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Abstract. A model of neuronal behaviour capable of accounting for the oscill& 
tory, plateau and rebound properties of biological neurons is derived, discussed and 
analysed. The model is based on a piecewise linear form of the FitzHugh-Nagumo 
equations, but reduces t.o a set of maps very similar to those of the Hopfield model. 
In particular, the binary descript.ion of individual neurons and the well studied form 
of the synaptic current J; ,  S, are preserved, although the model is capable of re- 
producing behaviours on the slow timescales characteristic of plateau and oscillation. 
By coupling two model cells together a mutually inhibitory or half-centred oscillator 
and an oscillator, fixed-phase follower pairs are constructed. The behaviour of a net- 
work of oscillatory cells is analysed with particular attention to phase-locking. The 
response of a single cell to a square wave input provides a mean-field approximation 
for large networks. This approach is compared with the results of a phase-coupling 
description of the oscillators. The network of oscillators discussed can be used to con- 
struct associative memories in which the signal for memory recall is not fixed-point 
behaviour but phase locking. The performance and capacity of such phase-locking 
memories is analysed. 

1. Introduction 

Modelling neuronal behaviour involves a continual competitive interplay between the 
simplicity needed for mathematical tractability and the complexity required for bi- 
ological accuracy. Researchers with an analytic bent have frequently opted for an 
extremely simple model based on binary neurons with essentially instantaneous dy- 
namics that leaves ma.ny biologists cold. On the other hand, more biologically moti- 
vated models are often so complex that they provide little analytic or intuitive insight 
into the dynamics they simulate. The goal of model building is to provide something 
between these extremes. The model discussed here is capable of reproducing many of 
the more complex features of neuronal helnviour while retaining the simplicity needed 
for both mathematical analysis and intuitive insight. 

The simplest and most thoroughly analysed mathematical network is the Hopfield 
model [l]. In this model, an individual neuron is treated as a simple two-state system 
characterised by a binary variable which takes the value $1 if the neuron is firing 
and -1 if it is not. Similarly, a system of N interacting neurons is described by N 
variables Si obeying 

sj = f l  i =  1 . . . N .  (1.1) 
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The behaviour of each neuron is governed by the signal it receives from other cells 
through synaptic connections and from possible external sources. The strength of the 
synaptic connection between neuron i and neuron j is given by a matrix element J i j  . 
The total current entering cell i due to the firing of other cells in the network and 
from external sources is 

N 
ii = C J i j ( S j  + 1) + IYt 

j =  1 

with 

Ji i  = 0. (1.3) 

The firing or non-firing of the cell is determined by whether or not this current ex- 
ceeds a certain threshold va,lue $$. Time is divided into discrete intervals of order the 
refractory period, a few msec, a.nd the state of cell i at time t + 1 is determined by 
the state of the system at time t by the basic dynamic rule 

si(t + 1) = sgn[ii(t) - Ji]. (1.4) 

It is more convenient to absorb a constant factor from 
defining 

into the threshold term 

N 

and 
N 

ii = Ji jSj  + 
j =  1 

so that 

S,(t + 1) = sgn[l&) - 41. (1.7) 

A number of problems arise when the model discussed above is applied to biological 
systems. Three of the most serious are: (1) the model describes individual cells as 
either firing or not firing allowing for 110 variation or time dependence in the firing rate; 
(2) the synaptic current is instantaneous, independent of the membrane potential of 
the postsynaptic cell and only binarily dependent on the potential of the presynaptic 
neuron; none of these properties hold true for biological systems; (3) the response of a 
cell to  its incoming synaptic current is essentially instantaneous. As a result, there is 
no possibility of any long term hysteresis or dynamic dependence on past behaviour 
nor intrinsic oscillations or delays with periods much greater than the fundamental 
timescale of around a nisec. 

