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We discuss in detail the use of the structure function F,(x, Qs) of deep-inelastic neutrino 
scattering for testing quantum chromodynamics. QCD is entirely consistent with all data. 
However, we show that higher-twist (order 1/Q2) contributions, which are commonly neglect- 
ed, can have a dramatic impact on interpretation of this result. At present the data are not 
accurate enough to determine the magnitudes of these l/Q2 contributions within the context 
of QCD. Furthermore, the possible presence of higher-twist terms makes it impossible to 
unambiguously detect the logarithmic Qa dependence and anomalous dimensions which 
distinguish QCD from hypothetical alternative theories. As a result, more precise data 
with higher Qz are needed to provide definitive tests of QCD. The corrections of second- 
order in (Ye introduce fewer complications for testing QCD, and provide a useful context for 
understanding critical ambiguities in the definitions of (Ye and d. 

I. INTRODUCTION 

Scaling violations in deep-inelastic structure functions provide an important means 
of investigating the validity of quantum chormodynamics (QCD) as a theory of the 
strong interactions [I]. In deep-inelastic scattering processes such as vN--+~ + 
anything, eN ---f e + anything and PN -+ p + anything (see Fig. l), the cross-section 
can be written in terms of products of leptonic and hadronic pieces: 

d2a 
dE ’ dQ’ 

cc I,” wuy. 

The hadronic part is the Fourier transform of the spin-averaged nucleon matrix 
element of weak or electromagnetic currents 

W,, = -& s d4x eiq’Yp I J,+(x) L(O) I P&,I~ . 
averaged 

(l-2) 
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N 

FIG. 1. Kinematics of deep-inelastic lepton scattering. q,, labels the transfered momentum and 
p,, the initial nucleon momentum. 

If the current J, is conserved or if we neglect lepton mass terms in the cross-sections, 
then the most general form for W,, is 

wu~ == (--gw + 7) 8 + & (P,, - qu v) ( py - qy 7) F2 

(1.3) 

The three structure functions Fi(q2, p * q) reflect the dynamics of the nucleon-current 
interaction. 

The parton model predicts that the structure functions should “scale” [2] in Q2 for 
large Q8: 

46, Q3 = 4(x) (1.4) 

where Q2 z= -q2 and x = Q2/2p * q. In QCD, however, a mild violation of this 
scaling is expected [l] and is evidenced by the presence of terms proportional to 
inverse powers of In Q2. The scaling violation can be thought of as resulting from 
gluon radiation and quark-antiquark pair production during the scattering process [3]. 

In this paper, our attention will be focused on the structure function F3, but most 
of our results and conclusions are applicable to the study of the other structure 
functions as well. Since F, reflects only the flavor-nonsinglet part of the interaction, 
the QCD analysis of F3 is less complex and hence easier to discuss than that for Fz of 
F,. More importantly, the QCD predictions for Fs do not depend on the gluon 
distribution. inside the nucleon which cannot be directly measured; i.e., diagrams 
such as Fig. 2 make no contribution to F3 . F3 can be extracted from deep-inelastic 
neutrino scattering experiments, since for isoscalar targets 

d%.rv d%’ 
XFz = dE,dsz, --. dE ’ dsZ’ (1.5) 

F3 arises from VA interference terms. Since there are no such terms in eN or pN 
scattering processes (which are parity-conserving), the analysis of F3 is restricted to 
VN scattering. 

595i=Sb4 
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N 

FIG. 2. A diagram which depends on the gluon distribution in the nucleon but which does not 
contribute to the Fs structure function. 

We use two separate approaches in examining QCD. The first approach uses the 
QCD predictions [3] for the Q2-evolution of xF,(x, Q2). If there were no scaling 
violations, then Q2(a/aQ2) X&(X, Q2) = 0. The gluon radiation and quark pair 
production which arise in QCD are proportional to cu,(Q2) and lead to the following 
differential equation which describes the behavior of xFs to lowest-order in the running 
coupling constant cuS(Q2): 

a 

Q2 aQ" 
- x&(x, Q2) = @$ j-*’ cfw ($) wF&, Q2> P,, ($)- (1.6a) 

[aS2(Q2)/2n] P,,,(x/w) is related to the probability of seeing a quark of momentum 
fraction x arising from a quark of momentum fraction w  as in Fig. 3, when probing 
with momentum Q2. P,,, can be calculated in QCD and when this result is substituted 
into Eq. (1.6a) we find 

” aQ2 
a x&(x, Q2) = T 1 [3 + 4 ln(l - x)1 xF&, Q2) (1.6b) 

+ I1 dw & [U + w”> GF” ($3 Q2) - 2xF,(x, Qa,]/. 
z 

5-79 3606A3 

FIG. 3. An example of a current striking a quark of momentum fraction n which arises from a 
quark of momentum fraction w after gluon radiation. 
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The coupling constant a,(Q2) in QCD is given to lowest order by 

CG’YQ”) = po 1,4&n2 

with 
PO=11 --8N$ U.8) 

where Nf is the number of quark flavors and II is a free parameter. It is the asympto- 
tically free behavior of a,(Q2) in Eq. (1.7) which gives the logarithmic dependence on 
Q2 typical of QCD. 

Although QCD predicts the Q2-evolution of xF3 , it does not completely specify a 
boundary condition for Eq. (1.6). One could use the data for xF3 at a particular Q2 
value, Q2 = Qo2, as a boundary condition and integrate Eq. (1.6) to obtain predictions 
for other Q:! values. However, in this approach the entire QCD prediction for all Q2 is 
based on a small fraction of the data taken at Q2 = Qo2 and a true global fit of the data 
is impossible. We choose instead to assume a form like 

xF,(x, Qo2) = Cx”(1 - x)” (1.9) 

at some reference point Q2 = Qo2, integrate Eq. (1.6) to determine xF3 at other Q2 
values and fit the data at all Q2 to determine the best values for the parameters in 
Eq. (1.9). This allows us to use all the data to decide on the best boundary condition 
for Eq. (1.6). 

The Q2-evolution approach provides a clear visual interpretation of scaling viola- 
tion. One can observe the impact of exclusive channels although it is difficult to 
account for them quantitatively. A dis-advantage of this approach is that it depends 
on assuming a form like Eq. (1.9) for xF,(x, Q2) in order to obtain a global fit. 

The second approach we will use to study QCD involves taking moments of xF3 
defined by [4] 

M,(N, Q2) = Jo1 dx x~-~xF~(x, Q2). (1.10) 

The QCD calculation of the moments of xF3 using the Wilson operator product 
expansion 1151 is discussed in detail in Section II. Alternatively the moments can be 
obtained by applying ji dx ~j’-~ to both sides of the evolution equation (Eq. (1.6)). 
Performing the integrals, one finds 

Q2 aQ2 a M,(N, Q2) = - f-$ yoNM,(N, Q2> (1.11) 

where yoN are the anomalous dimensions defined by 

YoN = -4 ldw wN-lP,,(w) 
s 0 

(1.12) 
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and in QCD 

The solution to Eq. (1.11) is 

with 

Using Eq. (1.7) one obtains 

(1.13) 

(1.14) 

(1.15) 

The KN are unknown constants which must be determined from the data. This 
approach provides very clean predictions which do not depend on any assumptions 
about the x-dependence of xF3 such as Eq. (1.9). This allows for quantitative checks 
of the logarithmic behavior and the anomalous dimensions predicted by QCD. The 
moments smooth out the effects of exclusive channels. Whether this allows one to 
account for the impact of these channels is not clear. If data are not available over the 
entire x range and in particular all the way out to x = 1, the moments cannot be deter- 
mined without extrapolating the data. Finally, all moments for N 2 4 heavily weight 
contributions at high x (x > 0.5) and neglect low x contributions. 

