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We examine the distributed nature of the neural code for faces rep-
resented by the firing of visual neurons in the superior temporal sulcus
of monkeys. Both information theory and neural decoding techniques
are applied to determine how the capacity to represent faces depends
on the number of coding neurons. Using a combination of experimental
data and Monte Carlo simulations, we show that the information
grows linearly and the capacity to encode stimuli grows exponentially
with the number of neurons. By decoding firing rates, we determine
that the responses of the 14 recorded neurons can distinguish between
20 face stimuli with approximately 80% accuracy. In general, we find
that A7 neurons of this type can encode approximately 3(2°<v) different
faces with 50% discrimination accuracy. These results indicate that
the neural code for faces is highly distributed and capable of accu-
rately representing large numbers of stimuli.

The amount of information that can be represented by the
firing of a population of neurons depends on the nature of
the neural code. In particular, the representational capacity is
extremely sensitive to how information is distributed across
the population of coding neurons. If each stimulus is repre-
sented by the firing of a single neuron or "grandmother cell,"
the number of stimuli that can be represented is proportional
to the number of neurons. If the information about each stim-
ulus is distributed across the full population, the number of
stimuli that can be represented grows exponentially with the
number of coding neurons. For example if the responses of
each neuron can reliably divide the stimuli into two groups
of equal size and if N neurons respond independently, the
population response should be able to distinguish 2" different
stimuli. Intermediate coding strategies and representational
capacities, such as power law dependencies, are also possible.

Demonstrating that individual neurons respond to a wide
variety of stimuli or that large numbers of neurons respond
to individual stimuli is not sufficient to establish the existence
of a truly distributed representation. Distributed coding with
its associated exponentially large capacity requires that the
differences in the broadly tuned responses of individual neu-
rons are not masked by their trial-to-trial variability. In addi-
tion, each neuron must have a distinctive response profile
across stimuli so that the population coding is not excessively
redundant. In the example of the last paragraph, the capacity
will be reduced greatly if the responses of different neurons
divide the stimuli into the same two groups. The clearest way
to determine how information is distributed in a neural net-
work is to measure how the representational capacity of the
network depends on the number of coding neurons.

We use experimental recordings augmented by Monte Car-
lo simulations to analyze the coding of faces by visual neurons
in the temporal cortex of macaque monkeys. Temporal lobe
visual areas are at a late stage in the ventral visual pathway
(Seltzer and Pandya, 1978; Maunsell and Newsome, 1987; Baiz-
er et al., 1991; Rolls, 1991). In cortical areas of the superior
temporal sulcus up to 20% of the neurons with visual re-
sponses have selectivity for faces (Desimone and Gross, 1979;
Bruce et al., 1981; Perrett et al., 1982; Desimone et al., 1984;

Rolls, 1984; Gross et al., 1985; Desimone, 1991). We analyze
the capacity of these neurons to represent faces in two ways:
by determining how many stimuli can be represented to a
given degree of accuracy (Bialek et al., 1991; Salinas and Ab-
bott, 1994) and by computing the amount of information that
the responses can convey about the stimuli (Eckhorn and
Popel, 1974, 1975; Optican and Richmond, 1987; Richmond
and Optican, 1990; Optican et al., 1991; Hertz et al., 1992;
Tovee et al., 1993; Kjaer et al., 1994).

Other investigations have found that the information car-
rying capacity of inferior temporal neurons grows more slow-
ly than a linear function of the number of neurons (Gochin
et al., 1994; E. T. Rolls, A. Treves, and M. J. Tovee, unpublished
observations). This would suggests that face coding is not ful-
ly distributed. The work of Rolls et al. (unpublished observa-
tions) is based on the same data examined here. [Other work
by Rolls et al. (unpublished observations) examines the infor-
mation in single neuron responses for this data set and is not
directly related to the issue studied here, the dependence of
the information on the number of neurons.] However, their
analysis differs from the present one in two significant ways.
First, the method used to compute the information is com-
pletely different in the two articles (see below). Second, the
work of Rolls et al. (unpublished observations), like that of
Gochin et al. (1994), finds a sublinear growth of the infor-
mation as a function of cell number. When small numbers of
stimuli are involved we obtain a similar result here. However,
we find that this slow growth is an artifact of the limited size
of the stimulus set. To get around this limit, we introduce a
method for simulating additional stimuli on the basis of ex-
isting data. When large numbers of stimuli are included by
using this method, we find that the information grows linearly
with the number of neurons. Similarly, the number of stimuli
that can be represented to a given degree of accuracy increas-
es exponentially with the number of coding neurons. Our
results reveal a truly distributed code for faces. On the basis
of the experimental data, we find that the number of stimuli
that can be represented with a 50% discrimination accuracy
by N cells is approximately 3(2a4JV) corresponding to 0.4 bits
of information per neuron.

