¢
(]

TIo302C 0.3

i
(5q
(L]}
0,

!

THE ASTROPHYSICAL JOURNAL, 302:39-42, 1986 March 1
© 1986. The American Astronomical Society. All rights reserved. Printed in U.S.A.

CAUSALITY CONSTRAINTS ON COSMOLOGICAL PERTURBATIONS

L. F. AsBotT!
Physics Department, Brandeis University, Waltham, Massachusetts

AND

J. TRASCHEN?
Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago
Received 1985 June 3; accepted 1985 September 3

ABSTRACT

Using recently derived integral constraints, we give a general-relativistic proof of the k* power spectum for
perturbations generated by local, causal processes in a Robertson-Walker universe. If galactic clusters formed
from such fluctuations and if light traces mass, then in order to reconcile the integral constraints with
observed cluster-cluster correlations, these perturbations must have been created when the age of the universe
was greater than a few thousand years. Inflation provides a way out of this bound.

Subject headings: cosmology — galaxies: clustering — relativity

I. INTRODUCTION

It has long been recognized that the limited horizon size in
the standard big bang cosmology causes severe problems for
understanding how galactic structure arose from primordial
fluctuations in the early universe. Recently, general-relativistic
integral constraints were derived which state precisely what
restrictions causality imposes on cosmological perturbations
(Traschen 1984, 1985). Here, we use these constraints to
provide a general relativistic proof of the k* power spectrum
for perturbations formed by local causal processes in a
Robertson-Walker universe. In addition, we set a limit on the
time at which causal perturbations could have been generated
if they are to account for large-scale galactic clustering.

The constraints we use are integral conditions in the spirit of
Gauss’s law. Let G be a spatial volume with boundary 0G in a
constant-time hypersurface of a general Robertson-Walker
spacetime. Then, there exist (Traschen 1984, 1985) four vector
fields V* such that any stress-energy perturbation 6T% must

satisfy.
JdvéTﬂV“ = f da;B',
G oG

where B, is a quantity defined on the boundary dG which is
linear in V* and in the perturbation quantities.

The constraints (1.1) imply, for example, that certain volume
integrals of the two-point mass correlation function &(r) are
related to surface integrals and are thus determined by the
long-range behavior of the correlation function. For simplicity,
we will consider a spatially flat Robertson-Walker space-time

dt? = dt* — a*(t)|dx|?, 1.2

and we will assume that scalar perturbations dominate. In this
case, we can choose a gauge in which §T? = 0. In this gauge
8T is proportional to Bardeen’s (1980) gauge-invariant vari-
able ¢,. [In general, we can neglect the term V*3Ty in the

(1.1)
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integrand of eq. (1.1) when | A(t)v/t| < |dp/p|, where A(¢) is the
proper length scale associated with the density perturbation
Sp, and v is a typical perturbation velocity. For causal pertur-
bations, A/t < 1]. We will also assume that the universe is
pressureless, in which case we can simultaneously choose a
synchronous gauge. For scalar perturbations in this gauge,
equation (1.1) implies that

jd3rf(r)V° = <m fd3r %lr) V°>
G P Je p

j da,<w B’> .
oG p

Thus, to compute this integral all one needs is the long-range
correlation between dp/p at the origin and on the surface 0G.
The brackets in equation (1.3) denote averages over the
observed universe. Equations (1.1) and (1.3) will provide the
basis for the results of the next two sections.

(1.3)

II. A PROOF OF THE k* POWER SPECTRUM

It is a commonly accepted statement that the power spec-
trum for perturbations generated by local causal processes
must vanish at least as fast as k* for small wavenumber k. The
usual proofs (see, for example, Peebles 1980; Carr and Silk
1983) require energy and momentum conservation and thus
are only valid in the Newtonian limit. In general relativity,
energy and momentum are not always conserved. The integral
constraints (1.1) allow us to extend the proof to the general-
relativistic case.

Assume that the density perturbation dp/p in some large
volume V is the sum of N randomly distributed and uncor-
related individual perturbations, each of which was generated
by a local causal process,

N
%=y Fex). @
p a=1
Both the functions F, and the sites x, are randomly choosen.
By causality, F,(x) = 0 for | x| greater than some horizon size
r.. In addition, the individual F,’s must satisfy integral con-
straints (1.1) with zero boundary term, if G is taken to be a
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sphere of radius r, or larger. For the flat Robertson-Walker
universe, these reduce to the special relativistic statements that
the monopole and dipole moments of the F, must vanish,

fd3xFa(x) =0,
G

jd3xxFa(x) =0, 22
G
for G a sphere of radius r, or greater. These are the same as the
special relativistic statements that mass and momentum are
conserved if the perturbation vanishes at some initial time.