As one can see from Eqs. (1.6), (1.7), and (1.16), crucial features of QCD are the 
logarithmic dependence on Q2 and the definite predictions of Eqs. (1.8), (1.13), and 
(1.15) for the powers dN . In phenomenological studies of QCD, one must verify that 
these two features are clearly indicated by the data. Thus, in Section IV we will ask 
whether the data require a form such as Eq. (1.16) as opposed to moments which are 
independent of Q2 or which vary with inverse powers of Q2. These alternatives do not 
at present represent viable strong interaction theories, but are merely used to deter- 
mine whether there is evidence for the logarithmic behavior characteristic of QCD. 
Similarly, in Section IV we will investigate whether the dN are sufficiently determined 
by the data to imply a test of QCD. 

It would be quite straightforward to distinguish the logarithmic behavior of QCD 
in deep-inelastic data if it were not for the fact that the QCD predictions are subject to 
several types of corrections. These include target-mass corrections [6-81, higher-twist 
effects and corrections [9, lo] of higher order in 01~ . We begin by discussing the target 
mass effects. 

The QCD predictions discussed above are derived under the assumption that the 
nucleon mass squared, mp2, is negligible compared to Q2. At low Q2 (where much of 
present data is taken) this is not the case and there are correction terms of order 
m,“/Q2. These are discussed in the context of the operator product expansion in 
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Section II. It is also instructive to discuss target-mass corrections in the language of 
the parton model [7,8]. If the target nucleon is moving in the x, direction, then the 
relevant quantity for deep-inelastic scattering is 

(PII + P3bJusrk 

f = (PO + P3hweon * 
(1.17) 

An expression for % can be derived by taking the final struck quark to be on mass- 
shell and massless. Tf we ignore proton mass terms, this leads to the result 

However, if we keep all proton mass terms we obtain the t-scaling variable 

a=[= 2x 
1 + (1 + 4m.2x2/Q2)1J2 * (1.19) 

Note that as mD2/Q2 -+ 0 we find f --f x. If target mass effects are taken into account, 
the predictions for xF3 can be written in terms of a new function F(x, Q2) as was first 
discussed b:y Georgi and Politzer [7]. Defining 

we have 

(1.20) 

xFdx, Q2> = f2 
c F(& Q2> + 4m~f3v3 j1 dx' F(x;,2Qz) * (1.21) 

c 

Again, for Q2 > mp2, 

xF,(x, Q2) - Qs>m 2 KG Q”). (1.22) 
D 

Whereas in the x-scaling case it was xF3 which obeyed the evolution Eq. (1.6), it is 
now the function F which obeys the evolution equation of QCD, 

a 
Q2 a(F F(x, Q”> = q 113 + 4 ln(1 - x)] F(x, Q2) 

+ jzl h & [(I + L+"> F (5, Q2) - 2F(x, Q2)] 1. 
(1.23) 

As before, in order to integrate the evolution equation we will assume a form for Fat 
a starting point Q2 = Qo2. Again, we will make the assumption 

F(x, Qo2) = Cx”(1 - x)~. (1.24) 
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Target mass corrections also affect the QCD predictions for moments. The result, 
discussed in Section II is that the QCD form remains unchanged: 

but the definition of the moment used on the left-hand side of Eq. (1.25) changes from 
the simple definition of Eq. (1.10) to the Nachtmann form [6] 

&r(~, Q2) = Jo1 dx G x~2(x, Q2) ’ + cN + ‘11: ; ;~m.2~2~Q2)"2 (1.26) 

where 5 is defined as in Eq. (1.19). It is straightforward to verify that the ordinary 
moments of Eq. (1.10) and the Nachtmann moments of Eq. (1.26) become equal as 
m,“/Q” --f 0. However, at low Q2(Q2 5 3 GeV2) the differences between them become 
quite large as we show in Section III. 

Although the t-scaling scheme correctly accounts for target-mass effects, it does not 
correctly describe the final-state kinematics of deep-inelastic scattering [l 11. For 
example, in the parton-model discussion above we have taken into account the initial 
nucleon mass, but we have ignored the fact that the final-state hadronic mass must be 
greater than m, . This results in problems for the .$-scaling description of xF3 in the 
region near x = 1. Kinematics requires that xF3 vanish for x > 1. One might there- 
fore choose a function F(.$, Qo2) which vanishes for [ > t,, where trnax is the value 
of [ which corresponds to x = 1 for Q2 = Q,2. This would assure that xF,(x, Qo2) 
would vanish for x > 1. However, this approach can have disasterous consequences. 
For example, if we take Q02 = 1 GeV2 then fmax = 0.64. We would then find by 
integrating Eq. (1.23) that F(.$, Q2) would vanish for [ > 0.64 at all other Q2 values 
as well. At large Q2 where the t- and x-scaling schemes become identical this would 
lead to the nonsensical prediction xF,(x, Q2) = 0 for x > .64. A more sensible ap- 
proach then is to take a form like Eq. (1.24) for F(f, Qo2) which does not vanish for 
t > Smax . However, when this is done xF3 will not satisfy the kinematic requirement 
xF3 = 0 for x > 1. 

Because the &scaling predictions of Eqs. (1.19)-(1.21) do not vanish at x = 1 we 
have the paradoxical situation that in the phenomenology of f-scaling we are fitting 
a form to the data which cannot possibly work. Of course, it is also true that the x- 
scaling scheme with xF3 cc (1 - x)” cannot account for elastic scattering which occurs 
at x = 1. Tn Fig. 4, we show an x-scaling curve (solid curve) and the corresponding 
f-scaling prediction (dashed curve) compared with BEBC-Gargamelle data [12] at 
Q2 = 1.7 GeV2. The x-scaling curve fits the inelastic data fairly well in the large x 
region whereas the t-scaling curve overshoots that data considerably as x -+ 1. The 
paradox is somewhat resolved by noting that the f-scaling variable acts much like 
the scaling variable of Bloom and Gilman [13]. One can argue [14] on phenomeno- 
logical grounds that, in overshooting the data near x = 1, e-scaling may account for 
the elastic scattering contribution (and resonance contributions) in the sense that the 
excess area under the &scaling curve equals the area under the elastic peak at x = 1. 



l/Q2 AND 01~ CORRECTIONS 283 

1.5 

8 
1.0 

x” 

2 
x 

0.5 

0 

!/ 

I t it 
Ir 

‘p,,, j 4.. / ---I__ 
-~ -L---L---I---L--- 

0 0.2 0.4 0.6 0.8 I@ 

FIG. 4. The solid curve is an x-scaling fit of QCD to the data of Ref. [12] while the dashed curve 
is the corresponding t-scaling prediction of QCD. Elastics are shown in an extra bin from x = 1 
to x = I. 1 wh,ere the area under the data point in this bin is equal to the area under the elastic spike 
at x = I in the original data. Note that a significant elastic contribution is present and that the x- 
and t-scaling curves are quite different at this value Qz = 1.7 GeV2. 
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FIG. 5. Same as Fig. 4 except that Qz = 3.9 GeV2. Note that the elastics are now negligible and 
that the x-(solid) and [-(dashed) scaling curves are nearly identical. 

Tn Figs. 4 and 5 we have plotted the elastics in an extra bin from x = 1 to x := 1. I so 
that this can be visualized. The area under the data point in this bin is equal to the 
area under the elastic spike at x = 1 in the original data. It is clear that in fitting the 
t-scaling predictions to the data the elastic contribution must somehow be included. 
Tn the case of moments, one possible approach is to include elastics in the integral, 
Eq. (1.26). fn direct fits of xFS , however, the elastics remain a more serious problem 
especially when Q” 5 3 GeV2 (where elastics contribute significantly). Figure 5 
shows the x- and f-scaling curves and the elastics at Q2 = 3.9 GeV2. Note that at this 
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larger Q2 value the solid and dashed curves are converging and the elastics are in- 
significant. 

Unfortunately, target-mass corrections are not the only effects of order l/Q2 which 
can modify the QCD predictions in deep-inelastic scattering. There are other order 
l/Q2 effects coming from non-leading-twist operators in the operator product expan- 
sion as discussed in Section II. These effects are departures from the simple parton- 
mode picture because they account for the exchange of gluons between struck and 
spectator quarks, and other coherent phenomena such as multiquark scattering, 
elastic scattering, transverse-momentum effects, resonance production, and consti- 
tuent meson scattering. In Section IV we will show that higher-twist operators can 
cause major problems in testing QCD. 