Materials and Methods
Our results are based on recordings of 14 neurons in the superior
temporal sulcus of two rhesus macaques, Macaca mulatta. Single neu-
ron responses to 20 images of monkey and human faces were re-
corded during a visual fixation task. Firing rates were determined by
counting spikes over a 500 msec period, starting 100 msec after stim-
ulus presentation. Responses were recorded over an average of 10
trials for each cell and face stimulus. The selected neurons fired in
response to faces at more than twice the maximum rate evoked by
any of 48 other nonface images (Rolls, 1984). This set of neurons has
been described previously (Rolls and Tovee, 1995), and further ex-
perimental details and results can be found in Rolls et al. (unpub-
lished observations).

Information represented by neuronal firing has been computed
by a number of different techniques (Eckhorn and Popel, 1974,1975;
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Optican and Richmond, 1987; Richmond and Optican, 1990; Optican
et al., 1991; Hertz et al., 1992; Tovee et al., 1993; Kjaer et al., 1994).
Various methods of correcting for the effects of small sample size
have been used ranging from subtracting shuffled data sets (Optican
and Richmond, 1987; Richmond and Optican, 1990; Optican et al.,
1991; Tovee et al., 1993) to the use of analytic results (Treves and
Panzeri, 1995; Rolls et al., 1995a,b), a neural network approach (Hertz
et al., 1992), and decoding methods (Kjaer et al., 1994). Here we
present and employ a new method based on Monte Carlo integration
of extracted probability distributions: The advantages of this ap-
proach are that it is simple and direct, that it can be checked by a
number of internal consistency tests and that it does not rely on
subtraction procedures of unknown validity.

Our analysis consisted of three steps.
(1) We computed a mean firing rate and firing rate variance for

each of the 280 possible cell and stimulus combinations by averaging
over all trials. From these means and variances we constructed Gauss-
ian distributions for each cell describing the probability that a par-
ticular face evokes a given firing rate. We checked the quality of these
Gaussian fits using the Kolmogorov-Smirnov test.

(2) We applied two different methods to evaluate the represen-
tational capacity of the recorded neurons. First, we used the firing
rate probability distributions to compute how much information the
responses of different numbers of neurons could carry about the set
of face stimuli. In addition, we used decoding methods (described
below) to determine how accurately the firing responses could dis-
tinguish between different stimuli and how many stimuli could be
represented by such responses. The results of these two methods are
logarithmically related. If the number of stimuli that can be repre-
sented by N neurons is proportional to 2"", the information content
is a bits per neuron.

(3) We modeled how the responses of the recorded neurons var-
ied across stimuli. This allowed us to generate hypothetical responses
to additional simulated stimuli not present in the original data set.
Through this technique we extrapolated to large numbers of stimuli.

Firing Rate Probability Distributions
Our analysis of the representational capacity of face coding is based
on a determination of the probability that a particular stimulus s
evokes a set of firing rates r in the recorded neurons. We denote this
probability by P(r|s). Since neurons in the sample we used were
recorded one at a time, trial-to-trial fluctuations are unlikely to be
correlated between different neurons. As a result, the firing-rate prob-
ability for the population P(r|s) can be written as the product of
probabilities for the individual neurons, which we denote by P£r\s).
From the measured average firing rates and firing rate variances for
each recorded neuron and each stimulus we constructed Gaussian
probability distributions P£r\s). Since these Gaussian distributions
have a finite probability for negative firing rates, we interpreted all
negative firing rates as zero.

Kolmogorov-Smirnov Test
The quality of the Gaussian fits to the experimental data was checked
using the Kblmogorov-Smirnov test, which is based on a comparison
of two cumulative probability curves, S,(K) and 52(/?)- S,(K) is the
integral of the probability distribution P{r\s) from zero to /? and S2(K)
is a stairstep curve, which is the fraction of trials with rates less than
R. The K-S measure for the quality of fit is the maximum distance
between these two curves. A separate test was performed for each
cell and stimulus combination. Simple corrections were made for the
fact that experimental rates were derived from non-negative integer
spike counts over a 500 msec interval while the Gaussian probability
distribution generates real number rates.

