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Universality in the space of interactions for network models
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Abstract. By modifying the measure used to sum over coupling matrices, we generalise
Gardner’s calculation of the fractional interaction-space volume and storage capacity of
neural network models. We also compute the local field distribution for the network. The
generalised measure allows us to consider networks with a wide variety of properties away
from saturation, but we find that the original results for saturated networks are universal
for all well behaved measures. Other universality classes including those containing Hebb
matrices and pseudo-inverse matrices are obtained by considering singular measures,

1. Introduction

One of the most impressive and imaginative of Elizabeth Gardner’s many contributions
to neural network research was her analysis [1] of the space of interactions for network
models. This pioneering work allows us to compute several important properties of
neural network memories in a model-independent way. Consider an N-node network
designed to store and recall a N uncorrelated patterns ¢/ (i=1,..., N,u=1,..., aN)
using the couplings J;. Define

“‘f Z Sl & (1.1)

Gardner computed the fractional volume in the space of all coupling matrices occupied
by J; satisfying

yi >k (1.2)
and the normalisation condition

Z i (1.3)

ji=1

for all i and u. From this result she could determine the maximum storage capacity,
a N, as a function of «:

ac=<Jx DZ(K+Z)2>_ (1.4)

where we use the common notation

exp(—3z°)

Dz =dz T (1.5)
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In addition, using her techniques the distribution of y values, p(y), in a network
satisfying (1.2) and (1.3) can be computed [2]. Near saturation this distribution is

1.2 o

p(y):%e(y—xwaw—m‘[ﬂ Dz, (1.6)

Equations (1.4) and (1.6) are the main results of Gardner’s program. Since they
were produced using (1.2) and (1.3) itis natural to wonder about the effects of modifying
these constraints. Modification of the normalisation constraint (1.3) has been con-
sidered [3]. Here we look at alternatives to the local field constraint (1.2). This will
result in a change in the measure used to sum over coupling matrices in Gardner’s
approach. There are two reasons for considering such a modification. First, we might
ask whether the results (1.4) and (1.6) for the capacity and local field distribution of
a saturated network are in any way universal. In other words we will explore whether
these results correspond to the universal critical behaviour of an entire class of models.
We will show that in fact they do. Second, there are other limiting behaviours known
for neural networks. For example, for a network of the Hebb type [4],

1 aN
L= ):L ‘."
b= TN B

storing aN patterns the y distribution is given by

o] -3(r7) '3
p(yv)="gzexp| 5\ v=7= (1.8)

and for the pseudo-inverse matrix [5]

(1.7)

J—)N L CLEg (1.9)
with
W=%§§M? (1.10)
we have
p(y)=8ly-vV(I-a)/al. (1.11)

We will see that these behaviours characterised by shifted Gaussian and §-function
distributions correspond to the limiting behaviour of other universality classes.

Our generalisation of the measure used for summing over coupling matrices is
based on the following observations. Using Gardner’s method we can compute the
fractional volume occupied by J; satisfying (1.3) and the more specific constraint

=T (1.12)

instead of the inequality (1.2). Here the I'#* are pre-assigned a fixed set of values. In
this case the fractional volume of interaction space is given by

VT({rm—J [T as, TT o(yt - 10) Hé(ZJ,,— )UH%H«S(ZL, )]

i) j=i £ 5] j=i
(1.13)
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where y¥ is given by equation (1.1) and the & functions impose the constraints (1.3)
and (1.12). We now imagine that the I'}’ are chosen stochastically from some a priori
distribution f(I'). We choose a set of ['# using this distribution, determine the fractional
volume corresponding to that particular set and then repeat the procedure with another
set of I'# chosen from the same distribution, either summing or averaging the total
interaction-space volumes. This will provide us with some measure of the difficulty
of finding couplings J; starting with a given distribution f(I') and will allow us to
determine the storage capacity and resulting distribution p(y) obtained from such a
procedure. Itis important to carefully distinguish the variables I'#* which are the target
values generated by the distribution f(I') from the y% which, as can be seen from
equation (1.1), depend on the couplings J;. The distribution of y! values is given by
p(y) which is not the same as f(I') because it is affected by the availability of couplings
J;; corresponding to a given I'}' set.