These higher-twist effects are expected (using quark-counting arguments [ 151) to 
modify the basic form of xF3 to something like 

xF& Qo2> = cx"(l - x)" 1 + ,r; ( Q,2(71 x) )‘] 

[  

although the exact x dependence of the higher-twist terms is not known. Similarly one 
expects a modified prediction for the Nachtmann moments (Eq. (1.26)): 

(1.28) 

The magnitude of the masses pj appearing in Eqs. (1.27) and (1.28) are unknown. The 
Aj depend on In Q2//12 representing the asymptotic freedom corrections to the higher- 
twist operators. The modifications in the predictions for xF, and as(N, Q2) (Eqs. 
(1.27) and (1.28)) make it quite difficult to unambiguously detect the characteristic 
logarithmic Q” dependence of QCD or the predicted values of dN (or equivalently, of 
the anomalous dimension .y~~). Distinguishing between In Q2 and 1 /Q2 effects is in fact 
impossible using present data as we will show in Section IV. 

Finally there are corrections to the basic QCD predictions coming from terms of 
higher-order in 01, which have recently been computed by Floratos, Ross and Sachrajda 
[9] and by Bardeen, Buras, Duke and Muta [lo]. As discussed in Section II in the 
context of the operator-product expansion, the lowest-order QCD predictions for 
moments (Eqs. (1.14) and (1.16)) are modified by order (II, corrections to: 

M&K Q2) = M,(N, Qo2> (*)“(I + + b,(Q2> - dQo2)1). (1.29) 

At second-order, one can write 01, as 

PI In In Q2/A2 4Q2> = aa’ (1 - p;” ln Q”,/j” ) (1.30) 

where OI,?O(Q~) is given by Eq. (1.7) and as calculated by Caswell and Jones [9] 

p1 = 102 - y Nf . (1.31) 



l/Q2 AND a, CORRECTIONS 285 

Using Eqs. (1.29) and (1.30), one finds 

J+fdN, Q2> = (,n Q7A2,bN 

AN + BN In In Q2/A2 
In Qz/f12 1 (1.32) 

with 

The constant A, has been computed, although there is an ambiguity in determining 
A, which results from basic ambiguities in the definitions of 01~ and A in QCD as has 
been discussed by Bardeen et al. [lo]. First, 01, can only be defined in the context of a 
given renormalization scheme. In two different schemes, the definitions of the two 
parameters LX, dis-agree at second-order and are related by 

where f is a constant depending on the definition of a’, . Therefore, one finds that to a 
given order in LX,” the value of olS(Q2) (which is not a physical quantity) is not unique. 
In fact, in second-order calculations the value of a,(Q2 = 10 GeV2) can vary by a 
factor of two in different schemes which are consistent with the data. However, even 
if the renormalization scheme is fixed, there is still an arbitrariness in the definition of 
A which results in an ambiguity exactly like Eq. (1.34). Consider some function 
expanded in powers of l/In Q2 

A B 
F = In Q2/A2 + In2 QZjA2 + “* (1.35) 

Now define 

Then, 

and we can write 

(1 L, = (le1/2o (1.36) 

1 1 
In Q”/A2 = In Q”/A,” - ln2 &,z + “’ 

A B-P 
’ = In Q”/A,” + In2 Q2/(l,a + ‘-” 

(1.37) 

(1.38) 

Thus, we have the possibility of expanding using different A’s and getting different 
values of the constant in the second-order term. If we use the definition of A, in 
Eq. (1.36) for the moments of Eq. (1.32), we find 

M,(N> Q2> = p., Q&)+ 1 + [ 
AL + BN In In Q2/A, 

In Q2/A, 1 (1.39) 
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where AL == A, - pdN . Note therefore, that one cannot define fl without specifying 
the constant term in the second-order correction nor can one say how large the second- 
order term is without stating what definition of /l is being used. Furthermore, it 
follows [I 61 that in leading-order calculations there is no clear definition of (1; it is not 
informative to quote leading-order values of (1. In addition, leading-order results 
which are very sensitive to the value of d are likely to have significant higher-order 
corrections. We should point out that in comparing values of fl or 01,~ from different 
processes, one must be sure that the same definitions of these parameters are being 
used. This can only be done if the second-order corrections are known. In particular, 
there is no meaning to comparisons of n’s obtained from different processes using the 
lowest-order results of QCD. 

If one obtains the values of (1, and (1, from schemes a and b by fitting the moments 
for each s heme to data, one does not necessarily find that (1, and il, are precisely 
related by Eq. (1.36). The variation from relation (1.36) results from the fact that 
different renormalization schemes have left different and significant amounts to order 
((Y,O)~ corrections. The effects of second-order QCD corrections on fits to the moments 
of xF3 are discussed in Section IV. 

II. REVIEW OF QCD RESULTS 

The QCD predictions discussed in the introduction are derived in this section using 
the operator-product expansion and renormalization group formalism. 

A. The Operator Product Expansion 

Because of asymptotic freedom, certain quantities which do not depend on the 
distinction between quark and h&on final states can be calculated perturbatively in 
QCD when all the relevant invariant masses are large [I]. However, the quantity 
W,, (see Eq. (1.2)) measured in deep-inelastic scattering satisfies neither of these 
requirements. First, since W,,, is a nucleon matrix element it certainly distinguishes 
between nucleon and quark states. Second, although Q2 and p . q can be made large 
the invariant mass p2 is fixed by the condition p2 = mp2. The solution to this dilemma 
is the operator-product expansion [5]. The operator-product expansion expresses the 
product of two currents J,,(X) J,,(O) as a sum of terms which are products of a c-number 
function of x, times a local operator evaluated at X, = 0. When nucleon matrix 
elements are taken and the Fourier transform over X, is performed, each of these 
terms factorizes into a product of a function of Q2, known as a Wilson coefficient; and 
a target-dependent matrix element of the local operator, which does not depend on 
Q2. The Wilson coefficients are independent of pu and do not depend on what states 
are used to evaluate matrix elements. They thus satisfy all of the conditions appropriate 
to asymptotic freedom and can be calculated perturbatively in QCD using renormali- 
zation group methods. These calculable coefficients can be isolated by taking moments 
[4] of the appropriate structure function, in our case F3 . 
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Rather than working directly with W,, , we will consider Tuy which is related to the 
forward Compton scattering amplitude and is defined as the Fourier transform of the 
spin-averaged nucleon matrix element of the time-ordered product T{J,+J,} by 

From now on we will use the letter z to denote space-time coordinates to avoid 
confusion with the Bjorken scaling variable x. W,, is related to Tuy by 

W,, -t- K, = b Im(Tuv + Tv,J (2.2a) 

W,, - WV, = G Im[i(T,” - T,,)]. (2.2b) 

We can isolate a quantity T3 analogous to the F3 structure function which we wish to 
evaluate by writing 

Then, comparing Eqs. (1.3) and (2.3) and using (2.2) we see that 

F8 = b Im(T,). 

The operator product expansion relevant to T3 is [5,6] 

where the ein(z2) are c-number functions, the Oy”‘Pn are local operators and the 
sums extend over all local operators with the appropriate quantum numbers to 
contribute to the product of currents J, . The operator qPz*.‘Pn is taken to have 
definite sp.in n so that the sum over n is a sum over spins while the sum over i includes 
all other quantum numbers required to label the local operators (such as flavor). 

In order to see what Eq. (2.5) implies for the function T3 we define the Fourier 
transform 

s 
a #z eiq.2 - ein(z2) zu8 *a* z,,, 

az, 

= -iqbqpz *a* qu, [+$+I G”(Q2>. (2.6) 
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The factor in brackets is inserted for later convenience. Simple dimensional counting 
shows that if the operator qf12 “‘0n has canonical mass-dimension di, then 

where 
Tin = diR - n (2.8) 

is called the twist of the operator q@~“‘~ n. In an interacting quantum field theory this 
simple dimensional analysis does not apply because an extra mass parameter, the 
renormalization mass TV, appears. As a result, in general we have no reason to believe 
that Eq. (2.7) is correct. However, in QCD the results of Eq. (2.7) are only modified 
asymptotically by powers of logarithms of Q2 so one can still argue that the leading 
terms in the operator product expansion when Q2 is large come from the local opera- 
tors of lowest possible twist. For T3 these are the twist 2 operators 

in-l 
&‘~- n. [ 4 ; hiyaDu2 . . . 