Tables indicating the statistical significance of different K-S dis-
tances exist but they do not apply to cases like ours where means
and variances are extracted from the data being tested. Instead, we
used a Monte Carlo procedure for this purpose (Press et al., 1992).
For each cell and stimulus, we used the probability distribution Pfr^)
to generate simulated trials. We then fit these simulated trials to
Gaussian distributions and measured the resulting Kolmogorov-Smir-
nov distances. We repeated this process 1000 times and recorded
how often the Monte Carlo generated K-S measure was greater than
the measure obtained from the real data. This percentage gives the
probability that fits worse than those for the real data would arise
by chance if Gaussian distributions are the correct description. We

tested 280 probability distributions this way. If the Gaussian distri-
butions provide an acceptable fit, the number of distributions with
K-S distances that are smaller than their Monte Carlo counterparts
x% of the time should be about x% of 280 for any value of x.

Information Calculation
The probabilities P,(.r\s) that we extract for each cell and stimulus
completely characterize the distributed character of the neural code.
The breadth of the probability function for a given neuron and stim-
ulus indicates how "noisy" the encoding is. Comparison of the prob-
ability distributions of a given neuron for different stimuli reveals the
selectivity of individual neurons, while comparison across neurons
for a given stimulus determines the level of redundancy of the code.
Of course, these three features are highly interrelated. A useful statis-
tic that accounts for all these effects and features is Shannon's mutual
information. The mutual information is a functional of the conditional
response probability P(r\s) given by

(1 )

where the sum is over all stimuli and all possible responses. In this
equation, PCs) is the probability of a particular stimulus appearing
which, in our case, is one over the number of stimuli. P(r) is the
probability of the response set r, -which is the sum of J3Cs)/>(rls) over
all stimuli. Note that the information is given by a sum over all re-
sponses not just over those in the original data set. Indeed, once the
probability distributions /"(r|s) have been extracted, the information
does not depend on the responses in the original data set at all. The
subscript r in Equation 1 stands for the "raw" information measure
to distinguish it from a "cross-validated" form of the information that
we will introduce below.

The sum over rates in Equation 1 involves all the possible firing
rates for all of the neurons being considered. When we include all
14 recorded cells in our analysis this is a 14-dimensional sum. To
handle this high dimensionality we used Monte Carlo methods (Press
et al., 1992). In this procedure, we randomly generated firing rates
for each cell from the probability distributions PXr\s). The logarithm
in Equation 1 was then averaged over repeated iterations. For suffi-
ciently large numbers of iterations this procedure is equivalent to
doing the sum. Typically, 500-5000 iterations were used, although
fairly accurate results could be obtained using a smaller number. In
addition to computing the information for all 14 recorded cells, we
computed the information with smaller numbers of neurons. To do
this we averaged over randomly chosen subsets of the recorded neu-
rons. We also computed the information for single neurons.

Decoding Methods
Decoding is a procedure for determining which stimulus evoked a
particular set of firing rates (Bialek et al., 1991; Salinas and Abbott,
1994). It can be used to determine the accuracy with which stimuli
are represented by neuronal firing. We define the discrimination ac-
curacy as the percentage of times that a decoding algorithm is able
to extract the correct stimulus from a set of rates. To compute the
discrimination accuracy, we used the probability distributions P{r\s)
to generate firing rates corresponding to a given stimulus. We then
used a decoding procedure to determine which stimulus was most
likely to have produced this particular set of rates. Finally, we com-
pared the decoded stimulus with the actual stimulus used to generate
the rates and, repeating the procedure, computed the percentage of
correct decodings. The decoding approach used in this analysis was
the maximum likelihood method known to be optimal in many cases.
The stimulus s that we associated with a given response set r was
the one that maximized the probability /"(r|s). Because the probabil-
ity distributions we used are Gaussian, the maximum likelihood
method is equivalent to a weighted least-squares estimate of the stim-
ulus from the rates. (This estimate is the square of the difference
between the actual rate and the mean rate divided by the variance
summed over all cells for a given stimulus. The decoded stimulus is
the one that minimizes this sum.)

For comparison purposes, in the discussion section, we also used
a linear decoding scheme. In this case we computed how well the
actual neural responses aligned with their average values for each
stimulus. The set of responses was assemble into a vector, and anoth-
er vector represented the average firing rates for each stimulus. The
alignment was computed from the cosine of the angle between these
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two vectors. The decoded stimulus was the one with the best align-
ment. This is not an optimal coding procedure (Salinas and Abbott,
1994) but, because it is linear, it is one that can easily be implemented
by a neural network.

Finite Sample Corrections
Small data sets tend to produce overestimates of the information and
discrimination accuracy (Macrae, 1971; Optican et al., 1991; Hertz et
al., 1994; Treves and Panzeri, 1995). It is easiest to see why this hap-
pens for the case of the discrimination accuracy. In our calculations,
the probability distribution P(t\s) extracted from the data is used
both to generate firing rates and to determine the most-likely stim-
ulus to have produced those rates. Inevitably, the Monte Carlo re-
sponses fit the distribution P(r\sy that generated them better than
they fit the true probability distribution. This results in an overesti-
mate of the percentage of correct decodings.

