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Abstract. By modifying the measure used to sum over coupling matrices, we generalise 
Gardner's calculation of the fractional interaction-space volume and storage capacity of 
neural network models. We also compute the local field distribution for the network. The 
generalised measure allows us to consider networks with a wide variety of properties away 
from saturation, but we find that the original results for saturated networks are universal 
for all well behaved measures. Other universality classes including those containing Hebb 
matrices and pseudo-inverse matrices are obtained by considering singular measures. 

1. Introduction 

One of the most impressive and imaginative of Elizabeth Gardner's many contributions 
to neural network research was her analysis [ 11 of the space of interactions for network 
models. This pioneering work allows us to compute several important properties of 
neural network memories in a model-independent way. Consider an N-node network 
designed to store and recall O N  uncorrelated patterns .$' ( i  = 1,. . . , N, p = 1,. . . , a N )  
using the couplings J,,. Define 

Gardner computed the fractional volume in the space of all coupling matrices occupied 
by J ,  satisfying 

Y f > K  (1.2) 
and the normalisation condition 

N 

J ; = N  
) = I  

(1.3) 

for all i and p. From this result she could determine the maximum storage capacity, 
a,N, as a function of K :  

where we use the common notation 

exp( -fzz) 
6 .  Dz = dz (1.5) 

203 1 0305-4470/89/ 122031 +08302.50 0 1989 IOP Publishing Ltd 



2032 L F Abbott and T B Kepler 

In addition, using her techniques the distribution of y values, p(y),  in a network 
satisfying (1.2) and (1.3) can be computed [2]. Near saturation this distribution is 

Equations (1.4) and (1.6) are the main results of Gardner’s program. Since ihey 
were produced using (1.2) and ( 1.3) it is natural to wonder about the effects of modifying 
these constraints, Modification of the normalisation constraint (1.3) has been con- 
sidered [3]. Here we look at alternatives to the local field constraint (1.2). This will 
result in a change in the measure used to sum over coupling matrices in Gardner’s 
approach. There are two reasons for considering such a modification. First, we might 
ask whether the results (1.4) and (1.6) for the capacity and local field distribution of 
a saturated network are in any way universal. In other words we will explore whether 
these results correspond to the universal critical behaviour of an entire class of models. 
We will show that in fact they do. Second, there are other limiting behaviours known 
for neural networks. For example, for a network of the Hebb type [4], 

1 a N  

storing a N  patterns the y distribution is given by 

and for the pseudo-inverse matrix [ 5 ]  

with 

l N  
C,” =i c 5:t: (1.10) 

! = I  

we have 

P(Y) = SLY -J(1 -.)/al. (1.11) 

We will see that these behaviours characterised by shifted Gaussian and &function 
distributions correspond to the limiting behaviour of other universality classes. 

Our generalisation of the measure used for summing over coupling matrices is 
based on the following observations. Using Gardner’s method we can compute the 
fractional volume occupied by Jll satisfying (1.3) and the more specific constraint 

y: = r: (1.12) 

instead of the inequality (1.2). Here the r? are pre-assigned a fixed set of values. In 
this case the fractional volume of interaction space is given by 

(1.13) 
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where yf” is given by equation (1.1) and the S functions impose the constraints (1.3) 
and (1.12). We now imagine that the ry are chosen stochastically from some a priori 
distribution f(r). We choose a set of rf” using this distribution, determine the fractional 
volume corresponding to that particular set and then repeat the procedure with another 
set of rf” chosen from the same distribution, either summing or averaging the total 
interaction-space volumes. This will provide us with some measure of the difficulty 
of finding couplings J!, starting with a given distribution f(r) and will allow us to 
determine the storage capacity and resulting distribution p (  y )  obtained from such a 
procedure. It is important to carefully distinguish the variables rf” which are the target 
values generated by the distribution f ( r )  from the yf” which, as can be seen from 
equation ( l . l ) ,  depend on the couplings J,,. The distribution of y: values is given by 
p (  y )  which is not the same asf(T) because it is affected by the availability of couplings 
J,, corresponding to a given rf” set. 