An enormous amount of attenttion has been given in modelling studies to resolving 
problem (1) by providing sets of differential equations to reproduce the cell membrane 
potential in such a way that, individual action spikes are described [2]. This involves a 
significant complication since the description and computation of rapid spiking in the 
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membrane potential is quite difficult. At the same time, it is not clear that this detailed 
level of modelliiig is essentia.1. The contribution of individual action potential spikes 
to  overall network behaviour is not very significant. It is their integrated effect and 
the level of the average cell potential which is crucial. There are examples of biological 
networks which are capable of relatively normal functioning when action potentials are 
pharmacologically blocked [3]. A continuous variable describing the spiking rate as a 
function of time or, equivalei~t~ly, the spike-averaged membrane potential is probably a 
sufficient description. There seems to be little need to actually model individual action 
potentials. In the model discussed here, the spike-averaged cell membrane potential 
will be available as a direct measure of the spiking rate. 

The simplistic modelling of synapses discussed in problem (2) is more troubling. 
We might argue that for rapidly acting synapses, the synaptic time delay can be 
ignored. For reversal potentials which are large compared with typical membrane 
potentials, we can, as a first approximation, ignore the dependence on the postsynaptic 
cell potential as well. However, the real advantage of using the simple form (1.6) for 
the synaptic current is tha.t a tremendous a,mount is known about how this current 
depends on the coupling matrix J i j  [4]. Here, I will ta.ke the viewpoint that this body 
of knowledge is too much to give up and that synaptic connections are too variable 
and too poorly described to provide a, very redistic model of the synaptic current 
anyway. Therefore, (1.6) will remain unchanged. The use of this well studied form of 
the synaptic current allows us to apply previous results [4] on storage capacity, current 
strength and learning algorit,him to the present model. 

Probably the most severe of the three problems mentioned is (3), the instanta- 
neous nature of the cell dynamics in the Hopfield model. Real neurons display many 
behaviours which reflect a slow timescale (much greater than 1 msec) [5] that are not 
modelled by (1.7). Such slow behaviours undoubtedly have a profound impact on 
network behaviour. For example, in response to a positive external current pulse a 
biological cell may go into the firing (Si = +1) state for a time period much longer 
than the duration of that ext,ernal pulse, a. property known as plateau behaviour. 
When a negative current, is applied for a period of time and then is quickly removed, 
a cell may exhibit postinhihit,ory rehound, a period of firing activity in response to 
release from negative current inhibition, Another effect of this sort is post-firing in- 
hibition which refers to the behaviour of a cell following a, prolonged firing burst. It 
is often more difficult to rr-excite a neuron to the firing state immediately after a 
burst of activity than it, is t,o excite a silent, resting cell. In addition, neurons may 
spontaneously oscillat,e between firing and non-firing states with periods up to several 
seconds even in the absence of external currents or interactions with other cells. All 
of these behaviours are chara.cterised by a hysteresis or memory of past experience on 
a relatively long t<imesca.le, and none of them can be described even qualitatively by 
the Hopfield model. The model discussed here addresses this serious shortcoming. 

An additional problem t,liat, has received considerable attention [6] concerns the 
description of a neuron by a single membrane potential or equivalent variable like Si. 
If the different regions of t.he cell body a.re not charact#erised by the same potential 
such a description is necessa.rily incomplete. This problem can be circumvented by 
stipulating that the ‘cell’ being modelled is not the whole cell body but an isopotential 
piece of it. With this stipulation we will continue to ignore this complication. 

The model will be constructed starting from a description of cell behaviour in 
terms of a well known set of differential equations. However, once the derivation is 
complete, the model will be expressed in a form very similar to the Hopfield model 
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especially versions of this model witlIi time-dependent thresholds [7] and hysteresis 
[$I. The threshold factor will be described by an addition map. In fact, in the limit 
of strong synaptic currents the model behaves very much like the Hopfield model 
and thus, this derivation also serves to reproduce the simpler model. For smaller 
synaptic currents the model exhibits all of tlie slow timescale behaviours discussed 
above and can, for example, describe a network of coupled oscillatory cells. In the 
following I consider the behaviour of individual model neurons responding to  external 
currents, the dynamics of coupled pairs of model neurons, and the behaviour of large, 
highly coupled systems of osciilators. A well studied property of the Hopfield model 
is associative memory, tlie mapping of a given input to a nearby fixed-point of the 
dynamics. For the networks of oscillat<ors discussed here, the analogous behaviour is 
the phase locking of tlie oscillators in response to a recognised pattern. Throughout, 
the simplicity of the model allows for detailed analytic, mean-field and phase-coupling 
calculations even though highly non-t.rivia1 dynamical behaviours are exhibited. 