The problem of overfitting is far more severe if probability distri-
butions are determined by binning than by fitting to a parameterized
curve as is done here. In cases where binning has been used, a sub-
traction procedure has been applied in an attempt to correct for
overfitting (Optican et al., 1991; Treves and Panzeri, 1995). Since we
used a two-parameter Gaussian fit of the probability distributions, we
do not apply these subtractions. Instead, we bound the actual infor-
mation and discrimination accuracy by computing upper and lower
limits. The upper limit is just the raw calculation discussed above. To
generate a lower limit, we used a procedure analogous to the "cross-
validation" method of dividing a data set into two parts—one for
fitting and one for testing. In this case, rather than dividing our data,
we generated a second set by Monte Carlo methods. We did this by
using the distribution P(r\s) to generate simulated data trials that we
fit with a second probability distribution /""(rls). If the number of
simulated trials in this procedure matches the number of trials in the
experimental data set, the difference between these distributions is
a rough characterization of the difference between .P(r|s) and the
true probability distribution for the experimental data.

We generate a lower limit by using the original distribution i\r)s)
to generate Monte Carlo responses while using ^(rfc) to compute
the information or to do the decoding. To compute the cross-validat-
ed discrimination accuracy, we generated responses, as before, using
the distribution /"(rfc)- However, we decoded these responses by de-
termining which stimulus maximized PXrls) for this set of responses
rather than .P(r|s). For the case of the information calculation, we
computed a "cross-validated" form of the information from the for-
mula

/,„ = (2)

In the Monte Carlo calculation of this information, we used the orig-
inal distribution /XH5) t o generate responses for estimating the sum,
but average the logarithm involving P'(T\S') over these responses. Fi-
nally, for both the discrimination accuracy and information calcula-
tions, a large number of iterations (typically 50) with repeated gen-
eration of P'(T\S') distributions were averaged. The cross-validation
procedure produces an underestimate of the true result because the
two distributions P and P" tend to differ from each other more than
they differ from the true distribution describing the data.

The cross-validated information of Equation 2 does not represent
a rigorous lower bound on the information but, in practice and
through Monte Carlo simulations (see below), we have found that
the actual information is always greater than the information provid-
ed by this expression. To verify that the raw and cross-validated re-
sults really bound the true answer and to examine the discrepancy
between them, we used the probability distribution P(t\s) to simulate
experiments with various numbers of trials. In these simulations, the
"true" information could be computed exactly and compared with
the results of different computational methods. Simulated data were
generated from the probability distribution P(T\S) and from these
"data" new probability distributions were extracted and the infor-
mation was computed just as it was for the real data. We include the
results of both the raw and cross-validation computations in all our
figures. The two are easy to distinguish because the raw results al-
ways show larger information and higher discrimination accuracy
than the cross-validated computations and the two results provide
upper and lower bounds on the actual answer.

Generation of Simulated Stimuli
Establishing the exponential growth of the representational capacity
that is the hallmark of distributed coding requires knowledge of the
responses of cells to a large number of stimuli. In recordings of cor-
tical neurons, it may be virtually impossible to study a large enough
stimulus set to achieve this goal. To circumvent this problem, we
generated responses to hypothetical stimuli not in the data set. Recall
that the responses of the recorded neurons to the face stimuli in the
experiment were characterized by Gaussian distributions that de-
pended only on the means and variances of the fire rates across trials.
Similarly, the responses to additional simulated stimuli were assumed
to have Gaussian statistics. Thus, to produce them we only needed
to generate average firing rates and standard deviations correspond-
ing to new hypothetical stimuli. This was done on the basis of the
statistical properties of the responses to real stimuli.

Specifically, we generated the average firing rate responses for the
simulated stimuli from a Gaussian distribution that satisfied two con-
ditions: (1) each cell had the same average response over all simu-
lated stimuli as it did over all real stimuli, and (2) the 14 by 14 cell-
cell correlation matrix summed over real stimuli matched the same
matrix summed over simulated stimuli. Average responses for the
simulated stimuli were generated by diagonalizing the correlation ma-
trix (using Maple software). In the diagonalized representation, indi-
vidual components are independent and can be obtained from Gauss-
ian distributions with variances equal to the eigenvalues of the cor-
relation matrix. After these random components were generated, they
were transformed back to the original basis yielding Gaussian ran-
dom variables with the desired correlations. To generate the standard
deviations of the responses to simulated stimuli, we incorporated the
observation that, in the original data, the standard deviation of the
response to a real stimulus grew in proportion to the average firing
rate evoked by that stimulus. We extracted the proportionality con-
stant for this relation and also the variance around it from the data
for each cell. The firing rate variances for the simulated stimuli were
then determined from a Gaussian distribution constructed from these
results.

