this learning rule, the equalization of ocular dominance
columns occurs more robustly. Fine tuning of the strength of the
intracortical connections, MA, is not required (Fig. 5A), and in-
hibition that is balanced with excitation (R � 1.0, used in Fig. 4)
or even somewhat weaker than excitation (Fig. 5B) is now suffi-
cient to drive equalization. It has been suggested that cortex
shows a rough balance of excitation and inhibition (van
Vreeswijk and Sompolinsky, 1998; Shu et al., 2003; Wehr and
Zador, 2003; Haider et al., 2006; Higley and Contreras, 2006). We
use an approximately threefold increase of inhibitory strength at
the onset of the critical period, consistent with the literature (Mo-
rales et al., 2002).

The difference in robustness is due to the different constraints
imposed on the two learning rules. The subtractive constraint
always forces the sum of contralateral- and ipsilateral-synapses to
be constant at each neuron (except when synapses take the max-
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imum or minimum value), so where the ipsilateral eye is initially
weak, it can be difficult for it to recover under Hebbian plasticity.
In contrast, the homeostatic constraint lets the summed synaptic
strength increase to compensate for the reduction in cortical ac-
tivity caused by the sudden maturation of inhibition, so that the
ipsilateral eye can gain a foothold everywhere. The correlation-
based competition can then more robustly select the pattern of
innervation in which contralateral and ipsilateral synaptic
strengths alternate across cortex.

With this learning rule, even a small amount of noise is
enough to see the MD effect (the simulations of Fig. 4 use 1/10 the
noise of those of Fig. 2). In the absence of strong input from LGN,
the closed-eye synapses shrink after MD because the first term of

Eq. 7 becomes small for these less active
synapses relative to the second, decay
term. The open-eye synapses also shrink
by a small amount due to the loss of
between-eye correlation after MD but are
mostly unchanged because of the intact in-
put from the open-eye. On a slower time-
scale, the homeostatic learning rule along
with a small amount of noise leads the
open-eye synapses to grow. The homeo-
static rule drives the mean postsynaptic ac-
tivity, r�, estimated as an exponentially
weighted average of past rates with a time
constant of 50 iterations, to be comparable
to some set point activity level r0. After the
closure of the contralateral eye, a patch of
cortex that was previously driven by the
closed-eye mainly receives lateral inhibi-
tion from the surrounding cortical area
and therefore its LTP/LTD threshold, � �
r� 2, is close to zero. In the presence of small
noise, those neurons near the border be-
tween the two eyes’ columns will be active

occasionally because they receive relatively weaker inhibition
than at the center of the closed-eye dominated column. Hence,
open-eye synapses at the border are slowly potentiated at a rate
proportional to the activation of those neurons with coincident
open-eye input until the output firing rate again approaches r0

(Fig. 4E). On the other hand, around the center of the closed-eye
dominated column, open-eye synapses cannot grow because lat-
eral inhibition from the surrounding columns is much stronger
than the noise level. The growth rate of open-eye synapses de-
pends on the noise level, the threshold of the input– output non-
linearity and the strength of inhibition during the CP. Smaller
noise, larger threshold or stronger lateral inhibition reduces the
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firing rates of neurons in previously
closed-eye-dominated patches and hence
slows the growth of open-eye synapses
there (compare Figs. 4A, 5B).