I Du,# + permutations 1 (2.9) 

where 4 is the quark field, D, is the gauge covariant derivative of QCD and & are the 
generators of the flavor symmetry group SU(N,). 

From now on we will restrict our discussion to leading-twist operators. Note, 
however, that the presence of operators of twist 4, 6, 8... in Eq. (2.5) implies through 
Eq. (2.7) that there will be corrections of order l/Q2, l/Q4, l/Q6,..., to the basic QCD 
predictions. These are the higher-twist corrections discussed in the introduction. 

We have choosen to arrange the operator-product expansion so that the operators 
cp “‘@* have definite spin n. Then the nucleon matrix elements of the p”‘pn must be 
proportional to symmetric, traceless tensors of rank n, so we can write 

<P I ~;Ua”‘Un I P&pin 
averaged 

- Gin [pap,, ***pu,, - - % &,,PLL, ‘*. Pu, - all other traces 
I 

(2.10) 

where the Gin are constants. Combining Eqs. (2.5), (2.6) and (2.10) we find 

l uvarJ,,v = --ihe - p,d c (Tz) [W(Q2, Gin4 ‘2T;;:-1 ] 
i n 

+B(+)+Q(+). (2.11) 

The terms marked 0(m,2xz/Q2) come from the trace terms in Eq. (2.10) while those 
marked 0(l/Q2) (with a mass scale set by hadronic matrix elements) come from the 
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higher-twist terms left out of the sum over twist 2 operators in Eq. (2.11). Because of 
SU(N,) symmetry in QCD all the Ci”(Q2) with different flavor indices i will have the 
same Qz dependence, and we can define 

Ci”(Qz) = Cn(Q2) ki (2.12) 

for the twist 2 term where the ki are constants. It is also conveneint to write 

c Gi”ki = G, 
2 

(2.13) 

again for twist 2 matrix elements. Then comparing Eq. (2.3) with Eq. (2.11) we see 
that 

T, = 2 c [Cn(Q2, G, (;,1 + 0 (9) + Q (+). 
9% 

(2.14) 

We now relate the various terms in Eq. (2.14) to moments of F3 . This is done by 
noting that T3 is analytic in x except for a cut from x = - 1 to x = 1. Thus, from 
Eq. (2.14) we can write 

& f dx xN-lT3 = 2c,(Q2) GN = f J: dx xNml Im(T,). 
1 

(2.15) 

Now T3 has the crossing property T,(-x) = T3(x) so from Eq. (2.4) we find 

1 l - j dx xN-l Im(7’J = 2 1’ dx xN-lF3 (N odd). 
n -1 

(2.16) 

Thus, combining Eqs. (2.15) and (2.16) we have 

M,(N, Q”)i = S,l dx x~-‘xF~ = CN(Q”) GN + 0 (F) + 0 (+) (N odd). 

(2.17) 

Actually the U(m,“x2/Q2) terms can be included [6, 71 in the derivation by keeping 
track of the trace terms in Eq. (2.10). The derivation is quite involved but leads to 
the result [6] 

n;r,<N, Q2> = CdQ2) GN + W/Q21 0’ odd) (2.18) 

where MS(N., Q2) are the Nachtmann moments defined in Eq. (1.26). Note that the 
higher-twist terms of 0( 1 /Q2) appear in both (2.17) and (2.18). 

Equations (2.17) and (2.18) express the results of the operator-product expansion. 
Although we have the restriction N odd, predictions for even N can be obtained by 
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analytic continuationl. We therefore will consider the QCD predictions for even and 
odd moments on equal footing. 

B. The Renormalization Group Equations 

From Eqs. (2.17) and (2.18) we see that to leading order in l/Qz, the Qz dependence 
of the moments of F3 is given by the Q2 dependence of the Wilson coefficients C,(Q”). 
This can be computed by using the renormalization group equations [18]. In a renor- 
malizable field theory like QCD, there is an inherent arbitrariness in the definitions 
of renormalized coupling constants and in the renormalization of operators. In 
addition, when the renormalization program is carried out an arbitrary mass scale, 
the renormalization mass p2, enters into the theory. This arbitrariness must cancel in 
such a way that the theory is invariant to changes in the renormalization mass when 
they are compensated by redefinitions of the coupling constant and renormalizations 
of the operators of the theory. 

Because the C,(Q2) in Eqs. (2.17) and (2.18) are dimensionless we must be able to 
write 

C,(Q') = CN (5 > g) (2.19) 

where we have explicitly shown the dependence of the C, on the QCD coupling 
parameter g. Now the renormalization group invariance discussed above implies that 
C,(Q2/p2, g) must satisfy the equation [19] 

[P 6 + P(g) -$ - Ydd] CN (ST g) = 0. (2.20) 

/3(g) expresses how the coupling constant g changes when p2 is varied and yN(g) 
expresses the change in the normalization of the operator @‘z”‘~, when p2 is changed. 
The solution to Eq. (2.20) is 

, G($L) = CN l,E ( (-$-)) w  [ - ~(02”2) dg’$$$-] (2.21) 

where g(Q2/p2) is the solution to the equation 

with the boundary condition g(1) = g. 

(2.22) 

1 When calculated to second-order in oil, the anomalous dimensions have the general form yN = 
yap + (-l)NyeN so that the yN for even N are not defined by a unique analytic continuation from 
those for odd N. However, the numerical difference between yap - yBN and ~~~ + yBN for even N 
is quite small and this subtlety will be ignored in our phenomenological analysis. See Ref. [17] for 
further details. 
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A number of interesting Q2 dependences can be derived from Eq. (2.21) on quite 
general grounds. For example, in a hypothetical superrenormalizable field theory the 
anomalous dimensions yN vanish and g = g. Then, from Eq. (2.21) we find 
CN(Q2/p2, g) = C,(l, g) so that in this type of theory, moments of F3, M,(N, Qz) = 
GNCN , would scale perfectly at least to leading order in l/Q2. Another behavior 
which g could exhibit is the fixed-point behavior S(Q2/p2) +QZ& & . In this case we 
can write the integral in Eq. (2.21) using Eq. (2.22) as 

= -iYN(&)Inj$. (2.23) 

Thus, in the fixed-point case we have 

CN(+T) = CN( 

so that the moments M&V, Q2) would exhibit scaling violation by powers of Q2, 

(2.24) 

Finally, we turn to QCD where, because of asymptotic freedom the various func- 
tions appea.ring in Eq. (2.21) can be calculated perturbatively. We write 

and 

fw = -a& - a& + ... (2.26) 

(2.27) 

2 
cN(l,g) = 1 + EN- & 

+ . . . . (2.28) 

From these expansions and Eqs. (2.21) and (2.22), the second-order expansion for the 
moments, Eq. (1.29), and for the coupling constant CL, , Eq. (1.30), can easily be 
derived [9, IO]. The constant AN in Eq. (1.29) is then given by 

N 

AN = f$ + ;io2 
YoNA ___ 2p,3. 

For simplicity, we will only discuss the lowest-order results [I] of Eqs. (1.16) and 
(1.7). Substituting the lowest-order terms from Eqs. (2.26)-(2.28) into Eq. (2.21) we 
have 

CN (5 ,3 = exp [j”“‘” dg’ ;;, ] = ( ~(Q;P") )yoN’sa (2.30) 
B 0 
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Now, we turn to Eq. (2.22) which to lowest-order is just 

with the solution 

g2 (+) = g2/(i + &PO ln -$). 

It is customary to define 

so that Eq. (2.32) takes the simple form 

g2 (5) = 167r2/(&, In -$). 