2. The model 

The behaviour of a cell membrane potential in response to external and synaptic cur- 
rents is governed by current. conserva,t,ion and by properties of the membrane currents 
of the cell. Each membrane current is determined by a conductance and by the differ- 
ence between the cell potent,ia.l and tlie reversa.1 potential for the particular conduction 
ion producing the current. A complete model would consist of the equation for current 
conservation along wit,li differential equations describing all of the cell conductances 
as functions of time and membra.ne potential. Even highly simplified attempts at  
building such models end up being quite complicated and difficult to treat either an- 
alytically or intuitively. A well known simplifying approximation [9] is to divide the 
total membrane current into two pieces, one consisting of all conductances which re- 
spond rapidly, say in a t,ime of order several msec or less, and another composed of 
the slow conductances responding in times mnging from tens of msec to a sec or more. 
The fast set of conductances is then considered to be an instantaneous function of 
the membrane potential t,liereby elimina.ting the entire set of differential equations for 
fast conductance channels. Let F ( V )  be t,he fast outward membrane current at cell 
potential V and let U be t,he slow component of the membrane current. Then, by 
current conservation 

dC' 
dt 

c- = - F ( V )  - if + I  

where C is the cell membrane capacitance and I is the sum of synaptic and external 
currents entering the cell. The current component U responds slowly to changes in 
the membrane potential and its behaviour has traditionally been modelled [lo] using 
a linear first-order differen t8ial equat,ion 

dU - = cuv - ,dU. dt 

If F ( V )  is taken to be a cub ic  polynomia,l, (2.1) and (2.2) give the well known 
FiteHugh-Nagumo model [lo] of a neuron and for appropriate choices of parameters 
describe a relaxation or van der Pol oscillator [ll]. Here, F ( V )  will not be a cubic 
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but rather will be approxiimted by a piecewise linear form consisting of two positive 
resistance regions connect,ed by a negative resistance piece. This provides several 
advantages. First, a linear form provides a better description of the I-V curve of a 
real neuron than a cubic, at least asymptotically once the conductances have saturated. 
Second, the essential feature in the cubic F ( V )  of the FitzHugh-Nagumo model is its 
'NI-like shape and this is duplicated by the piecewise linear form with the negative 
resistance region. In addition, the piecewise linear F ( V )  has the great advantage 
of leading ultimately to a differeiit#ial equation which can easily be solved. To keep 
things reasonably simple, it is a.ssummed tha.t the resistance in all three linear regions 
of F ( V )  has the same magnitude, a.lt,hough this condition could easily be dropped to  
provide more flexibility at  the expense of two more parameters. 

Normally (2.1) and (2.2) are used to describe a series of action potentials, with the 
slow timescale providing and determining the interspike period. Here, these equations 
will be employed in a complet,ely different way. The variable V will correspond to  a 
mean cell potential with action spikes averaged out. Action potentials will thus be ig- 
nored, and the slow timescale will provide and determine the behaviour of plateau and 
oscillatory phenomena. Although individual action potentials will not be described by 
the model, the membrane potential V provides a continuous measure of the spiking 
rate. 

With an a.dditiona1 simplifying approximatmion, the final model can now be derived. 
There are three timescales relevant, t.0 the differential equations (2.1) and (2.2).  The 
fastest of these is the timescale associated with the turning on and off of the con- 
ductances responsible for t,he fast coiiiponent, of the membrane current. Next, is the 
capactive time constant which governs changes i n  the membrane potential given by 
(2.1).  This capacitive cha.rging time is still very short in comparison with the third 
timescale, that associated with the slow membrane current through (2 .2) .  It is there- 
fore reasonable to  treat. the ca.pa.cit#ive charging process as well as the fast current 
conductances using the instantaneous a.pproximation. This is equivalent to  ignoring 
the detailed time dependences of a.ll processes occurring on timescales of order several 
msec or less and i1istea.d considering them instantaneous. This assumption replaces 
the differential equation (2.1) with the simpler algebraic condition obtained by setting 
each side of (2.1) to zero 

F ( V )  = -1.' + I .  (2.3) 
Equation (2.2) remains unchanged. Corrections to the instantaneous approximation 
can be computed by what is k n o w n  a s  singular perturbation theory [12]. 