In the simulations presented thus far,
the equalization of the two eyes is achieved
by adding columns for the ipsilateral eye,
so that the overall spatial wavelength of the
OD columns is reduced. This issue has not
been studied quantitatively, and maps
were not followed across time in single an-
imals in Crair et al. (1998, 2001). However,
the data in those papers are suggestive that
the wavelength does not greatly change.
This can be achieved in the model for ap-
propriate parameters. To show this, we
first start the simulation from a contralat-
erally dominated initial condition with a
smaller wavelength than previously. When
inhibition matures, the two eyes are equal-
ized, as in previous simulations, but the
wavelength of OD columns is not altered
(Fig. 6A). Starting from an even smaller
wavelength without altering the intracor-
tical connections, the equalized OD col-
umns still preserve the wavelength of the
initial condition (Fig. 6B). In general, the
final spatial wavelength of the OD col-
umns is determined both by the amplitude
of each wavelength in the initial condition
and the growth rates of the different wave-
lengths (as noted previously, the growth
rates are proportional to (1 � M̃(k))�1,
where the wavelength is 2
/k and M̃(k) is
the Fourier transform at that wavelength
of the function describing intracortical
connections). The wavelength with the
fastest growth rate will tend to dominate,
but if other wavelengths have a strong ad-
vantage in the initial condition and are not
too disadvantaged in terms of growth rate,
they may dominate instead (Fig. 6C).
Weakening the intracortical connections,
as we have done in parameter set 2 by de-
creasing MA from 1.1 to 0.8, lessens the
differences between growth rates, and so
allows bias in the initial condition toward a
given wavelength to control the final out-
come over a wider range of wavelengths.
Thus, for different parameters, the final
wavelength may be determined either by
the intracortical connections or by the initial condition (or both).
Regardless of the choice of parameters controlling this feature,
however, it seems to be a robust phenomenon that maturation of
inhibition equalizes the two eyes’ innervations in cortex.

The MD effect in this scenario depends on the degree of weak-
ening of the closed-eye activity. To investigate this effect, we sys-
tematically varied the strength of the closed-eye activity (mean,
variance, and covariance with the open-eye) by a factor fMD that
was varied from zero to one. Figure 7 shows the mean strength of
both the closed-eye and open-eye synapses after MD. If fMD is
smaller than 0.6, we see a decrease of closed-eye synaptic

strengths and an increase of open-eye synapses as discussed above
(Fig. 7A,B) (as fMD approaches zero, the MD effect almost disap-
pears, because the rate of firing of the closed-eye inputs falls
below the threshold for the LTD induced by weight decay, see
Materials and Methods). However, if fMD is larger than 0.7, we
observe an increase of closed-eye synaptic strengths (see Fig. 7C).
In this case, the homeostatic rule leads to an increase in closed-
eye synapses rather than in open-eye synapses to compensate for
the decreased postsynaptic activity. Although, the precise fMD

value for this switching behavior depends on parameters such as
the weight decay coefficient � [making � smaller makes the
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closed-eye-potentiating domain larger (see supplemental mate-
rial, available at www.jneurosci.org)], the qualitative feature
seems to be robust. That is, if it were possible experimentally to
induce a weak decrease in one eye’s firing, one should see a ho-
meostatic increase in that eye’s synaptic strength, rather than the
deprivation effect that occurs with a strong decrease in the eye’s
firing. This kind of partial decrease of the LGN activity corre-
sponding to one eye might be achievable with a weakly blurring
contact lens that reduces the effective contrast of stimuli seen
through one eye. Finally, if fMD � 1, as a control case, we see no
significant changes in synaptic weights (see Fig. 7D).

Discussion
We have shown that the equalization of the input serving the two
eyes that occurs at the onset of the critical period (CP) in cat V1,
its failure to occur in the absence of visual experience (Crair et al.,
1998), and the ability of monocular deprivation to drive ocular
dominance shifts despite the tendency of cortex to equalize the
two eyes’ innervations, can all be understood from activity-
dependent rules of synaptic plasticity along with an experience-
dependent maturation of inhibition at the onset of the CP like that
observed in mice (Hensch et al., 1998; Fagiolini and Hensch, 2000).
While the models used to demonstrate this are simple and imperfect,
the underlying principles they expose are general and robust:

(1) Inhibition that is sufficiently strong will drive the innerva-
tions of the two eyes to equalize if they have comparable activities.

