
J. Phys. A: Math. Gen. 22 (1989) L711-L717. Printed in the UK

LE’lTER TO THE EDITOR

Optimal learning in neural network memories?

L F Abbott and Thomas B Kepler
Physics Department, Brandeis University, Waltham, MA 02254, USA

Received 12 May 1988

Abstract. We examine general learning procedures for neural network associative memories
and find algorithms which optimise convergence.

A neural network memory uses fixed points of the map

Si(t + 1) = sgn J V S j (t) . (1)
(j r l)

(where Si = *l and Jii = 0) as memory patterns which attract nearby input patterns
providing associative recall. The dynamics (1) takes an initial input Si (0) and after a
sufficient number of iterations maps it to an associated memory pattern 5, provided
that ti is a fixed point of (1) and that Si(0) lies within the domain of attraction of this
fixed point. Learning in such a network is a process by which a matrix Jv is constructed
with the appropriate fixed points and required basins of attraction. Suppose we wish
to ‘learn’ a set of memory patterns 67 with p = 1,2, . . . , O N . Important variables for
characterising a fixed point are

where the normalisation factor 11 Ji 11 is

In order for ,$ to be a stable memory pattern of the network, y7 must be positive for
all i. In addition the distribution of y? values has a great impact on the size of the
basin of attraction [l] associated with (7.

A standard learning problem is to find a matrix JV satisfying

?’> K (4)

for all i and all p with some specified value of K. Gardner [2] has computed the range
of Q and K values for which matrices satisfying (4) exist. The problem remains to find
efficient algorithms for constructing such matrices.

t Research supported by Department of Energy Contract AC02-ER0320 and by the US-Israel Binational
Science Foundation.

0305-4470/89/140711+07$02.50 @ 1989 IOP Publishing Ltd L711

L712 Letter to the Editor

The standard method [2, 41 for finding a matrix satisfying (4) is to start with a
random matrix and repeatedly apply the learning rule

at each site i and for each memory pattern p until (4) is satisfied. It has been proven
[2,4] that this algorithm will converge in a finite number of steps if the desired matrix
exists. However, in actual practice the standard algorithm is extremely slow.

There are several reasons for believing that (5) is not a particularly efficient learning
algorithm. The step size (that is, the magnitude of the term being added to the original
matrix) in (5) is fixed, independent of the normalisation of J , and of the difference
between the actual value of yf and the desired value K. If the initial matrix has an
enormous magnitude llJl/(the algorithm prescribes the same step size as if (IJ,((were
tiny. This seems inefficient. In addition, a better strategy might be to adjust the step
size so that it is larger if y:<< K and smaller if y? is near to K. The first issue can be
resolved by multiplying the step size by the normalisation factor llJII(but the second
is more subtle. Let us therefore consider learning algorithms of the form

(6)
1

JIJ J!J +N 6: 6; (- ' 1 , If(7:) 11 e (K - r f)

where once again the learning process consists of applying this algorithm at every site
and for every memory pattern until (4) is satisfied. We wish to investigate what function
f(y) optimises this learning process. The idea of using a variable step size in a related
context has been considered before [3]. However, we find that it is the combination
of a variable step size and the normalisation correction in the above formula (which
is new) which produces the dramatic improvement in learning times which we shall
see below.

To study the convergence properties of the algorithm (6) we follow general methods
from perceptron proofs [2,4]. Suppose there exists a matrix J $ satisfying

for all i and p. Following Gardner [2] we introduce the notation

N

(J * J *) = JijJ$
j = l

and consider the quantity

which is bounded by the Schwartz inequality. To analyse the convergence properties
of the various algorithms characterised by (6) we will calculate how much Xi changes
every time the matrix Jo is updated. If this change is greater than a fixed positive
number, the algorithm must converge at least by the time all of the XI have reached
the value 1. Furthermore, the larger the change in Xi the shorter will be the maximum
possible convergence time.