The average interaction-space fraction for a distribution of I'#* values given by f(I')
is just

Vi= J [TArefArH1v={Te). (1.14)
We can compute this following the original calculation of Gardner {1]. In fact the

original calculation just corresponds to the particular choice f(I')=6(I'—«). The
result, averaged over patterns £/, is

<%ln VT>=G(q) (1.15)

where

—(5? I
G(q)zaj “ﬂ%&]m(jdxﬂx)expi (x=2)}/201 q)])

V2m(l1-gq)
+1in(1 - g)+ —2 (1.16)
2(1-q)
with g given by
dG/dg=0. (1.17)

The variable q is the typical overlap between two different coupling matrices both
satisfying the constraints. Throughout we assume that replica symmetry is not broken.
At saturation g1 and we can determine the maximum capacity of the network by
solving (1.17) for a with g=1:

ac=<Jdszy(z—y)zA(z,y,l))_ (1.18)
where

S(y) exp[—(z = »)?/2(1 - q)] exp[—2°/24]
V27q [ dxf(x) exp[-(x - 2)*/2(1 - q)]

Following [2] we can also compute p(y) obtaining

Az, y,q)= (1.19)

ply)= f dz A(z, v, ). (1.20)
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These results are a trivial extension of previous work. However, they will allow us
to construct general classes of models and examine the universality of limiting behaviour
near saturation.

2. General behaviour away from saturation

Away from saturation the modification in the measure which we have introduced
allows us to obtain a wide range of y distributions. For example near g =0 we find

o(y) =L exp(=3y?)
[ dxf(x) exp(—3x*)’
This is just the a priori distribution cut off by a Gaussian factor reflecting the difficulty

of finding coupling matrices with very large (or very small) y values. To be more
specific we can take a Gaussian a priori distribution

(2.1)

£(T) =exp(—$ (r- z)Z). (2.2)
Using the results in § 1 we find that for such a distribution
1 1 5
p(v)=amexp<-ﬁ(v—u)> (2.3)
with
=sJ1+[§2/<1-q>2] (24
1+[s%/(1-¢q)]
and
M t (2.5)

C1+[s/ (1= )]
The value of g for such networks is determined by

2 1— 2 2 29-1
a= [( (___‘Z)__Z) +“—] _ (2.6)
1+q+~/(1—q)‘+4qa q
These results indicate that by weighting the a priori I" distribution and thus modifying

the measure we can obtain a wide variety of behaviours arising from a broad range
of underlying network models.

3. Universality near saturation

The variety of behaviours we found away from saturation disappears as we approach
the saturation bound of the network. To see this we begin by considering distribution
functions f(I') which are bounded and differentiable in a region k <T < k' and which
vanish outside this region. We will compute the capacity and y distribution near
saturation. When g1 we find from (1.19)

1,2
Az, 9, 1) =e—xP\};—%)[6(z—y)6(y—K)6(K’—y)+6(y— kK)O(k—z)+8(y—«")B(z—k')].

(3.1)
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Using this we find

ac:(J" DZ(K+Z)2+jJVCDZ(z—K')2>_ (3.2)

-

and near saturation

¢ oC

p(v)=ﬂ\/-2——jri) 8(y—x)0(x'=y)+6(y—«) I Dz+8(y-«") J‘ Dz (3.3)

—K

K

Note that these results are independent of the function f(I'), only depending on
the end points x and «'. In the limit x"—» oo (that is, with no upper cutoff) these reduce
to previous results [1, 2]. Thus, all distributions f(I") which are sufficiently well behaved
over a given interval produce identical networks near saturation. This is the universality
class containing models constructed from the original Gardner constraint (1.2). It is
easy to see that the example of the previous section falls in this class by taking the
limit g > 1 with s and ¢ held fixed.

Because of the universality of the above results we must turn to more singular
distributions f(I') to explore other universality classes. To find different behaviour
near saturation we need a distribution which is as singular as the exponential factors
in A(z, y, q) as g— 1. Consider a priori distributions of the form (in this case we will
not bother with an upper cutoft at «’ although it can easily be included)

f(I‘)=h(F)9(F—K)exp(—lg(TIZ>. (3.4)
Since the variable g only appears in the course of the mean-field calculation it is
important to clarify what we mean by having a ¢ in the a priori distribution. We
should really write the g which appears in the above equation as §, a free parameter.
We can then compute the mean-field variable ¢ from equation (1.17). It will be a
function of both @ and §. What we mean by writing a g in the above equation is that
g is chosen to satisfy the equation

q(as q)=q‘ (3'5)

With this understanding we will not bother distinguishing between § and g. Using
this a priori distribution we find that in the limit g 1 all the necessary integrals can
be done by the saddle-point method and the result for any well behaved function A
and any function g satisfying 1+g">0 is

Az, 1>=ﬂj2;;z—)[<1+g"<y>>o<y—K>a(z—y—g'(y>)+a<y—x)e<x+g'<x)—z)]

(3.6)
where a prime denotes differentiation. Then

1+¢"(y))6(y - Kreo
p(y) =" o “)exp[—%<y+g'<y))2]+a<y—x)J D: (3.7)

—oC

near the saturation point

k+g'(x)

1 (= 2
a.= (ﬁ J dy(1+g"(»))(g'(¥)) exp[—2(y +g'(y))*]+ J

_—

Dz(z - K)2>_ .
(3.8)
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Note that the well behaved function h(I') does not enter into these formulae (although
it certainly would affect the behaviour away from saturation) so they correspond to
the limiting behaviour of entire universality classes.