(2) To nonetheless obtain ocular dominance shifts in response
to monocular deprivation, some mechanism must enable excita-
tory synapses driven by the open eye to grow under MD in closed-
eye-dominated regions, even when they cannot activate the
postsynaptic cell, as is known to occur in vivo (Mioche and
Singer, 1989). These synapses cannot activate the postsynaptic
cell both because they are weak and because inhibition from
open-eye-dominated regions is strong. Some combination of
weakening of open-eye-driven inhibition and strengthening of
open-eye-driven excitation must occur that brings the open eye
to the point that it can successfully activate the postsynaptic cell.

We have shown that homeostatic plasticity of excitatory syn-
apses, which in fact is implicated in the strengthening of open-eye
synapses after MD (Kaneko et al., 2008b), along with a minimal
amount of noise, is sufficient to achieve this. Alternatively, an
LTP/LTD rule that favors LTP, along with strong noise and a rule
such as weight normalization to force some synapses to shrink
when others grow, can also achieve this.

Our model makes two clear predictions. First, just as in mice,
a maturation of inhibition should occur in cat V1 to initiate the
CP, and visual deprivation (which prevents the equalization of
the two eyes) should prevent this maturation. Second, just as
early strengthening of inhibition, induced by infusion of benzo-
diazepine agonists (Fagiolini and Hensch, 2000; Iwai et al., 2003;
Fagiolini et al., 2004) or excess brain-derived neurotrophic factor
expression (Hanover et al., 1999; Huang et al., 1999), can cause an
early initiation of the CP in mice, such treatment should cause
early equalization of ocular dominance in cat V1. Given the slow
onset of the effects of these treatments, this might most easily be
observed by showing that the treatment rescues the delayed
equalization of ocular dominance caused by visual deprivation.

The simplest rules of correlation-based plasticity with sub-
tractive weight normalization can show equalization of ocular
dominance in visual cortex, but the results are somewhat fragile:
some parameter tuning is needed, and after inhibition leads to
equalization, sufficient noise and a learning rule that is biased
toward potentiation are needed for monocular deprivation to

induce a loss of equalization. The fundamental problem with
these simple rules is that they tend to push synaptic weights either
to zero or to their maximal allowed values (Miller and MacKay,
1994), and they have no robust means by which weights that have
been pushed to zero can recover after a change in input activity or
in intracortical inhibition, although such recovery may occur for
particular parameter choices. In reality, biology seems to have
robust mechanisms by which even weights that have been driven
to or near zero can bounce back under appropriate conditions
(Mioche and Singer, 1989). The simplest learning rules do a rea-
sonable job of modeling the emergence of a pattern from an
initially unpatterned set of synapses, but do not have any robust
mechanism for “unlearning’’ a pattern in which many synapses
have zero or near-zero weights.

We have shown that one simple fix for these problems is found
by adding a homeostatic learning mechanism (Turrigiano et al.,
1998; Maffei et al., 2004; Turrigiano and Nelson, 2004; Mrsic-
Flogel et al., 2007; Kaneko et al., 2008). While under stationary
and homogeneous input, this homeostatic constraint is similar to
the weight normalization of the total synaptic weight on a cell, it
enables weights that are pushed to zero to recover strength if the
postsynaptic cell is not well driven. We used a BCM-like rule
(Bienenstock et al., 1982; Cooper et al., 2004) as a simple mech-
anism to instantiate this homeostasis, but this mechanism is not
critical. In this rule, homeostasis arises because the threshold
separating LTP from LTD changes faster than linearly with the
mean postsynaptic activity. We have obtained similar results
(data not shown) using a rule in which one term describes
correlation-based LTP and LTD, without such a faster-than-
linear change in threshold, and a separate term causes synapses to
be multiplicatively scaled in proportion to the deviation of aver-
age postsynaptic activity from a desired set point, as suggested by
results on homeostatic synaptic scaling (Turrigiano et al., 1998;
Maffei et al., 2004; Turrigiano and Nelson, 2004; Mrsic-Flogel et
al., 2007; Kaneko et al., 2008). Indeed, an empirical problem with
the BCM-like mechanism is that it enforces homeostasis through
a subtractive rather than multiplicative change in synaptic
strengths [note, however, homeostatic plasticity in developing
visual cortex can also cause an additive change in neuronal re-
sponses by additively modifying the curve of firing rate vs input
current (Maffei and Turrigiano, 2008)]. Multiplicative scaling
shows all the same behaviors as the subtractive rule studied here
(data not shown), so long as the minimal weight is above zero (so
that synapses do not reach zero, from which they cannot recover
under multiplicative scaling) and the LTP/LTD rule produces
LTD of closed-eye synapses under MD.