The average interaction-space fraction for a distribution of rf” values given byf(T) 
is just 

%= I n [dr:f(f(r:)l VT({Y}) .  (1.14) 

We can compute this following the original calculation of Gardner [I]. In fact the 
original calculation just corresponds to the particular choice f(r) = e(r - K ) .  The 
result, averaged over patterns (7, is 

h+ 

( h l n  vT) = G ( q )  

where 

(1.15) 

(1.16) 

with q given by 

d G / d q  = 0. (1.17) 

The variable q is the typical overlap between two different coupling matrices both 
satisfying the constraints. Throughout we assume that replica symmetry is not broken. 
At saturation q + 1 and we can determine the maximum 
solving (1.17) for a with q = 1: 

capacity of the network by 

(1.18) 

where 

Following [2] we can also compute p ( y )  obtaining 

P ( Y )  = dzA(z, y ,  4 ) .  I 

(1.19) 

(1.20) 
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These results are a trivial extension of previous work. However, they will allow us 
to construct general classes of models and examine the universality of limiting behaviour 
near saturation. 

2. General behaviour away from saturation 

Away from saturation the modification in the measure which we have introduced 
allows us to obtain a wide range of y distributions. For example near q = 0 we find 

This is just the a priori distribution cut off by a Gaussian factor reflecting the difficulty 
of finding coupling matrices with very large (or very small) y values. To be more 
specific we can take a Gaussian a priori distribution 

Using the results in 0 1 we find that for such a distribution 

with 

and  
t 

1 +[s2/ (1 - 4 ) l '  
P =  

The value of q for such networks is determined by 

2( 1 - u2) ) * + %] - I .  (2 .6)  

These results indicate that by weighting the a priori r distribution and  thus modifying 
the measure we can obtain a wide variety of behaviours arising from a broad range 
of underlying network models. 

3. Universality near saturation 

The variety of behaviours we found away from saturation disappears as we approach 
the saturation bound of the network. To see this we begin by considering distribution 
functions f ( r )  which are bounded and differentiable in a region K < r < K '  and which 
vanish outside this region. We will compute the capacity and y distribution near 
saturation. When q + 1 we find from (1.19) 
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Using this we find 

and near saturation 

Note that these results are independent of the function f(r), only depending on 
the end points K and K’. In the limit K ’ + C O  (that is, with no upper cutoff) these reduce 
to previous results [ 1,2] .  Thus, all distributionsf(r) which are sufficiently well behaved 
over a given interval produce identical networks near saturation. This is the universality 
class containing models constructed from the original Gardner constraint (1 .2) .  It is 
easy to see that the example of the previous section falls in this class by taking the 
limit q + 1 with s and t held fixed. 

Because of the universality of the above results we must turn to more singular 
distributions f (r) to explore other universality classes. To find different behaviour 
near saturation we need a distribution which is as singular as the exponential factors 
in A(z, y,  q )  as q + 1 .  Consider a priori distributions of the form (in this case we will 
not bother with an upper cutoff at K’ although it can easily be included) 

Since the variable q only appears in the course of the mean-field calculation it is 
important to clarify what we mean by having a q in the a priori distribution. We 
should really write the q which appears in the above equation as cj, a free parameter. 
We can then compute the mean-field variable q from equation (1.17).  It will be a 
function of both a and 4. What we mean by writing a q in the above equation is that 
4‘ is chosen to satisfy the equation 

4, = 4. (3.5) 
With this understanding we will not bother distinguishing between 4 and q. Using 
this a priori distribution we find that in the limit q + 1 all the necessary integrals can 
be done by the saddle-point method and the result for any well behaved function h 
and any function g satisfying 1 + g ” >  0 is 

where a prime denotes differentiation. Then 

near the saturation point 
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Note that the well behaved function h ( T )  does not enter into these formulae (although 
it certainly would affect the behaviour away from saturation) so they correspond to 
the limiting behaviour of entire universality classes. 