If we denote the Fourier transform of F,(x) by F(k), then
equations (2.2) imply that

F(0) =V F0)=0. (2.3)

Thus, F (k) must vanish at least as fast as k? near k = 0. (For
an extension of this argument see the Appendix). Because the
F /s are uncorrelated,

< é’l")2>= RIS
a=1

Thus, the power spectrum which is
(| 6p(k)/p|*> must vanish at least as fast as k*.

In the simplest situation, where the F, are functions of dis-
tance only, they can be written as F,(r) = r2V?f,(r), for same
function f,. For example, suppose that

(2.4)

proportional to

1
f) = —=—= 1. — 0. —1).
J8n® r?
Then f, and F, are continuous everywhere, and the F, satisfy
equation (2.2) for any volume G with radius greater thanr,. In
this case,

2.5)

(kr)*, kr.<1,
&(k) oc { 2 kr, > 1 (2:6)
P
(krp)® ” ¢ .

Finally, we note that in configuration space the correlation
function for equation (2.1) is &(r) = Z{[d>xF (x + r)F (x)).
Therefore, &(r) is zero for r > 2r,. Also, the right-hand side of
equation (1.3) is zero for large volumes G, since it depends on
correlations between points on dG and the center of G.

III. A BOUND ON THE TIME OF FORMATION OF COSMOLOGICAL
PERTURBATIONS

We now compare observed galaxy-galaxy and cluster-
cluster correlation functions with the constraints discussed in
§§ I and II to derive a bound on the time at which cosmological
perturbations arose. As in § II, we assume that the observed
structure in the universe resulted from randomly scattered per-
turbations which were formed between times t, — At and ¢, by
local, causal processes. By local and causal we mean that at
time ¢, all perturbations were uncorrelated over distances
greater than the distance which light could travel between
times ¢, — At and t,. As an upper limit on At we can use ., in
which case this distance becomes the horizon size r(t,). (For
cosmological perturbations this is an adequate approximation,
but for models in which perturbations formed recently we
retain an arbitrary At) Of course, this lack of correlations
outside the horizon depends both on causal evolution and on
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an assumption about the absence of long-range correlations in
the initial-value data. This assumption is crucial to our results.

At time ¢, the perturbation is given by equation (2.1), so the
power spectrum goes like k* for small k, and the two-point
correlation function &(r) vanishes for r > 2r(t;). From these
two facts it is easy to prove that at time t, the correlation
function must satisfy

JRdr riEr) = JRdr r*er) =0,
o o

for R = 2r,(t)).

After the perturbations are generated at time ¢, they pre-
sumably move with the Hubble flow, and their subsequent
evolution is described by the usual linear perturbation
analysis, at least as long as they are small in amplitude. In a
pressureless universe, the characteristic length scale associated
with a fluctuation grows like the scale factor a(t). When back-
ground pressure is still important, perturbations which are
inside the horizon are wave packets which propagate at the
speed of sound of the fluid (Sachs and Wolfe 1967). The length
scale of the packet likewise scales as a(t) up to dispersion. Thus,
at a later time t > t;, equation (3.1) should hold for R >
2r(t,)a(t)/a(t;). In particular, at the present time we get the
constraint (3.1) for R > 2r(t p)a(t,)/a(t ).

Equation (3.1) obviously requires that the correlation func-
tion vanish for distances larger than 2r (¢ /)a(t,)/a(t ;). However,
it is difficult to verify experimentally whether a correlation
function is strictly zero. Fortunately, equation (3.1) makes a
stronger statement. Any function which satisfies equation (3.1)
must have at least two zeros over the range of integration.
Observationally, it is much easier to identify where a correla-
tion crosses zero than where it vanishes identically. If we define
7, to be the location of the second zero of the mass correlation
function, then we obtain the constraint.

2r (ty)alto)/a(t) > r, . 3.2

Observations indicate that the cluster-cluster correlation func-
tion is well fitted by (Bahcall and Soneira 1983; Klypin and
Kopylov 1983).

3.1)

—-1.8
&) ~ ( 4 ) , outtor=>50-100n""! Mpc .

25h~ 1 Mpc
(3.3)

If we accept Kaiser’s (1984) interpretation, this is proportional
to the mass correlation function, so r, must be greater than
50n~! Mpc. If we use the galaxy-galaxy correlation function
&(r) = (r/6h™* Mpc)~ 18 out to r ~ 25h~! Mpc, then we find
r, > 25h~! Mpc (Davis and Peebles 1983 ; Shanks et al. 1983).