We modified the BCM-like rule by adding a weight decay term
(Eq. 7). This was necessary to explain the observation that, after
MD, deprived-eye synapses weaken before open-eye synapses
strengthen (Mioche and Singer, 1989; Frenkel and Bear, 2004;
Mrsic-Flogel et al., 2007; Kaneko et al., 2008). This cannot be
captured by the BCM-like rule alone, because the homeostatic
weight regulation and the correlation-based LTP/LTD are in the
same term. The LTP induced by the homeostatic response to the
loss of postsynaptic activity thus prevents LTD due to
deprivation-induced reduction of presynaptic activity (this prob-
lem might be fixed by making the LTP/LTD threshold change
slowly, but then the BCM rule loses stability, leading to weight
oscillations). This problem can also alternatively be solved (data
not shown) using a model with separate LTP/LTD and ho-
meostasis terms, as described above, a model we will more sys-
tematically study elsewhere.

Mice do not show equalization of the two eyes’ innervations:
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the binocular segment of mouse V1 remains dominated by the
contralateral eye after the opening of the CP (Gordon and
Stryker, 1996). Why does the maturation of inhibition not cause
equalization in the mouse? Mice, like other rodents (Van Hooser
et al., 2005), do not have OD columns. We suspect the explana-
tion for the lack of equalization is closely tied to the explanation
for the lack of OD columns. In mathematical and computational
models, OD columns arise through a combination of two factors:
cooperative interactions between nearby V1 cells that lead them
to tend to receive correlated inputs, and more widespread com-
petitive interactions that ensure that not all cells become domi-
nated by the same inputs (Miller, 1990, 1996). In Hebbian mod-
els, the cooperative interactions typically involve excitatory
connections between nearby cells. In this framework, the most
likely explanation for the lack of columnar organization in ro-
dents is that the effective connectivity between nearby neurons
during development is either too weak to organize columns, or is
of the wrong sign—net inhibitory rather than excitatory. As we
have seen, strong net inhibition between cells can act as a com-
petitive factor leading to equalization of inputs, so the lack of
equalization may indicate that overall interactions are relatively
weak during development. Note that inhibition onto each cell
can be strong, as presumably occurs after the maturation of inhi-
bition that initiates the CP, without necessarily involving strong
inhibitory effective interactions between excitatory cells, for ex-
ample if inhibition is predominantly driven by feedforward
rather than recurrent projections.

Mitchell et al. (1977) pointed out a similar problem of equal-
ization: if a transition from MD to normal binocular experience
was made sufficiently early, the originally deprived eye showed a
significant, though not full, recovery both physiologically and
behaviorally. That is, the weaker eye gained while both eyes had
equal activity. They suggested that this might involve an advan-
tage of the deprived eye in competing to reinnervate territory it
lost during MD. This recovery process is now known to require
BDNF (brain-derived neurotrophic factor) signaling, whereas
the processes of MD do not (Kaneko et al., 2008). The equaliza-
tion we are studying may involve a different mechanism, one test
of which would be to determine whether it also requires BDNF.