An interesting special case is 

g ( r ) = ( i / 2 u ) ( r - p ) ) ’ - f r 2  (3.9) 

giving a Gausian distribution near saturation 

(3.10) 

with 
- 1  

f f c =  (1% Dz[+ + (1 - u)z]’ + D z ( z + ~ ) ~ )  , (3.11) 

Several limits of the above results are interesting. First, for p = 0 and U = 1 we recover 
the original Gardner case (1.4) and (1.6). If we take (T = 1 and K + --CO we find 

( K - P l / u  

(3.12) 

and 

C Y c =  l / p 2  (3.13) 

which is the result for a Hebb matrix (1.8) given in the introduction. Thus, the Hebb 
matrix represents the limiting behaviour of a whole class of models which have a 
shifted Gaussian y distribution near saturation. The a ,  given above is the maximum 
capacity at which the constraints we have imposed can be satisfied and is not related 
to the maximum capacity of the Hebb model [6]. When U + 0 and K < p we obtain 

P(Y) = S(Y - P I  (3.14) 

and 

f f c =  l / ( l + p Z )  (3.15) 

which by comparison with (1.11) is the same behaviour as the pseudo-inverse model. 
Again the pseudo-inverse matrix represents the limiting behaviour of a whole other 
universality class of models. 

The Hebb and pseudo-inverse cases d o  not exhaust the universality classes even 
for a Gaussian a priori distribution. Suppose for simplicity that we take K + --CO (no 
0 function). We are thus considering models like the Hebb model which make errors 
because nothing prevents some of the yf from becoming negative. Then 

(3.16) 

and 

f f c =  1 / [ p 2 + ( 1  -U)*]. (3.17) 
Thus, the Hebb model is just the U = 1 case of a one-parameter family of universality 
classes. Note that when U = 1, a, is unbounded as + 0. Of course this does not 
imply a memory with infinite capacity because we are not imposing stability on these 
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patterns. We can compute the fraction of sites i which are unstable for arbitrary U 
and p by integrating the distribution function over all y < 0: 

F (  y < 0) = lpx Dz (3.18) 

where 

P = W / U .  (3.19) 
For the Hebb matrix at saturation P =2.67 [ 6 ] .  We can construct a matrix which 
performs as well as the Hebb matrix at its saturation point but which has a much 
larger capacity by holding P fixed at this value (and thus holding the fraction of 
unstable sites fixed) and maximising a,  as a function of a which is now a free variable 
(while in the Hebb case it is fixed at U = 1). Maximising 

a== 1/[P2U2+ (1 -U)’] (3.20) 

gives 

a =  1 / ( P 2 +  1) (3.21) 

and 

a , = ( ~ * + 1 ) / P 2 = 1 . 1 4  (3.22) 
a remarkably high value for a network with a purely Gaussian local field distribution 
performing as well as a Hebb network near saturation. We see that the Hebb network 
has a relatively small capacity because it has too broad a Gaussian distribution of y 
values and that by narrowing this distribution using the a priori distribution f ( r )  we 
can dramatically increase the network’s capacity. 

4. Conclusions 

By generalising the initial assumptions of the Gardner approach we have shown that 
the distribution p ( y )  and capacity of a network near saturation fall into universality 
classes. For well behaved a priori distributions, f(r), the limiting behaviour depends 
only on the boundaries of the support of f ( r )  and is essentially that found using the 
original Gardner constraint. Other universality classes with the limiting behaviour 
given by (3.7) and (3.8) were obtained from more singular a priori distributions. It 
would be interesting to know what other sorts of limiting behavour besides that of 
(3.7) and (3.8) is possible. Algorithms exist [7] for constructing models in the Gardner 
universality class, and of course for constructing the Hebb and pseudo-inverse models. 
It may be possible to construct models exhibiting all of the universal behaviours we 
have seen by using a stochastic learning algorithm based on the initial distribution 
f(r). Near saturation such models should exhibit the y distributions and capacities 
which we have found. 
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