(2.31) 

(2.32) 

(2.33) 

Using the definition c+(Q2) = g2(Q2/p2)/& we recover Eq. (1.7) of the introduction. 
Similarly, substituting Eq. (2.34) into Eq. (2.30) and using the relation between 
moments and Wilson coefficients we find the prediction of Eq. (1.16) for logarithmic 
scaling violations in QCD. 

Finally, we note that the evolution equation of QCD, Eq. (1.6), can be derived 
from the above discussion by noting that the moment relation 

M,(N, Q2) = s,l dx -,c~-~(xF,(x, Q2)) (2.35) 

can be inverted by writing 

xF,(x, Q2) = L ji" 
2m -pi@ 

dN x’=“M&V, Q2). (2.36) 

The evolution equation can also be obtained directly by calculating radiative correc- 
tions to the quark scattering processes in leading-logarithm approximation [3]. 

III. ASPECTS OF A QUANTITATIVE ANALYSIS 

A. Choice of Q2 Cutoff 

The QCD calculations which we are considering are perturbation expansions in 
01, (cc l/In Q2//12) and in 1 /Q2, and are not justifiable if Q2 is too small. Therefore, a 
primary problem in testing QCD in deep-inelastic scattering is the question of what 
lower bound on Q2 should be used in any analysis. While it has been commonplace to 
set the lower limit at Q2 = 1 or 2 GeV2, we feel the limit should be higher. Considera- 
tions of the value of ~11, or of second-order corrections to the moments [9, lo] may be 
relevant but are clouded by the arbitrariness in defining (II, and /1 (see Section IV-E). 
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However, it is clear that terms of order l/Q2 make substantial contributions in the 
Q2 = 1 - 3 GeV2 region. A comparison of the ordinary moments, Eq. (l.lO), and 
the Nachtmann moments, Eq. (1.26), as shown in Fig. 6 (using BEBC-Gargamelle 
data [12]) reveals large target-mass corrections for Q2 < 3 GeV2 (see also Fig. 4). 
Furthermore, elastic scattering (a term of order l/Ql) accounts for more than half of 
the N = 4 moment at Q2 = 1 and almost a third of it at Q2 = 2 (see Fig. 7). It seems 
likely then that higher-twist effects as well as target-mass corrections are very impor- 
tant in this low Q2 region. In other analyses it has been assumed that after target-mass 
corrections have been made, the remaining order l/Q2 effects are small; in this case, 
fits of QCD to data at low Q2 become tests of this conjecture rather than tests of 
QCD itself. We believe that only data with Q2 > 3 GeV2 should be used for testing 
QCD. As we will show in Section IV, even for Q2 > 3 GeV2 higher-twist terms of 
modest size could significantly affect ones conclusions about QCD in present data. 
Clearly, one may wish to consider smaller values of Q2 when examining questions of 
the contributions of l/Q2 terms. 

0.1 

FIG. 6. A comparison of ordinary moments and Nachtmann moments from the data of Ref. [12]. 
Curves are drawn connecting the data points to help guide the eye. The two types of moments are 
significantly different for Qe < 3 GeV” indicating large target-mass effects in this Qz region. 

FIG. 7. Nachtmann moments computed with and without elastic scattering contributions. 
Curves are drawn connecting the data points to help guide the eye. Data are from Ref. [12]. The 
curves show .a significant elastic contribution for Q2 < 3 GeVZ. 
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B. Other Sources of Q” Dependence 

There are additional sources of Q2 dependence which could conceivably affect ones 
conclusions about scaling violating. Since the highest Q2 values are a reasonable 
fraction of the W-boson mass, propagator effects are non-zero. However, from Q” = 4 
to 100 GeV2 the resulting scaling violation is only 4 % (independent of N or x) whereas 
QCD scaling violations are 30 o/,-SO ‘%; (depending on the particular moment). 

Heavy flavor thresholds can also induce Q2-dependence into the structure func- 
tions. First, heavy quarks can be produced, but this is suppressed to the 5 S,; level or 
less by the small mixing angles of these heavy quarks to the u and d quarks. A more 
important effect comes from virtual heavy quarks. For example, to lowest-order the 
/3 function is ,!$ = 11 - #NY . With heavy quark thresholds the effective number of 
flavors Nf is Q2-dependent and is given approximately by [20] 

N,=3+ 
1 

I + 5r7z,2/Q2 + 
1 

1 + 5mb21Q2 ’ (3.1) 

From Q2 = 4 to 100 GeV”, Nf changes from 3.3 to 4.4 and induces an additional 
scaling violation of about 10 %. When data are fit using Eq. (3.1) rather than Nf = 4, 
one obtains a value of (1 which is about 30 % smaller. It is quite unlikely that neutrino 
data available now or in the near future could distinguish such forms of scaling 
violation from logarithmic scaling violation. 

C. Analysis of Data 

There are two sets of data for xF3 which we have analyzed. The BEBC-Gargamelle 
(BG) data [12] cover a large range of Q2. but the statistics are poor except for small 
Q2. For almost all Q2, BG data cover the entire x range. The CERN-Dortmund- 
Heidelberg-Saclay (CDHS) data [21] are concentrated at high Q2 and have better 
statistics. However, for most Q2 values, the x range of these data is very limited. The 
CDHS experimentalists made analyses [21] combining their data with SLAC eN 
data; we believe it is best not to do this. 

Given the nature of these two sets of data, we feel it is logical to use the BG data for 
analyses of moments (Eq. (1.16)) and to use the CDHS data for analyses of the evolu- 
tion of xF, (Eq. (1.6)). We have analyzed each data set by both methods, but will 
restrict our discussion in this paper as described above. One might consider the 
possibility of combining these two data sets. This idea turns out to be unwise, since 
the data are not consistent when both Q2 and x are large. Consider the ~4~ data in the 
following bins2 : 

Q2 = 20 (x = .55 x = .65) Q2 = 63 (x = .55 x = .65) 
-.. .___ 

CDHS .29 f .06 .ll i .06 .18 f .03 .08 + .02 
BG .16 f .09 .02 f .08 .I0 + .06 .04 k .02 

2 CDHS results in this table are obtained by interpolating between neighboring data points. 
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For almost all other Q2 and x values where the two data sets overlap, the BG and 
CDHS data are entirely consistent. However, we find contradictory results from 
moment analysis if the data sets are combined, because the moments give extra 
weight to the large x region. 

For both the Q2-evolution and the moment approaches, we obtain the values of the 
free parameters by finding the minimum of the usual x2 function: 

x2 = xi [f,(theory) - b(experiment)]” 
ci ui2 

(3.2) 

where the sums are over all data points (or bins) and the ui refer to one standard 
deviation uncertainties. Interpretation of the value of xZ involves the number of 
degrees of freedom (d.o.f.). The number of d.o.f. is the number of data points minus 
the number of free parameters. By statistical analysis, one expects x2 be approximately 
1 per d.o.f. for a good fit; clearly x2 increases for poor fits. Tn analyzing the BG and 
CDHS data and comparing with QCD predictions, we obtain the puzzling results 
that in general x2 is less than 1 per d.o.f. (ranging from about 0.5 to 0.8). Low x2 are 
statistically unlikely. This problem may result from overestimates of uncertainties. 
Tn some cases we rescale (or renormalize) the value of x2 in the QCD case to 1 per 
d.o.f. in order to judge the relative probabilities of alternatives to QCD. In other 
words, we multiply the x2 values of QCD and of alternatives by a common factor. 
Clearly such a procedure has serious drawbacks, and no important conclusions should 
or will be based on it. 

Standard deviations for each parameter are obtained as follows: Parameter x1 is 
varied away from its fitted value. For each new value of x1, the other parameters are 
varied to obtain the best x2. This is repeated until a value of x1 is obtained for which 
its best x2 is 1.0 greater than the x2 for the original fitted x, . The same procedure is 
followed for parameters x2, x3, etc. 

Jn fitting the BG data we consider the N = 2, 3,4, 5 and 6 moments of xF3 (mo- 
ments with N 3 7 would measure the same large x bins again). Since BG had no 
acceptance and therefore no data in the Q2 = 64 GeV2, x = 0.05 bin, we extrapolate 
the data and add a 100 % error (xF, = 1.1 & 1.1). Previous analyses have used xF3 = 
0 f 0, but we feel our procedure is more reasonable. To obtain the best fit (and 
minimize x2), the coefficients K, - K, (see Eq. (1.16)) and d are all varied simul- 
taneously. 