By rescaling the time, rephcing the current U and voltage V by appropriately 
shifted and scaled dimensionless variables U and o, and rescaling I we can rewrite the 
model as 

f ( v )  = -U + I - f3 (2.4) 
and 

d u  
dt 7- = n?J - ( 1  - N)11 (2.5) 

with f(v) given by 
2: 2 1 

'U 5 -1. 
f(v) = { :; - l < u < l  

1' + 2 
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The parameter 6 correspoiids to an offset current in the model while a provides, 
roughly speaking, a mea.sure of t.he impa.ct of the negative resistance region on the 
dynamics. Throughout, we will consider the range 

For 0 < a < f the model can display bistable behaviour rather than oscillation which 
might have interesting applicat!ions as a latching mechanism [13], but this parameter 
range is not considered here. 

Although the fast current has been specified for all w values, with certain restric- 
tions the exact form of f ( v )  for -1 < v < 1 is irrelevant to the behaviour of the 
model. This is because the model neuron will never spend any appreciable time in a 
state characterised by -1 < 0 < 1. Instead it will jump instantaneously (in a time of 
order 1 msec) between v 6 -1 and ti 2 1 .  

Note that f ( v )  has a multivalried inverse. To deal with this problem it is convenient 
to  introduce a binary variable S which denotes which branch of the function f ( v )  is 
being used 

so that  in the relevant regions '(1 5 -1 and v 2 1 the rapid component of the membrane 
current can be written as 

f ( w )  = v - 2s. (2.9) 

If the sign of S is flipped froin S = +1 to S = -1 when w hits the boundary w = 1 
of the upper branch of f ( u )  and likewise is flipped from S = -1 to S = +1 when w 
passes through -1, this formula will always give the correct expression for f ( v ) .  The 
condition (2.8) and this flipping can be implemented by requiring that  

S = sgn[S + I - 0 - U ] .  (2.10) 

It is interesting that in  this approach the binary variable S arises as a label of the two 
branches of a function with a multivalued inverse. We can now solve (2.4) for 

v = I + 2 S - O - ' U  (2.11)  

and rewrite (2.5) as 

d u, 
dt T- = -U + ( I (  I + '2s - 6 ) .  (2.12) 

Equations (2.12) and (2 .10)  and the parameters a,  6 and r define the model. Although 
it  is not directly an equation determining the dynamics of the model (2.11) is extremely 
useful since it gives the spike-averaged cell potential. As mentioned before, this can 
be used as a measure of the action pot,ential spiking rate. The behaviour of the model 
can be determined simply by performing the a,ppropriate integration of (2 .12) .  

Thus far, the model has been described using the differential equation (2 .12) .  
However, if the model is r u n  i i i  discrete time steps of 1 unit (of order 1 msec) then the 
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dynamics can be given by two mapping rules, one which keeps track of which branch 
of ~(IJ) is being used by maintaining the correct value of S 

S(t + 1) = sgn[S(t) + I ( t )  - 8 - u(t)] (2.13) 

and the other obtained by integrating (2.12) over one unit of time 

U(t + 1) = tr(t)e-l/T + a , ( I ( t )  + 2s ( t )  - e)( 1 - e-'"). (2.14) 

The variable r sets the timescale for all slow processes in the model. Clearly for r >> 1 
these discrete maps are identical to  the original differential equation. Of course, in this 
case, we could r e p h e  the exponent,ials in (2.14) by linear approximations to  them, 
but there is no real advanhge in  this. Provided that r is bigger than about 5 of the 
time step units (about 5 msec) the behaviour of the model roughly scales in time with 
r .  In the simulations shown T has been taken t o  be 50 although other values were 
tried t o  establish the appropriate scaling. 

