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Abstract. We evaluate the effect of gravity on the probability of vacuum decay through 
bubble nucleation for a scalar field in an arbitrary curved background up to first order in 
an expansion in powers of Rp’, where R is the scalar curvature of the background metric 
at the location of the bubble and p is the size of the bubble as it would appear in a flat space. 

The mechanism by which a scalar field in a false vacuum can decay into its true ground 
state is well known [l-31 and many cosmological implications (e.g. inflation, domain 
walls, cosmic strings, etc) have been considered. Qualitatively, the decay proceeds 
through the materialisation of bubbles of’true vacuum within the false vacuum phase, 
which is a quantum tunnelling effect. Once they are formed the bubbles expand, 
asymptotically approaching the speed of light. 

The probability per unit time and per unit volume for the materialisation of a 
bubble, r/ V, is given in the semiclassical limit by an expression of the form 

r/ V = A e-”[ 1 + O( h ) ] .  (1) 

The theory for the coefficient B (ignoring the effects of gravity) was developed in [ l ]  
and the theory for A in [ 2 ] .  The effects of gravity on bubble nucleation were first 
considered by Coleman and de Luccia [4]. In their work the scalar field is the only 
source for gravity, and the potential energy of either the false or true vacuum is taken 
to be zero. Hence their analysis corresponds to the appearance of bubbles with an 
interior Minkowski metric in a de Sitter space, or to the materialisation of anti-de 
Sitter bubbles in a flat space. Both the Euclidean metric and the scalar-field configur- 
ations are assumed O(4) invariant. 

Here, we consider bubble nucleation in an arbitrary background spacetime produced 
by an external source and unaffected by the scalar field itself. If the background 
geometry is not maximally symmetric the evaluation of the vacuum decay probability 
introduces new problems, since bubbles centred at different points are no longer 
equivalent. Thus in order to get solutions of the Euclidean equations of motion 
representing bubbles centred around a given point one must introduce constraints in 
the action. 

It is our purpose in this letter to evaluate the leading-order correction to the vacuum 
decay probability with respect to its flat space value when a scalar field evolves in a 
fixed but otherwise arbitrary curved background. We show that it is possible to set 
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up a perturbative calculation and that to leading order there is no need to consider a 
constrained solution. The perturbative expansion makes sense in those regions of 
spacetime where the absolute value of the components of the curvature tensor are 
much smaller than the inverse of the size of the bubble (as it would appear in a flat 
space) squared, [RFVep/ << p - 2 .  

The system under consideration is a scalar field 4 described by the action 

( 2 )  

The potential V ( 4 )  is assumed to have a global minimum 4 = 4- (a true vacuum in 
the quantum theory) and a local minimum 4 = 4+ (a false vacuum) with a small energy 
splitting E = V(4,) - V(4-). The two vacua are assumed to be separated by a barrier 
large enough to allow the use of the thin-wall approximation. The background metric 
g,, is arbitrary, but fixed (the back reaction of 4 on the metric is assumed to be 
negligible). The exponential suppression factor B of the vacuum decay rate equation 
(1) is given by 

B = S d 6 1 -  Sd4+1. (3) 

The subscript E denotes quantities evaluated with the metric analytically continued 
so as to have an Euclidean signature. 6 is the bounce, the solution of the Euclidean 
equation of motion with minimum action among all non-trivial solutions that tend to 
4+ (the false vacuum) at large Euclidean distances. 

In order to carry out the calculation we use Riemann normal coordinates [S-71. 
They are special among all local inertial frames in that geodesics crossing the origin 
are not only parametrised as straight lines, but with a special parameter: the proper 
distance along the geodesic. Given two points xo and x1 close enough that they can 
be joined by only one geodesic, the normal coordinates of x, with origin at xo,  that 
we shall denote y,, are the components of the vector tangent to’that geodesic at the 
origin whose norm equals the distance between xo and x1 as measured along the 
geodesic. One of the most useful properties of Riemann normal coordinates is that 
the Taylor expansion of a tensorial quantity has, in such frame, explicitly covariant 
coefficients. In particular, the Taylor expansion in normal coordinates of the metric 
tensor gPv around the origin xo is 

g,,(x) = T,,u -SRa,,Pv(XO)YaYP +O(R,a,p,,(xo)u“YPy’) (4) 
where T,,, is the flat space metric tensor and RFLVaP is the Riemann tensor of gPv. 

metric 6,, as 
The Euclidean action of the bounce can be expanded around the flat Euclidean 