Results

Spike Rate Distributions
Firing rate averages and standard deviations for four of the 14
recorded cells are shown in Figure 1. Six of the recorded cells
showed strongly graded responses like those shown in Figure
la. Three cells displayed more weakly graded responses as in
Figure 16. Three cells had graded responses that tended to
cluster into two or more groups. One such cell is shown in
Figure \c. Finally, two of the cells showed "grandmother"-like
responses (at least over the limited number of face images
used) where one stimulus evoked a considerably different
response than all the others in the stimulus set as in Figure
Id. For all 14 neurons, the standard deviation across stimuli
was only between one and two times the trial-to-trial devia-
tion. These two features have opposite effects on the repre-
sentational capacity.

like excessive trial-to-trial variability, correlations between
the responses of different neurons to the same stimuli reduce
the representational capacity because of the resulting redun-
dancy. To measure the redundancy of the responses we com-
puted the Pearson product-moment correlation matrix of the
average responses of the different neurons to the same stim-
ulus, summed over all stimuli. Off diagonal elements, indicat-
ing correlations, were as large as 0.9, although most tended
to lie between about +0.5 and —0.5. Thus, the representation
of faces provided by this set of neurons is somewhat redun-
dant. Further analysis presented below determined how much
this redundancy reduced the representational capacity for fac-
es and whether it was large enough to preclude the possibil-
ity of truly distributed coding with exponential capacity.

As discussed in the Materials and Methods section, the trial-
to-trial variability in the neuronal firing responses was fit by
Gaussian distributions matching the observed mean firing
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Figure 1. The average firing rates and
standard deviations for 4 of the 14 re-
corded cells responding to 20 face stim-
uli. Stimuli are numbered 0 to 19. Rates
are in spikes per second, a, One of six
neurons with a highly graded response
profile, b, One of three neurons with a
weakly graded response, c, One of three
neurons that showed graded responses
that tended to fall into groups, i. One of
two "grandmother"-like cells.

5 10 15

stimulus
20 5 10 15

stimulus
20

rates and variances. The quality of these fits was checked by
a Kolmogorov-Smirnov test for all 14 cells and 20 stimuli, re-
sulting in 280 results. Based on the hypothesis that these
Gaussian fits are appropriate, we found that, in repeated ex-
periments, the data would produce fits equivalent or worse
than the ones we found (as measured by the K-S measure)
45% of the time. This is well within the acceptable range.
There was a slight excess of cases with low probabilities. The
quality of fit for 33 of the distributions would only have arisen
by chance 10% of the time. We would have expected only 28
fits to lie in this range by chance, but again, the excess is
acceptable. Only 3 of the 280 Gaussian fits were unacceptably
poor by this measure, that is, they had probabilities low
enough that we should not have seen them by chance in this
number of tests. These occurred for different cells and stimuli.
Because all our results are averaged over both cells and stim-

§

5 10 15 20
number of trials

Figure 2. finite-sample effects on the information calculation. Information was com-
puted from Monte Carlo-generated data to explore the effects of sample size. The results
shown are for five cells, but similar results were obtained for other population sizes as
well. The solid circles show the raw information falling as a function of trial number.
The open circles indicate the cross-validated information that rises for larger data sam-
ples. The solid line is the "true" value of the information for this simulated data.

uli, these three poor fits had minimal impact on, the results
reported.

Comparison of Raw and Cross-validated Results
Due to the finite size of our data sample, we cannot compute
the information or discrimination accuracy of face coding ex-
actly. However, the raw and cross-validated procedures we use
(see Materials and Methods) provide upper and lower limits
that bound the exact answer. We verified this by performing
Monte Carlo studies of the results of these computations on
simulated data where we knew the exact answers. Figure 2
shows a typical case •where the raw and cross-validated infor-
mation calculations are compared with the "true" result for
different numbers of simulated data trials. The solid circles in
Figure 2 show that for small numbers of trials the raw infor-
mation is, indeed, an overestimate of the true answer. The
results of the cross-validation computation of the information
are shown by the lower open circles in Figure 2. Above about
20 trials, the differences between the raw, cross-validated, and
"true" information are fairly small, indicating that finite sample
effects are under control. Indeed, it appears that the raw in-
formation obtained from our Gaussian fits without subtrac-
tion or other correction provides a fairly accurate estimate of
the true information for 15 or more trials. Below 10 trials the
two computations differ significantly from each other and
from the "true" result. The raw and cross-validated informa-
tion provide upper and lower bounds, with the true infor-
mation always falling between them.