It is also ‘of interest to find ratios of anomalous dimensions which can be done by 
finding the slope when In M,(N, , Q2) is plotted versus In M,(N, , Q2) [ 121. However, 
in this case, special care must be taken, because there are very strong correlations in 
the uncertainties for M,(N, , Q2) and M,(N, , Q2) (especially if NI = N, + 1); these 
correlations occur because each moment is an integral over .xFs . In our analysis, ‘si in 
Eq. (3.2) was modified to account for these correlations. 

Tn fitting the CDHS data using the Q2-evolution equation (Eq. (1.6)), we assume the 
form F(x, Qo2) = Cx”(l - x)“. This form is entirely consistent with the neutrino 
data, so there would be little value in using a form with additional parameters. We 
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choose Qo2 to be 152.4 GeV2 (the highest CDHS data point) and then evolve to lower 
Q2; note that xF,(x, Qo2) w  F(x, Q,) for such large Qo2, see Eq. (1.21). The parameters 
a and b describe the parameterization at Q2 = Q,z. With each variation of a and b, we 
use Eqs. (1.21) and (1.23) to calculate xF3 in all other x and Q2 bins and then compare 
with the data to obtain x2. In this way we obtain the parameters a, b and (1 simul- 
taneously using the data at all Q2 values. Our results are almost totally independent 
of which values we choose for Qo2 (although different values of a and b are obtained, 
of course). The value of the constant C in Cx”(1 - x)” is obtained using the Gross- 
Llewellyn-Smith sum rule [22]. This sum rule requires that the N = 1 moment be 
equal to 3 in leading order (where this entire calculation is done). Using xF, = Cx” 
(1 - x)~, this results in 

c = 3@ + b + 1) 
T(a) r(b + 1) ’ (3.3) 

We have also allowed C to be the fourth free parameter; this procedure results in 
somewhat different values for a and b, but it gives almost identically the same value 
for n and does not affect any of our conclusions. 

IV. ON THE COMPARISON OF THEORY WITH EXPERIMENT 

In this section we address several questions concerning the presence and form of 
scaling violations, the role of anomalous dimensions and the effect of different renor- 
malization schemes. All of these questions center on the problem of testing QCD. Can 
the present data be taken as evidence for the validity of QCD? What are the appro- 
priate methods and considerations in testing QCD ? 

There is no question that scaling violation does exist in some form. Using the 
BEBC-Gargamelle (BG) data [12], one finds that the probability of perfect scaling 
(M,(N, Q2) = KN = constants) is only 1 in lo3 for Q2 > 3 GeV2 and much smaller if 
data for Q2 > 1 GeV2 are used. 

For each question we raise, we will consider answers in the contexts of both moment 
analysis, Eq. (1.26), and Q2-evolution, Eqs. (1.21)-(1.23). In the analyses which follow 
we will always use Nachtmann moments, but no qualitative conclusions would be 
changed by using ordinary moments. Since we use only high Qz data for the Q2- 
evolution approach, the differences between use of x-scaling and t-scaling are 
negligible. 

A. Is QCD Consistent with Present Data? 

Our analysis (like earlier analyses [IO, 12,21, 23,241) finds that the present data 
are entirely consistent with the predictions of QCD. In the moment analysis, some- 
what different values for the parameters (A, KM) are obtained using second-order 
(in a,) calculations [9, IO], but the resulting curves are almost identical to the leading- 
order curves and the quality of the fit is therefore almost identical for the two cases. 
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QCD fits to’ the data are excellent even down to Qz = 1 GeV2 (see Figs. 8 and 9). As 
discussed in Section III-C, the x2 obtained are, in fact, smaller than would ordinarily 
be expected from statistical analyses. This is shown in Table I. Recall that we require 
Q2 > 3 for testing QCD; for consideration of the effects of l/Q2 corrections we allow 
lower Q2 values. 

TABLE I 

The xa for QCD and the Degrees of Freedom (d.o.f.) Obtained Using Eqs. (1.16) or 
(1.32) for M,(N, Qz) and Eqs. (1.21)-(1.23) for xF3(x, Qa) 

Data 
Quantity 

tested X2 d.o.f. xa/d.o.f. 

BG (Qz > 3) M,W, Q’> 10.9 14 0.78 
BG(Qa > 1) MAN, Q=> 20 29 0.69 

CDHS (Qz > 3) xF,(x, Qa) 19 42 0.45 

5 Data are from Refs. [12] and [21]. 

F 

0.02 

0 
I IO 100 

Qz (GeV’) 

FIG. 8. Nachtmann moments for N = 2 - 6 from the data of Ref. [12]. The solid curves are the 
QCD predictions for these moments. The dashed curves show a fit assuming that all scaling violation 
comes from a term of the form aN/Q$ with a = .8 GeVa. The QCD fit is excellent, but the fact that 
the dashed curve fits the data as well indicates that higher-twist effects could be significant. 
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FIG. 9. xFI(x, Qz) at various Qz values. The CDHS data (Ref. [21]) were interpolated and placed 
into large bins for display purposes only. The solid curves are the QCD predictions based on in- 
tegrating the Q8-evolution equation with the boundary condition xF&, 152.4 GeV*) = Cx”(l - x)“. 
The dashed curves show a fit assuming that all scaling violation comes from a term of the form 
d d?(l - x)%/Qa with d = .4 GeVa. As in Fig. 8, the QCD fits are excellent, but the fact that the 
dashed curves also fit the data indicates that higher-twist effects could be significant. 

The x2 for QCD are consistently as low as the x2 we have obtained for any fits. As 
a consequence we have chosen to use QCD as a standard for comparison with other 
results. We obtain relative probabilities following the procedure of Section III-C. By 
virtue of this procedure, the relative probabilities for QCD are always defined as 50 %. 

While QCD is unquestionably consistent with the scaling violation observed in 
present data, there are other sources of Q2 dependence which may also be important. 
We now address this question. 

B. Could AN Scaling Violation Come From Higher-Twist Terms? 

In any theory one expects corrections from higher-twist terms. It is informative, 
therefore, to inquire as to whether these terms might account for all or a substantial 
portion of the observed scaling violation. 

We must’assume a form for the higher-twist terms. For the moments we assume 
(following Eq. (1.28)) either one or two additional terms: 

MsW, Q2> = KN (1 + $) (4-l) 
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MAN, Q2, = KN (1 + $ + F) 

where the KN are again free parameters. Our results are shown in Table II. They 
indicate that order l/Q2 terms with coefficients of order 1 GeV2 could account for the 
observed scaling violation; this is also clear in Fig. 8. Since coefficients of this size are 
difficult to rule out on theoretical grounds, we see that higher-twist effects can have a 
large impact on QCD analyses. 

TABLE 11 

The x2 and Relative Probabilities for the Given Forms of Moments Using BG Data 
[12] with Q2 in GeV2 D 

BG Data Form of M&V, Q2) 
Relative 

xa per d.o.f. probability Parameters 

Q 2 ‘- 3 Kh.(l +$) 0.9 0.35 a = 0.8 A 0.2 

a = 
Q2> 3 0.8 0.51 

1.8 & 0.8 

6 = -0.8 f  0.6 

Q2> 1 KN(~ +$) 0.9 0.16 a = 0.8 $1 0.1 

a = 
Q2> 

0.6 C 0.2 
1 0.9 0.12 

b = 0.05 f  0.04 

a The relative probability for QCD is 0.50 and x2 per d.o.f. is 0.8 (Q2 > 3) and 0.7 (Q2 > 1). 

For study of higher-twist contributions using xF3 , we assume (following Eq. (1.27)) 
that xF3 can be parameterized in one of the following two forms: 

or 
x&(x: Q”) = C[x”(l - x)” + d(~)l/~(l - x)“/Q”] (4.3) 

xF&x, Q”) = C[x”(l - x)* + d(x)l12(1 - x)“/Q” + e(x)li2(1 - x)/Q”] (4.4) 

Our results are shown in Table III and Fig. 9. Again order l/Q2 terms could account 
for most or all of the scaling violation. 