Here 6 is the exact bounce solution including the effects of gravity while 60(p )  is the 
bounce solution, when the background geometry is flat, written as a function of 
p = 6,,yFy”, the Euclidean geodesic distance (i.e. 6o is the minimum action, non-trivial 
solution of the equation c j0+(3 /p )&=dV/d4~  with boundary condition &o+ 4+ as 
p +CO).  T,,,, = ( 2 / d - g ) ( 6 S / 6 g + ” ” )  is the energy-momentum tensor of the field 4. Note 
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that the term S S [ 4 ,  S , , , ] / S ~ ~ + = ~ o =  0. The next term in equation ( 5 ) ,  however, is a 
non-trivial correction to SE[ do; S,,] that arises using just the zeroth-order approxima- 
tion for the bounce solution. It is linear in the curvature of the background geometry 
since Sg,, = -fR,,,,(x,)y“y’. The remainder of equation ( 5 ) ,  O( (6 - c$o)2, ( Sg,y)2) ,  
is a higher-order correction, since (4 - &o) is also of the order of Rp2. Indeed, in an 
arbitrary background, 6 satisfying the equation 0 4 = d V/d4, will be a function not 
only of the geodesic distance p but also of three other coordinates x i .  Expanding 
around xo this equation is 

where V‘3’ is the three-dimensional Laplacian with respect to the coordinates xi .  We 
have used the fact that Up = (3/p)( l  -$R, , (xo)yry”  + . . .). Since &o( p )  satisfies the 
equation ~ $ ~ + ( 3 / p ) ~ , = d V / d + , ,  it is clear that 4 differs from & ( p )  by terms of the 
order of R,,(xo)yCLy”. 

Taking into account that c$~ is a function of p only, after integration over the 
angular coordinates we get from equation ( 5 )  

SE[$; g,ul=SE[&O; ~ p u l - i k r * R + ~ ( ~ O )  dpP5Tp”[&O(p)li * . .  . (6)  I 
When the thin-wall approximation is applicable this expression can be further 

evaluated by dividing the range of integration into three regions: inside the bubble, 
through the wall and outside the bubble. In the thin-wall approximation the field is 
everywhere constant except in the wall of the bubble, where I$o(p)(2 = 21 V ( 4 )  - V(4+)\. 
The energy-momentum tensor of the bounce is 

V( 4- 1 a,, i f p < p  

V( 4+ 18, Y i f p > p  
140(P)12~,v i f p = P  

(7) 

and so for B, a given by equation ( l ) ,  we find 

B = ~ r r 2 p 3 [ ( 4 S , - p E ) - ~ R ( X ~ ) p Z ( S ~ - ~ p E ) +  . . . ] .  

The value of p ,  the radius of the bubble, is evaluated by extremising the flat space 
action; p = 3s, /&,  where SI = J:I d4[2( V ( 4 )  - V(4+))]1’2 is the surface energy density 
in the bubble wall and E is the energy difference between ++ and +-. Extremising 
just the flat-space action or the whole expression (7) makes no difference, up to the 
order considered. Corrections to p of order Rpg will only affect the action by terms 
proportional to ( R P ; ) ~ .  

The final result for B including first-order corrections is 

B = B o [ 1 - & R ( X o ) p 2 +  ...I (8) 

where Bo = 4r2p3S, .  In a region where the scalar curvature is positive the probability 
of bubble nucleation is enhanced. The fact that the Euclidean action depends on the 
spacetime point xo that we choose as our origin of normal coordinates (and thus as 
the centre of the bubble) simply expresses the fact that the vacuum decay probability 
per unit time and per unit volume is different when that volume is centred on different 
regions of spacetime, since no translational invariance was assumed. It still makes 
sense to evaluate the vacuum decay probability per unit volume in the simple way we 
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did because any bubble centred at an arbitrary point inside the normal neighbourhood 
where the expansion of the metric in normal coordinates makes sense will contribute 
the same amount to the action, up to the order considered. This analysis applies, of 
course, only as long as Rp2<< 1. The dependence of the action on xo clearly shows 
that we are not fully extremising the action. However, as said before, the action of 
an actual solution, which must eventually include a constraint to force the bubble to 
be centred around x,, will differ only by higher-order terms. The correction to the flat 
space value Bo as given by equation (8) is then basically a geometric effect, since no 
modification on the dynamics of 4 is involved. 

Our result equation (8) fo,r B agrees, in the particular case of a de Sitter background 
or anti-de Sitter background, with the appropriate limit E << V (  4+) ,  R&<< 1, to the 
results of [8], where the calculations of Coleman and de Luccia [4] were reproduced 
including also the possibility of a cosmological constant term in the Einstein equations. 

Finally, a word about the coefficient A. All our calculations would be worthless 
if the change in A from its flat-space value could overwhelm that of B. However, we 
expect the correction to be the form A = A,( 1 + cRP2+ . . .), with c a number of order 
unity. Since r/ V = A,( 1 + cRp2 + . . .)e-”o( 1 - B,Rp2/ 12+ . . .) and the semiclassical 
approach we have been considering presupposes Bo >> 1, we can expect the change on 
B to be moire relevant than the one on A. 
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