Information and Discrimination Accuracy
The firing response probabilities for each of the recorded
neurons characterize their ability to convey information
about the stimuli. We first considered their information car-
rying capacity individually and then in groups of different
sizes. In addition, we computed the discrimination accuracy
for these groups.

Figure 3« shows the information computed from the re-
sponse probabilities of individual neurons. The neurons have

Cerebral Cortex May/Jun 1996, V 6 N 3 501

 at C
olum

bia U
niversity H

ealth Sciences L
ibrary on February 6, 2012

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


Figure 3. The information and discrimi-
nation accuracy for 20 stimuli. In a and
b the upper curve is the raw and the
lower curve the cross-validated infor-
mation in bits, a, The information carry-
ing capacity of single neuron responses
for the recorded neurons. The neurons
have been ranked in decreasing order of
raw information, b, The information for
random subsets of different numbers of
cells. The curves are logarithmic fits to
the plotted points given by lm = 0.47 +
0.9log2|W) and / „ = 0.18 + 0.75log2(W). 5 . 10

rank number of cell
5 10

number of cells

been ranked in decreasing order of information so the curves
shown are monotonically decreasing. The information from
single neurons for the 14 cells recorded using 20 face stimuli
range from about one to around O.I bits. The cell shown in
Figure la had the highest information measure of any of the
recorded cells, which relates well to its highly graded re-
sponse profile. The six neurons with well-graded responses
and the three neurons that showed some grouping in their
responses had the nine highest values of information between
them. The three neurons with weakly graded responses and
the two "grandmother" cells had the lowest information. The
cell of Figure \c ranked fifth in terms of information content,
the weakly graded neuron of Figure 16 ranked eleventh, and
the "grandmother" cell shown in Figure Id ranked thirteenth.
The information averaged over all single cell results is Inw =
0.67 and 1^ = 0.47.

Figure 3b shows the information computed by averaging
over different size randomly chosen subpopulations of the 14
recorded cells. Again, both the raw and cross-validated infor-
mation are shown. The information rises •with the number of
cells. The curves shown are logarithmic fits. The number of
stimuli that can be represented to a given degree of accuracy
is proportional to the base-two exponential of the informa-
tion. The fits in this graph indicate that the number of faces
that can be represented by N neurons grows like a power of
N and is somewhere between l.lA'075 and 1.4JV9. The subli-
near fits of the information as a function of the number of
cells agree with those found in Goshin et al. (1994) and Rolls
et al. (unpublished observations).

Do these results mean that the coding of faces is far from
truly distributed coding? There is a complication that pre-
vents us from reaching this conclusion. The information mea-
sure is limited by the amount of information contained in the

5 10
number of cells

15

Figure 4. The discrimination accuracy for random subsets of different numbers of cells
responding to 20 stimuli. The upper curve is the raw result and the lower curve the
cross-validated result Discrimination accuracy is defined as the percentage of correctly
decoded responses using the optimal maximum likelihood method.

stimulus set, which in our case is Iog2(20) = 4.32 bits. The
upper points in Figure 3& are approaching this limit so that
the "roll over" we see in the growth of the information with
the number of cells may reflect a saturation effect due to the
finite stimulus set rather than the true growth of the repre-
sentational capacity.

Figure 4 shows the percentage of correct decodings based
on the maximum likelihood method when random subsets of
different numbers of cells were used. The coding accuracy
increases steadily with the number of cells and it ultimately
gets fairly close to the bound of 100%. As in the case of the
information measure, the rate of increase in the discrimina-
tion accuracy may reflect this bound rather than the depen-
dence of the coding on the number of cells.

Extrapolation to Large Numbers of Stimuli
As we saw from Figures 3b and 4, the limited number of
stimuli in our data set prevents us from determining directly
how the representational capacity depends on the number of
coding neurons. To overcome this problem we used the sta-
tistical properties of the recorded responses for 20 stimuli to
generate simulated responses to additional hypothetical stim-
uli. As discussed in the introductory paragraphs, correlations
between the responses of different neurons to the same stim-
uli play a critical role in determining if the redundancy in the
neural representation is too high to produce an exponentially
growing representational capacity. Because of this, we have
made sure that the cell-to-cell correlations of the responses
to simulated stimuli match those of the real stimuli exactly
(see Materials and Methods). Including stimulus-stimulus cor-
relations between neurons in the simulated responses allows
us to test directly whether the resulting redundancy is large
enough to destroy exponential growth of the coding capacity.