Letter to the Editor L713

Let .fT be the value of the matrix after m non-trivial applications of the learning
rule (6). From (6) we see that after an (m + 1)th application of the rule occurring at
the site i, an update using the memory pattern 57 produces

l N
N j = l

(J m + ' * J*)l= (J " - J *) i + - J ;gy j ' f (yy) l lJ?II . (10)

Here yy corresponds to (2) with Ju = J T . Using (7) we find

(11)
1

(I m + ' ' J *) , > (J m ' J *) i + N (K + 8) I I J : l l f (y ~) l 1 J y I I .

From the definition (9), we see that the value of Xi after m + 1 iterations satisfies

Now from (6)

Thus, ignoring terms of order 1 / N 2 we have

Putting this together with (12) gives to order 1/ N,

Recalling that X i S 1 we find for f '/2+ - y f f > 0

I
Xr+' > xr+- N [(K + 8 - ') ' f) f (Y y) - f f 2 (7 ?)] . (16)

To treat the case f 2 / 2 + y ? f S 0 we will assume XYaO. Since under the conditions
we will derive Xi will always grow, Xy will be greater than zero if Xp 2 0 and this is
trivial to achieve. If J: makes Xp < 0 then the transformation J i + - J ; will remedy
the situation. Thus for f 2/2 + y ? f S 0 with XY 2 0 we have

1 xF+' > xr +- N ((K + 8)f(y y)) . (17)

The condition assuring that X i will grow every time the rule (6) is applied (non-trivially)
is then f> 0 and

(K + 8 - y ?) f (')f) -$f'(yy) 0. (18)
In order for X i to remain smaller than 1, the learning algorithm (6) must converge in
a finite number of steps for any positive f(y) satisfying (18).

From the above derivation we see that any function satisfying

O<f(r) 2 (K + 8 - Y) (19)
will lead to convergent learning. How do we find the functionf(y) within this allowed
range which optimises the learning process? One way is to choose f(y) so that the

L714 Letter to the Editor

change in X i is as large as possible for every learning step. This is done by maximising
the expression on the left-hand side of (18) with respect to the functionf at each point
yf when f 2/2 + yPf> 0 and maximising f itself when f 2/2 + y y f s 0 giving the result

(20)
Despite the presence of the 8 functions we will refer to this as the linear rule. The
minimum change in Xi for this functional form occurs at y f = ~ and is bounded by

f(r) = (K + 6 - ') ') 8 (K + 6 + y) -278(-K - 6 - 7) .

s2 x ? + ' > X Y + -
2 N '

Thus the algorithm (6) with f given by the linear rule (20) will converge after less than
2N/S2 applications (assuming we start at X p = 0).

Since the convergence time in the above approach is dominated by the case yf = K

where X"'>X;+S2/2N it is not clear that there is much benefit in making Xi
change by any larger amount for other y values. A better approach might be to keep
the minimum change in Xi fixed at 6'/2N with the advantage that in general the
function f which determines how quickly the matrix Ju changes will be larger. The
maximum possible function f in this case is given by

(K + 6 - y :) f (y f) - f f 2 (y :) =Ja2 (22)
giving

f(')') = K + 6 - ') ' + [(K -k 6 - 7) ' - 62]"z,

We will refer to this form as the non-linear rule. As we will see this algorithm produces
considerably better results than the linear rule and both (20) and (23) are a dramatic
improvement over the standard algorithm. In practice, we find that the non-linenr rule
works best when a small value of 6 is used. In this case the non-linear rule is essentially
identical to the upper limit of the inequality (19) so it is equivalent to maximising the
step size in J while the linear rule maximises the step size in X.