We are not necessarily suggesting that higher-twist terms alone account for the 
observed scaling violation, but these results do suggest that their impact on analyses 
of scaling violation could be substantial. 

The question arises whether the data could separate the scaling violation of QCD 
from the scaling violation of higher-twist terms. We have used two methods to inves- 
tigate this question. We assumed the following form for M,(N, Q2): 

(4.5) 
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TABLE III 

The x2 and Relative Probabilities for the Given Forms of xF, Using CDHS data 1211 
with Qz > 3 GeVZ.” 

Form of xF,(x, Q*) 
Relative 

x2 per d.o.f. probability Parameters 

0.57 0.13 

o.50 0.41 

d = 0.4 f 0.2 

d = 1.5 * 0.7 

e = -4.0 * 2.0 

(1 The relative probability for QCD is 0.50 and xa per d.o.f. is 0.45. 

In the first approach we left both a and (1 as free parameters and used data 
for Q2 > 1 GeV2. We found a = 0.12 + 0.90; clearly, this is not a useful result. For 
the second method, it was further assumed that aN/Q” < 1 for Q2 > 3 GeV2, so that 
the value of (1 could be determined independent of the value of a by using BG data 
with Qz > 3. Then holding (1 fixed at that value, the magnitude of a could be deter- 
mined using all BG data with Q2 > 1 GeV2. We found a = 0.17 i 0.04. However, 
there was no improvement in x2, and this value of a means that aN/Q2 is not small as 
was assumed above. Similar results were obtained from analysis of CDHS data. One 
concludes that the present data cannot separate (In Q2/f12)+ behavior from (1 + 
aN/Q2) behavior. It follows that the value of II obtained for QCD when higher-twist 
contributions are neglected may be absorbing the effects of these 1 /Q2 terms. 

C. Can Power-Law and Logarithmic Scaling Violations Be Distinguished? 

As discussed in Section II (see Eq. (2.25)), fixed-point theories exhibit power-law 
scaling violation of the form M,(N, Q2) cc (Q2)-b~ where the numbers b, are not 
determined. For discussion of these hypothetical fixed-point theories, we have 
chosen two quite different parameterizations of b, . In one case we assume there is no 
N-dependence and in the other case we assume the N-dependence is the same as for 
QCD except for an overall coefficient. At first thought, it may seem that one should 
be able to distinguish power-law behavior from the logarithmic behavior [(log Q2/ 
n2)+v] of QCD. We have argued in Section III that tests of QCD and alternatives 
should use only data with Q2 > 3 GeV2. As can be seen from the first part of Table IV, 
with present data for Q2 > 3, it is, in fact, impossible to distinguish these two be- 
haviors. 

It is interesting to observe that while fixed-point theories are absolutely as good as 
QCD for Qz > 3 GeV2, it appears (at first glance) that they would be completely 
ruled out if data with Q2 > 1 GeV2 were considered, as is shown in the second part of 
Table IV. However, note in the third part of Table IV that the addition of quite small 
higher-twist terms to fixed-point theories allows an excellent fit to the data even for 
Q2 > 1 GeV2. The reason QCD without higher-twist terms does so well at low Q2 is 



l/Q2 AND cxg CORRECTIONS 301 

TABLE IV 

The x2 and Relative Probabilities for Fixed-Point Theories” 

Data 
Quantity Relative 
Tested x2/d.o.f. Probability Parameters 

BG (Q2 > 3) M, = KN/(Q+ 0.82 0.45 c, = 0.21 IO.04 

BG (Q” i 3) M3 = KN/(Q+‘~~ 0.76 0.51 Co = 0.24 rf 0.05 

CDHS (Q” > 3) xF, 0.45 0.50 aj = 0.19 * 0.05 

BG (Qz > 1) M, = Kp,r/(Q2f” 1.86 10-S c, = 0.30 + 0.02 

BG (Q” > 1) M, = KN/Qe)C”dN 1.38 0.002 c, = 0.41 It 0.03 

BG (0” > 1) Ma = 0.78 0.32 co = 0.19 & 0.09 

(i For xF, we use the evolution equation, Eq. (1.6), with aSa replaced by a constant which is the 
fixed-point coupling a, and is assumed to be small. The units of Qa are GeV*. The relative probability 
for QCD is always 0.50 and x2 per d.o.f. are 0.8 (BG moments, Q* > 3), 0.7 (BG moments, Qz > I) 
and 0.45 (CDHS, xF,). dN is defined in Eq. (1.15). There are virtually no CDHS data for Qz < 3. 
The data are from Refs. [12] and [21]. 

that it has a pole at low Q2, whereas the fixed-point predictions are finite until Q2 
equals zero. However, the QCD pole is an artifact of the perturbation expansion, and 
its effects cannot be considered as valid predictions of the theory. It is critical to 
consider the impact of higher-twist terms before arguing that data prefer QCD over 
other theories. Here we find that the present data do not distinguish QCD from fixed- 
point theories. 

D. Are Anomalous Dimensions A Good Test for QCD? 

From the lowest-order QCD predictions for the moments, Eq. (1.16), one sees that 

P&W, Q”)l’” = constant 
M&C Q”) (4.6) 

for all Q2 when rNM = d,/d, . Equivalently, one can take the logarithm of Eq. (4.6) 
and write 

In M&V, Q2) = rMN In M&M, Q2) + constant. (4.7) 

Thus, it has been suggested [12] that QCD can be tested by determining rNM from the 
data using either Eq. (4.6) or Eq. (4.7) and comparing it with the QCD prediction 
4h&, . However, this test is affected by both 01, and l/Q2 corrections which can 
modify the basic QCD predictions. 
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When the second-order expressions for the moments, Eq. (1.32), are substituted 
into Eq. (4.6), one finds [23] that the equality can no longer be satisfied at all Qz. 
Therefore, the above test is ambiguous when these corrections are included. If one 
wishes, one can set 

(4.8) 

to determine rNM as a function of Qz. The lowest-order QCD predictions for various 
N and M are shown by the horizontal lines in Fig. 10 while the shaded areas indicate 

. BG (0’>3) 
0 BG(Q”> I) 

- OCDI 
QCD 2 

I 

FIG. IO. Values of rNM for various combinations of N and A4 from the data of Ref. [12]. Data 
points are shown for data with Q2 > 1 GeV2 and for Q2 > 3 GeV2. The lowest-order QCD pre- 
dictions are indicated by solid horizontal lines while the shaded regions show a reasonable range 
for the second-order QCD predictions which are not precisely defined. 

the range for the second-order QCD predictions, based on the value of Q2 and (1 used 
in evaluating rNM . Since the prediction for rNM is of the form rNM = L&/C&~ + O(CI,~~), 
there exists the same type of lowest-order QCD ambiguity for LI as discussed in the 
introduction. Thus in this separate expansion, the (1 to be used in evaluating rNM is 
not necessarily the same/l as one obtains in fitting the moments. We have argued that 
tests of QCD should use Q2 > 3 GeV2, however we have shown for comparison the 
Q2 > 1 GeV2 values as well. Our values are different from those originally reported 
by the BG experimentalists [ 121. We have used an improved error analysis and for one 
bin we use extrapolated BG data. For the Q2 = 63 GEV2, x = 0.05 bin we use 
xF, = I. 1 $ 1.1 instead of 0 i 0 (see discussion in Section TIT). Note that QCD is in 
good agreement with the data for Q2 > 3 GeV2 although the error bars on the data 
for these large Q2 values are quite large. 

A question which is crucial to use of anomalous dimensions as a test of QCD is: Are 
the results shown in Fig. 10 (which are consistent with QCD) unique predictions of 
QCD or are these ratios also likely to arise from other sources. In fact, we find that 
the observed values of rNM are very similar to those which are likely to arise from 
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higher-twist terms. Consider a form which includes one higher-twist term but has no 
logarithmic: or power-law [(Q2)-*N] behavior: 

M&V, Q2> = KN (1 + $). 

one then finds 

N 1 + aM/Q2 
rNM = % 1 + UN/Q2 ( 1 

and 

N 
rNM m - 

M 
for small $ . 