Figure 5 shows a comparison of the measured response
statistics for the 20 original stimuli and simulated response
statistics for 20 more hypothetical stimuli generated as out-
lined above. For the nine cells that showed either weakly or
strongly graded responses the simulated response statistics
were indistinguishable from those generated by the real stim-
uli as is seen in Figure 5, a and b, for the cells shown in Figure
1, a and b. We did not attempt to include any clumping of
the responses or any "grandmother" responses in our simu-
lated results. As a result, the simulated responses for the three
neurons that showed some grouping tendency and the two
"grandmother"-like cells did not match quite as well. This is
seen in Figure 5, c and d, which correspond to the neurons
shown in Figure 1, c and d. However, even in these cases the
simulated responses are similar to the real responses. We
found that removing rtiese worse fits did not significantiy af-
fect our results.

As a final check of our procedure for generating hypo-
thetical stimuli we compared the information computed from
the 20 real stimuli with that computed using 20 simulated
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50 100
average rate (hz)

Figure 5. Scatter plots of average firing
rates and standard deviations for the 20
original stimuli and for 20 simulated stim-
uli. Solid circles are the actual stimuli in
the data set and open circles are the
simulated points, a, The same neuron as
in Figure la. b, The same neuron as in
Figure ]b. c, The same neuron as in Fig-
ure 1c. d. The same neuron as in Figure
Id.

50 100
average rate (hz)

50 100
average rate (hz)

50 100

average rate (hz)

stimuli. As Figure 6 indicates, the information contained in
the generated responses to the simulated stimuli is in good
agreement with the information computed from the re-
sponses to the real stimuli.

Representational Capacity
With arbitrary numbers of simulated stimuli at our disposal,
we repeated the information and discrimination accuracy cal-
culations for different numbers of neurons. The results for the
information are given in Figure 7. Figure la shows the raw
information results and 1b the cross-validated results. From
these figures, it is clear that the finite size of the stimulus set
was the factor limiting the rise of the information in Figure
3b as the number of coding neurons increased. For large num-
bers of stimuli, the curves in Figure 7 approach a straight line,

§

o
X

>
8

V

Iraw
Icv-
Iraw
Icv-

X

X O

o +

- real stimuli
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Figure 6. Comparison of the information for the 20 real stimuli and for 20 simulated
stimuli. The solid circles show the raw information for the real stimuli and the xs are
the analogous results for the simulated stimuli. The open circles show the cross-vali-
dated information for the real stimuli and the +s are the corresponding points for the
simulated stimuli.

which for the raw information corresponds to 0.5 bits per
cell and for the cross-validated information is 0.35 bits per
cell.

Figure 8 shows a confirmation of these results using de-
coding rather than information theory. We determined the
number of stimuli that could be decoded to a given accuracy
as a function of the size of the neural population. Figure 8
shows the result for 50% discrimination accuracy (half the
decoded stimuli matched the true stimuli) with and without
cross-validation. A 50% discrimination accuracy is well above
chance levels, which would only be one over the number of
stimuli. The number of stimuli that can be represented to a
given level of accuracy increases exponentially with the num-
ber of coding neurons. This was found for other decoding
accuracies as well as for the 50% case shown in Figure 8.
Furthermore, the exponential fits in Figure 8 agree with the
results from the information theoretic analysis. The solid
curve fitting the data points for a raw correct percentage of
50% is 2.9(2O4W), while the curve for the cross-validated case
is 2.9(203*^). These fits indicate that 0.47 and 0.36 bits of
information are carried per cell in these two cases, numbers
that are in excellent agreement with the results from Figure
7, indicating 0.5 and 0.35 bits per cell. This agreement pro-
vides an excellent consistency check on our results since the
two methods are quite distinct.

Discussion
Taken together, Figures 7 and 8 provide strong evidence that
the coding of face cells by temporal visual neurons in the
macaque monkey is truly distributed. This results in an ex-
ponential dependence of the representational capacity on the
number of cells. Choosing a number midway between the
raw and cross-validated results, we estimate that N neurons
can represent about 3(204;v) faces with 50% discrimination
accuracy. This means that the 14 neurons recorded respond-
ing to 20-face stimuli could potentially represent up to 145
faces with this accuracy. The population as a whole carries
about 0.4 bits of information about the stimuli per cell. The
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Figure 7. The information as a function
of the number of cells computed for dif-
ferent numbers of stimuli, a. The raw in-
formation is plotted for 20, 50, 100, 200,
and 400 simulated stimuli. The straight
line corresponds to 0.5 bits per neuron.
b, The cross-validated information is
plotted for the 20, 50, 100, 200, and 400
simulated stimuli. The straight line cor-
responds to 0.35 bits per neuron.
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average information carried by each neuron considered indi-
vidually, as in Figure 3«, is about 0.6 bits per cell. Redundancy
has therefore reduced the information per cell from 0.6 bits
to the O.4 bits seen for the full population. Although this may
seem a small change, it has a large impact on the represen-
tational capacity because of the exponential dependence. Of
course, some redundancy can be useful for combating the
effects of noise.