Let ¢,, be the time at which the universe becomes matter-
dominated. Then fort, < t,,

rty) = 2t;, (3.4)

andfort, > t,,
r(ty) = 3(t; + (t; + 3t,) — 2?0, + 3,072 . (3.9)

We now scale up these distances by the expansion factor
a(t,)/a(t ;) and require the result to be less than 3r,. This implies
that the formation process must have concluded, and pregalac-
tic perturbations must have joined the Hubble flow, at a time
t; satisfying the bound

14\ (1432

(3.6)
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or

ra tm 1/37]3 1
tf>[6t_§,/3+<_6_> :|—§tm, fort;>t,. (3.7

If we take r, to be 50 Mpc, use a Hubble constant of 100 km
s~ !Mpc~!, and take t,, = 10° yr, then

t;>88 x 10%yr. (3.8)
If instead we take t,, = 10° yr, then
t;>19 x 10%yr . (3.9

Equations (3.8) and (3.9) give relatively recent times for
galaxy formation processes. Bardeen (1980) has shown that
anisotropic pressure stresses or nonadiabatic pressure pertur-
bations must be present to generate density perturbations if the
universe was originally homogeneous. Therefore, it is inter-
esting that the bound requires the formation process to occur
very close to or later than the time of matter domination.
Particular models for the formation of fluctuations typically
generate them at very early times. Carr and Silk (1983) list a
number of possibilities ranging from X-boson grains or mag-
netic monopoles at t, ~ 10° s. Peebles (1980) also summarizes
a variety of mechanisms which have been suggested, all of
which occur at early times.

An alternative scenario for galaxy formation is an Ostriker-
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Cowie (1981)-type model. In this model, explosions occurred
in the interstellar medium at recent times (z < 100). The
resulting shock waves lead to the formation of shells, which
fragment to galaxies. Cowie and Ostriker find that the explo-
sions must have happened at z; <5, and fragmentation at
z, & 4, to get galactic-size masses. For such late galaxy forma-
tion, causality bounds the duration of the process rather than
the time at which it occurred. It must last for time At such that

1 Ty
108 yr .
AL> (1 n z2><50h-1 Mpc> Ay

The shell formation time depends on model parameters, but
one way of satisfying the bound is to require that the seed
explosions heat up the gas enough so that the cooling time is
sufficiently long.

The easiest way to avoid the late times for generating pertur-
bations imposed by causality is to use an inflationary cosmol-
ogy (Guth 1981). Then, although the bound of equation (3.2)
still applies, the factor a(ty)/a(t,) is so enormous that ¢, can be
very small, provided that it precedes the end of inflation.
Indeed, these bounds provide a strong indication that some
type of inflationary expansion did in fact occur.

(3.10)

We wish to thank A. Guth, D. Eardley, and M. Turner for
helpful discussions.

APPENDIX

The following theorem relates constraints on functions in configuration space to constraints in Fourier space. It is more general
than what is needed to derive the k* spectrum but includes this when one chooses the harmonic functions ¢(x) to be the particular
functions 1, x, y, and z. Further, this theorem describes an easy way to construct density perturbations which satisfy the integral
constraints (2.2).

The following definitions are used: S is a sphere of radius R, and

i = lim i)

ar+ x—0S ar ’

THEOREM. Let F be a function which vanishes outside S and is continuous, except for a possible step discontinuity at r = R. Suppose
there exists a harmonic function ¢(V2¢ = 0 everywhere), such that

fd3xF¢ =0. (A1)
s
T hen there exists a function f such that F is given by

i)
F(x) = V3f(x) + 6_rj:: R —1), (A.2)
where fis continuous everywhere and satisfies
f(x)=0forr >R,
o
fd96r+¢_0' (A.3)
The converse is also true.

COROLLARY. Let ¢ be the harmonic functions 1 rY y,, (where we have previously written 1, x, y, z), as in equation (2.2). Then the Fourier
transforms of F and f are related by

F(k) = —k*f (k) + k>R*P(kR) , (A4)
where f (k) is finite as k— 0, and P is the polynomial
@ (iR)n+2kn af v
P = — — e AS
(kR) n;o n 1) dQ = (cos 0) (A.5)
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In particular, if F depends only on the distance r, then
Flk)y= —k*f (k) . (A.6)

Proof. Let G be the Green’s function for the sphere S which vanishes on the boundary 8. (See, for example, Jackson 1975). Define
f(x) for all x by f(x) = 8(R — 1) [s d*°x'G(x, x')F(x') for x inside S. Then f is continuous (since G vanishes on 05), and taking the
Laplacian of f one gets equation (A.2), using the properties of the delta function.

To prove the converse, multiply equation (A.2) by ¢ and integrate over some big volume which contains S. Since F = 0 on the
boundary of this big volume, using equations (A.3) one finds equation (A.1).

Note that if f(x) is a continuous function which vanishes as r — oo, then its Fourier transform approaches a constant as k— 0.

Causality and locality are needed to reduce the general integral constraints (1.1) to integrals with zero boundary term. From the
proof it is clear that all four integral constraints are necessary to get a k* power spectrum. This can be understood by noting that the
set of functions for which a Robertson-Walker universe has integral constraints is consistent with its symmetries: the geometry is
invariant under spatial rotations and translations, and the functions 1, rY;,, mix among themselves under these transformations.
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