An interesting special case is

g(T)=(1/2a)(T - u)*—4I? (3.9)
giving a Gausian distribution near saturation
1 1 ) =
= - ——(y—u) |+ 8(y— D 3.10
p(y)=0(y—«) Umexp< 5 (y—n) ) (y—x) J‘(“_KW z (3.10)
with
o) aC =1
ac=(J Dz[u+(1—0')z]2+J‘ Dz(z+;<)2> . (3.11)
(k—p)/o (u—=k} o

Several limits of the above results are interesting. First, for u =0 and o =1 we recover
the original Gardner case (1.4) and (1.6). If we take 0 =1 and k - —© we find

l 2
p(v)=EeXp[—%(y~u)] (3.12)

and
ac=1/p° (3.13)

which is the result for a Hebb matrix (1.8) given in the introduction. Thus, the Hebb
matrix represents the limiting behaviour of a whole class of models which have a
shifted Gaussian y distribution near saturation. The «a, given above is the maximum
capacity at which the constraints we have imposed can be satisfied and is not related
to the maximum capacity of the Hebb model [6]. When -0 and x <u we obtain

p(y)=8(y—n) (3.14)

and
ac=1/(1+/.1,2) (3.15)

which by comparison with (1.11) is the same behaviour as the pseudo-inverse model.
Again the pseudo-inverse matrix represents the limiting behaviour of a whole other
universality class of models.

The Hebb and pseudo-inverse cases do not exhaust the universality classes even
for a Gaussian a priori distribution. Suppose for simplicity that we take k » —© (no
6 function). We are thus considering models like the Hebb model which make errors
because nothing prevents some of the y# from becoming negative. Then

1
p(y)=0me><p[—(1/202)(“/—u)2] (3.16)
and
ac=1/[u*+(1-0)]. (3.17)

Thus, the Hebb model is just the o =1 case of a one-parameter family of universality
classes. Note that when o =1, a. is unbounded as u - 0. Of course this does not
imply a memory with infinite capacity because we are not imposing stability on these
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patterns. We can compute the fraction of sites i which are unstable for arbitrary o
and u by integrating the distribution function over all y <0:

axc

F(y<0)=J Dz (3.18)
B

where

B=u/o. (3.19)

For the Hebb matrix at saturation 8 =2.67 [6]. We can construct a matrix which
performs as well as the Hebb matrix at its saturation point but which has a much
larger capacity by holding B fixed at this value (and thus holding the fraction of
unstable sites fixed) and maximising «, as a function of ¢ which is now a free variable
(while in the Hebb case it is fixed at o =1). Maximising

a.=1/[B*c*+(1-0)’] (3.20)
gives

o=1/(B*+1) (3.21)
and

a.=(B*+1)/B*=1.14 (3.22)

a remarkably high value for a network with a purely Gaussian local field distribution
performing as well as a Hebb network near saturation. We see that the Hebb network
has a relatively small capacity because it has too broad a Gaussian distribution of y
values and that by narrowing this distribution using the a priori distribution f(I") we
can dramatically increase the network’s capacity.

4. Conclusions

By generalising the initial assumptions of the Gardner approach we have shown that
the distribution p(y) and capacity of a network near saturation fall into universality
classes. For well behaved a priori distributions, f(T'), the limiting behaviour depends
only on the boundaries of the support of f(I') and is essentially that found using the
original Gardner constraint. Other universality classes with the limiting behaviour
given by (3.7) and (3.8) were obtained from more singular a priori distributions. It
would be interesting to know what other sorts of limiting behavour besides that of
(3.7) and (3.8) is possible. Algorithms exist [7] for constructing models in the Gardner
universality class, and of course for constructing the Hebb and pseudo-inverse models.
It may be possible to construct models exhibiting all of the universal behaviours we
have seen by using a stochastic learning algorithm based on the initial distribution
Sf(I'). Near saturation such models should exhibit the y distributions and capacities
which we have found.
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