A simple model provides a rough interpretation of these
results. Suppose that a neuron responds in only two distinct
ways so that a fraction / of the stimuli elicit one response
while the remaining fraction (1 — / ) evoke the other re-
sponse. The information for this neuron is —flog2(f) - (1 —
/)log2(l — / ) . The value of 0.6 for the average information in
single neuron responses corresponds t o / = 0.15 and the 0.4
bits per neurons across the population gives/ = 0.08. These
values suggest that the responses of individual neurons distin-
guish about 15% of the stimuli from the others, but in the full
population about half of the 15% distinguished by one neuron
are distinguished by other neurons as well.

An exponentially growing representation gives remarkably
large capacities for even modest numbers of neurons. Indeed,
the capacity for faces may seem more that would be required.
Even 25 neurons could code around 3000 faces according to
our formula. It should be stressed that the representational
capacity we are discussing does not imply recognition or
identification of an image. The discrimination accuracy only
implies that stimuli are represented in such a way that they
can be perceived as different from each other. This does not
imply that any significance or meaning has been attached to
the stimuli. Furthermore, we should probably think of faces

200

5 10
number of cells

15

Figure 8. The number of stimuli that can be decoded at 50% accuracy as a function of
the number of coding neurons. The solid circles are the result of the raw calculation,
and the open circles correspond to the cross-validated case. The curves are exponential
fits to the data points.

as representing a continuum of possible images with graded
differences between them rather than a discrete set of images.
In this case, the extremely large capacities we have found
indicates that the neural coding is capable of representing
very subtle differences in this continuum.

If our results are extrapolated to larger numbers of neu-
rons than the 14 cells studied, as in the last paragraph, we
must, of course, assume that these 14 are representative of
the full population. The cells we used had properties that
were in complete accord with those of face cells studied pre-
viously (Desimone and Gross, 1979; Bruce et al., 1981; Perrett
et al., 1982; Desimone et al., 1984; Rolls, 1984; Gross et al.,
1985; Desimone, 1991) and they were recorded from different
locations within the superior temporal sulcus and in more
than one animal. Furthermore, our results are not sensitive to
which particular set of cells or stimuli were analyzed when
we examined random subsets of the 14 cells or 20 face stim-
uli used in the experiment.

It may be important that significant amounts of informa-
tion can be extracted from a small subset of the neurons
encoding a particular signal. It has been suggested that cor-
relations in the noise between different neurons severely lim-
its the size of the neuronal pools that can be effectively de-
coded as a group (Gawne and Richmond, 1993; Shadlen and
Newsome, 1994; Zohary et al., 1994). Furthermore, neurons
in downstream networks may synapse with only a small frac-
tion of the coding neurons. These downstream neurons must
therefore react to the responses of a limited number of cod-
ing neurons. In this case, the number N in our formula for the
representational capacity corresponds to the number of cod-
ing neurons being readout by neurons in the downstream
network not to the full size of the coding population. It is
difficult to assess the impact of correlated noise (Gawne and
Richmond, 1993; Shadlen and Newsome, 1994; Zohary et al.,
1994) on decoding accuracy, If correlations in the noise rep-
resent variations in the overall excitability of the coding neu-
rons, this can easily be corrected in the decoding scheme to
produce even more accurate results than those we have re-
ported. However, if the decoding scheme cannot account for
the effects of correlations, the accuracy will be reduced.

Finally, the discrimination accuracy we have computed re-
fers to an optimal decoding scheme. Downstream neurons
may not be as efficient at interpreting the output of the cod-
ing neurons as our mathematical procedure (although see Sa-
linas and Abbott, 1995). To examine this, we measured the
discrimination accuracy when we required that the decoding
scheme be based on a linear function of the firing rates (see
Materials and Methods). This is what could be achieved, for
example, by a neural network summing products of firing
rates times synaptic weights. For linear decoding, we found
that about 2.2(2°35;v) stimuli could be discriminated by Nneu-
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rons with 50% accuracy. While smaller than the result for op-
timal coding, this still represents a large number of stimuli for
even modest numbers of neurons. Thus, downstream neurons
can obtain large amounts of information about the represent-
ed stimuli even if they decode the responses of the coding
neurons fairly inefficiently using a limited number of synaptic
inputs.
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