Swindale (1980) modeled the data of Mitchell et al. (1977) as
dynamic equalization under linear dynamics. He assumed a phe-
nomenological interaction between synapses that depended on their
eyes of origin and was a DOG function of their separation in cortex.
The integral of the DOG determined the growth rate of the “DC’’
pattern, in which one eye dominates everywhere. He assumed the
integral was negative, so that the DC pattern decayed to zero, yield-
ing ocular equalization. MD added a “source” term to the dynamics
of the DC pattern, causing the more active eye to dominate.

Our explanations of equalization and the ability to achieve
MD effects despite equalization, although similar in spirit to
Swindale’s, differ from his in four respects, as discussed in more
detail in supplemental material (available at www.jneurosci.org):
(1) the spatial dependence of Swindale’s phenomenological in-
teraction has been identified, in the limit of spatially broad cor-
relations, with the intracortical interaction function (Miller et al.,
1989); (2) with this identification, the growth rate of the DC
pattern is always positive (the growth rate is K̃(0) � (1 �
M̃(0))�1, where M̃(0) � 1 and is proportional to the integral of
the DOG describing intracortical connectivity); (3) nonlinear ef-
fects, whereby the faster growth of periodic patterns leads to sup-
pression of the DC pattern, therefore are essential to equalization;
and (4) to attain MD along with equalization becomes problem-
atic in this scenario, and so requires specific solutions such as

homeostatic plasticity to allow weak synapses to recover and
compete, as we address here.

The idea that intracortical connectivity can create a periodic
organization of receptive field properties and determine its pe-
riod is an old one (van der Malsburg, 1973; Amari, 1977; Swin-
dale, 1980; Kohonen, 1982; Miller et al., 1989; Castellani et al.,
1999; Ernst et al., 2001; Koulakov and Chklovskii, 2001) Consis-
tent with this idea, genetic factors, which might act by influencing
the structure of intracortical connectivity, contribute to the spac-
ing of cortical orientation and ocular dominance maps (Kas-
chube et al., 2002, 2003). A recent experiment on cats also dem-
onstrated that a chronic increase in the strength of intracortical
inhibition from large basket cells, which project horizontal axons
at longer distances than other inhibitory cell types, widens the
spacing of ocular dominance columns (Hensch and Stryker,
2004). As those authors noted, this is the expected result from
simple models like those studied here if homeostatic mechanisms
preserved the overall strength of inhibition after its maturation at
the onset of the CP, so that the overall effect of the chronic change
was to relatively increase the strength of longer-range inhibition
versus shorter-range inhibition. In contrast, the overall increase
in the strength of inhibition that occurs at the onset of the CP
would not be expected to widen column width.

The question of whether ocular dominance columns are ge-
netically specified or arise through activity-dependent self-
organization has been a controversial one in recent years (Crair et
al., 2001; Crowley and Katz, 2002; Kaschube et al., 2002, 2003;
Huberman, 2007) (see also Miller et al., 1999 on the same ques-
tion with respect to orientation columns). In cats, activity-
independent genetic factors alone could at most account for the
condition of ipsilateral “islands’’ in a “sea” of contralateral inputs
observed both physiologically and anatomically in the third post-
natal week (Crair et al., 1998, 2001), because the subsequent
equalization of inputs serving the two eyes and their organization
into ocular dominance columns does not occur without visual ex-
perience (Crair et al., 1998). There has been no proposal as to how
this experience-dependent equalization and reorganization could
occur, and it has been repeatedly been argued that it could not be
explained by activity-dependent self-organization (Crair et al., 1998;
Crowley and Katz, 1999; Katz and Crowley, 2002). Here, we have
shown that activity-dependent learning rules, together with a pat-
tern of intracortical interactions that yields ocular dominance col-
umns, provide a simple, robust, and testable explanation.

In summary, we argue that the observation in cat V1 that
ocular dominance equalizes at the onset of the critical period may
simply be a different window on the observation, made in mouse
V1, that the critical period is initiated by the maturation of intra-
cortical inhibition.
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