(4.10a) 

The data for r,, do, in fact, resemble the N/M dependence which results from 
Eq. (4.9). Tf one uses 

M,(N, Q2> = KN (1 + -$ + F) (4.11) 

then one finds that rNM M N/M as long as a and b are positive and are of order 
1 GeV2 and 1 GeV4 (respectively) or smaller. It is evident from Eq. (4.7) that on a plot 
of In M&v, Q2) versus In M,(M, Q2) the slope is equal to rNM . In Fig. 11, we show 
such plots for QCD and for Eq. (4.11) (with a and b taken from the last entry in 
Table II). Note that the comparison of the theoretical curves with the data on this plot 
is misleading since the strong correlations between M,(N, Q2) and M,(M, Q2) (dis- 

0.01 0.1 I 

M3 (M,Q’) 

FIG. 11. The data (Ref. [12]) for M&V, Q2) are plotted versus the data for M,(M, Qa) on a log 
scale. The solid curves are the predictions of leading-order QCD while the dashed curves (which 
are quite similar) are the results of using Eq. (4.11) with a = 0.6 and b = 0.05. This plot does not 
indicate the strong correlations between M&V, Qz) and M,(M, Qe); the actual uncertainties are more 
like ellipses with their major axes along the curves. 
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cussed in Section III-C) are not evident. The plot does show, however, that for a 
significant range of Qz the slopes (r,,,J predicted by QCD and by Eq. (4.11) are very 
similar. 

We find, then, two conclusions about use of rNM . First, it is likely that higher-twist 
contributions will not significantly affect the QCD predictions, so that rNM m dN/dh, 
remains a prediction of the theory. Second, given the role of higher-twist terms, one 
can question whether conclusions about alternative theories with different N depen- 
dences can be believed. Among such hypothetical theories are those with scalar 
gluons [25] for which the anomalous dimensions change much more slowly with N 
than do those of QCD. The predictions for rNM of such theories may be drastically 
altered by the presence of quite small higher-twist terms. 

Given the lack of precision of second-order predictions for TN,,., and the confusion 
generated by the presence of higher-twist terms, we believe that great caution should 
be employed in using anomalous dimensions as a test for QCD. But it must be noted 
that QCD (with or without higher-twist terms) is entirely consistent with the data for 
rNM as it is with all other data discussed here. 

E. Can the Data Choose the Best Definitions of 01, and A ? 

As discussed at the end of Section I, use of second-order QCD calculations of the 
moments [9, lo] for fitting to the data involves a choice of which definition of (1 and 
which value of the parameter p to use. Recall that AI, = A, - pdN in Eq. (1.39): 

%(N, Q2) = (ln Q&)+ 1 + 
Ah + BN In In Qa/A, 

In Q”//l: 1 * 
(4.12) 

There are several possible approaches to choice of /1 and 01, . The calculations [9, IO] 
of the A, were done in the minimal subtraction scheme using dimensional regulariza- 
tion. The AN contain factors of In(&) - yE coming from expanding around dimen- 
sion n = 4 in the dimensional regularization method. Since these factors can be 
considered as artifacts of the regularization scheme, one can choose3 

p = ln(4rr) - yE = 2 (4.23) 

in order to remove such factors from the AN [IO]. 
There is another approach to this problem which would be ideal if the data were 

perfect. That approach is to allow p to be another free parameter in the fit. This 
would have the result of minimizing the effects of third-order terms (and other higher- 
order terms) for the Q2 range and moments of interest. Using data with Qa > 3 GeV2, 
we find p = - 1.6 with a large uncertainty of about f 10 and no improvement in x2. 
It is interesting to note, however, that using data for Q2 > 1 GeVZ we obtain p = 
2.3 f 0.6 (similar to Eq. (4.13)) and x2 per d.o.f. is reduced from 0.7 to 0.6 (d.o.f. = 

a In the scheme with p = ln(4?r) - ys which is the m scheme of Ref. [lo], we find A,--, = 0.287 + 
0.148 GeV for Q¶ > 3 GeVa with N, given by l?q. (3.1). 
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29). Given the role played by higher-twist terms it is difficult to judge the significance 
of this last result. 

A third approach to choosing the parameter p lies in trying to find a theoretical 
justification for the assumption that a particular choice of p will minimize the un- 
calculated third-order terms (and higher-order terms) in the moments. The most 
apparent theoretical assumption is that if the second-order term is small, higher-order 
terms should also be small [23]. One finds that for the Qz range and moments of 
interest, the second-order terms are minimized by choosing p = 2; for 1 < Q2 < 
100 GeV2 and N = 2-6; the ratio of second- to first-order terms then averages about 
0.07. It is interesting that p m 2 is indicated by all three approaches. 

We have remarked previously (Section I) that the value of a,(Q2) is renormalization- 
scheme dependent, but of course as(Q2) is not a directly measurable quantity. With 
a,(Q2) defined by Eq. (1.30) for p = 0, one finds (using Eq. (1.38)) for other values of 
p that 

Q2 ai,(Q2) = iy,O __ ( )I fL2 
1 _ K&/8o2) ln ln Q2V,2 + PI 1 

In Q2/~,2 ’ 
(4.14) 

or,(Q2) could have been defined by Eq. (1.30) for a value of p other than zero; then 
various formulae in this paper would be modified accordingly. However, with the 
present definition it is interesting to note three cases. For the first case, p = 0, we find 
that the second-order corrections to the moments and to oi,(Q2) are about 25 % of the 
first-order terms. For p m - 1.3 we find that the second-order term in CL,(Q~) is 
minimized (it is near zero), but in the moments the second-order term is about 40 %. 
Finally for ,o = 2 we find (as discussed above) that the second-order corrections to 
the moments are minimized. However, the second-order term in OI,~(Q~) (in Eq. (4.14)) 
is very large (65 % at Q2 = 10 GeV2 and 100 % at Q2 = 1 GeV2). 

As a result a,(Q2) is small for p = 2 only by an accident of the perturbation expan- 
sion; in fact, it goes to zero as Q2 drops to 1 GeV2. The CX~(Q”) curves for these three 

0.6 
as 

0.4 

0.2 

0 
0. I I IO 100 IO00 

QE (GeV2) 

FIG. 12. The values of ai computed in second-order QCD using Eq. (4.14) with p = 0 
(solid curve), p = 2 (dashed curve) and p = -1.3 (dash-dotted curve). This plot indicates that it 
is not meaningful to quote the value of a,(Q”) even within a given renormalization scheme without 
specifying the definition of A. 
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value of p are shown in Fig. 12. It is clear that it is not possible to quote the value of 
+(Q2) (much less (1) except in the context of particular definitions of (1 and p. With 
more precise data, it may be possible to identify the best choice for (1 and p (that 
which will minimize higher-order corrections in physical quantities). 

V. CONCLUSIONS 

In our analysis we found again and again that quantum chromodynamics gave as 
good or better fits to the data as any alternative. This was true down to Q” = I GeV2 
whether or not higher-twist contributions were included. Since higher-twist contribu- 
tions have not yet been calculated in QCD, it would be useful if one could estimate 
them from the data. Unfortunately the data at present are not precise enough to allow 
this estimation. When considering hypothetical alternative theories, we found that the 
inclusion of small higher-twist terms allowed for fits to the data almost as good as 
those for QCD. The inability to separate QCD from alternatives under these condi- 
tions results from a lack of sufficiently precise data at sufficiently high Qz (where 
higher-twist terms are likely to be small). The corrections of second-order in 01, do not 
introduce any serious problems in testing QCD. The parameters (1 and 01, are not 
meaningful except in second-order calculations when particular definitions have been 
expressed. Again more precise data at high Q2 may suggest the most practical defini- 
tions. We have argued that tests of QCD should be done only with data for Q2 > 
3 GeV2. However, accurate low Q2 data could still be helpful in sorting out higher- 
twist effects. 
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