The results of computer simulations using the standard algorithm as well as our
linear and non-linear rules are shown in figures 1-4. Figures 1-3 compare the learning
times for various values of a and K. These figures show the difference between K and
the minimum value (worst case) of y for an N = 100 node network plotted against the
number of learning passes. A pass consists of one sweep through all N sites and
through all aN memory patterns applying the particular learning algorithm. The
algorithms converge of course when K minus the minimum value of y is negative.
Because we found it more informative to use a logarithmic scale on figures 1-3 this
point is not visible on the plots. However, in all the cases shown the algorithms
converged when the curves drawn intersect the bottom of the graphs. All the learning
procedures shown in these graphs converged except for the case of the standard
algorithm in figure 3 where our patience and that of our computer centre ran out. The
convergence times were as follows: for a = 0.25 and K = 1 . 4 4 the standard algorithm
converged in 175 passes, the linear rule in 53 passes and the non-linear rule in 18; for
a = 0.75 and K = 0.42 the results were standard 325 passes, linear 210 and non-linear
32; and for a = 1.5 and K = 0.04 the standard algorithm did not converge in 800 passes
while the linear and non-linear rules converged in 157 and 53 passes respectively.
Throughout we took 6 =0.01 which seemed to be a reasonably optimal value. In all
cases the linear and non-linear rules are much faster than the standard algorithm. The
non-linear rule provides the fastest convergence times but, as indicated by its rapid

Letter to the Editor L715

?

Figure 1. The value of K minus the minimum value of y r for an N = 100 network as a
function of the number of passes through all the network sites and all the memory patterns
being learned. Here a = 0.25, K = 1.44 and 6 = 0.01. The full line is the non-linear algorithm,
the chain line is the linear rule and the dotted line is the standard algorithm.

X

?

Figure 2. Same as figure 1 with a = 0.75, K = 0.42 and 6 = 0.01.

L716 Letter to the Editor

T

Figure 3. Same as figure 1 with a = 1.5, K = 0.04 and S = 0.01.

1

lo-'

E m

L

10-2

0 20 40 60 80 100

Figure 4. Same as figure 1 with a =0.25, K = 1.46 and S =0.01. In this case none of the
algorithms converged because no matrix with the desired properties exists.

T

initial drop in the figures, the linear rule is the quickest at stabilising the memory
patterns.

Figure 4 shows the behaviour of the three algorithms in a situation where they do
not converge because K is given too large a value and thus no matrix with the desired
properties exists. Here we took a = 0.25 and K = 1.46. We have verified using the
Krauth and MCzard [4] variant of the standard algorithm that no such matrix existed

Letter to the Editor L717

for the memories we used. This value is less than the Gardner [2] bound because of
finite-N effects even for N = 100. In cases such as this where none of the methods
converges the linear rule seems to produce the best possible matrix in the least amount
of time while the non-linear rule rapidly stops improving and goes into a steady
non-convergent behaviour thus providing the most rapid identification of a laming
task that will not converge.

In conclusion, the linear and non-linear algorithms based on (6) (especially the
non-linear rule) provide extremely efficient methods for constructing a coupling matrix
with desired properties for a neural network memory. They represent a dramatic
improvement over previous methods. For simplicity we have worked in the limit of
large N; however, this is not essential. Equations (20) and (23) can be rederived in
a straightforward manner keeping all terms of higher order in N if necessary.

We wish to thank I Yekutieli and H Gutfreund for helpful comments.

References

[l] Kepler T and Abbott L F 1988 1. Physique 49 1657

[2] Gardner E 1988 J. Phys. A: Math. Gen. 21 257
[3] Agmon S 1954 Can. J. Math. 6 382
[4] Minsky M and Papert S 1969 ferceptrons (Cambridge, MA: MIT Press)

Krauth W, Nadal J-P and Mtzard M 1988 J. fhys . A: Math. Gen. 21 2995

Gardner E, Stroud N and Wallace D 1989 J. fhys. A: Math. Gen. 22 2019
Poeppel G and Krey U 1987 Europhys. Lett. 4 481
Diederich S and Opper M 1987 Phys. Rev. Lett. 58 949
Krauth W and Mtzard M 1987 J. fhys. A: Math. Gen. 20 1.745