Note that for sufficiently large currents the factor I in (2.13) will overwhelm the 
factor S - U and thus the model neuron reduces in this case to the Hopfield neuron 
of (1.7). For more moderat,e current values, however, the model exhibits a variety of 
dynamic effects reflecting the presence of the slow timescale. 

The  easiest way to visualise tlie behaviour of the model given by (2.10) and (2.12) 
is the method of isoclines shown i n  figure 1. In the uo plane we plot the curve 
U = I - B - f ( u )  given by (2.10), and tlie set of points U = a v / ( l  - a )  which make 
du/dt in (2.12) vanish. Throughout t,liis paper, when a value for the parameter a is 
needed we will use a = i, a value midway in its allowed range. This has been done 
in figure 1, and i n  addition we have ta.ken I = 8 = 0 in this figure. The dynamics 
of the model in the uw phase p lme  is such that motions affecting only o (horizontal 
motions) are rapid while any changes that modify the value of U are slow. Starting 
from an arbitrary point in  the plane, the dyna.mics will immediately (in one time step) 
move the system t o  either the right (v 2 1) or left (v  5 -1) linear branch of the curve 
U = I - B - f ( ~ )  by changing the value of v ,  leaving U frozen near its initial value. 
Once U and w lie on t8he curve ti  = I - B - f(u), they will slowly progress along it 
with both U a,nd 11 c1ia.nging tslieir values. The motion will be toward the intersection 
of this curve with the line 'ti = a:u/(l - a ) .  The timescale for this motion is T .  If 
during their motion along the curve 11 = I - B - f(v) the variables U and v arrive a t  
the point v = - 1, 71 = I - 0 - 1 t,liere will be an immediate jump to the right linear 
branch of this isocline caused by a sudden change in the value of v. A similar left jump 
will occur a t  the point v = 1, U = I - 8 + 1 when it is approached from the region 
zi > 1. Although figure 1 is dra.wn with I = 0 = 0, the effect of non-zero I or 0 can be 
visualised by moving the piecewise linear curve in figure 1 up or down by an amount 
I - 8. By performing this shift the effect of a current pulse can be det,ermined. Of 
course, when the model is on t,lie right portion of the piecewise linear curve S = $1 
and on the left S = -1. 

To describe a system of -4' cor~pled neurons we let each model neuron have its own 
parameters a ; ,  Bi a.nd T~ wit.11 i = 1 . .  . . , N and map from one time step to the next by 

(2.15) Si(t + 1) = sgn[Si(i.) + I i ( t )  - Bi - ui(t)] 

and 

u j ( t  + 1) = 7 1 ~ ( t ) e - ' ' ~ l  + a j ( l i ( t )  + 2si(t) - e,)(i - e-'iTI) (2.16) 
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Figure 1. Isoclines corresponding to the model equations for one cell. The variable 
v will change rapidly until it lies somewhere on the curve U = - f ( v ) .  Motion along 
this curve will be mudl slower and will always be toward the point where this curve 
meets the line U = 3v (for a = ;). When the corners a t  v = fl are reached v will 
suddenly change while ZI reniains fixed. This jumps the system between the left and 
right branches of the piecewise linear curve. For non-zero I or 6 the piecewise linear 
curve is shifted up  or down by an amount, I - 6. 

where, as in the Hopfield model, 

N 
Ii(t) = J i j S j ( l )  + z,'Xt( t ) .  (2.17) 

j =  1 

Once again in the limit of large couplings J i j  this model reduces to the ordinary 
Hopfield model. When we consider networks of model neurons we will take all ai 
and Bi to be the sa.me (specifically, we will take ai = $ and 0, = 0) and consider 
distributions of time constants T ~ .  Of course, dist4ributions over the variables ai and 
ei could be considered U well. 

Our goal is to analyse t,he belmviorrr of such a system and in particular its depen- 
dence on the coupling ma.trix J i j  , and t,he distribution of time constants T ~ .  However, 
before doing this we will consider the behaviour of single model cells and pairs of 
coupled cells. 

3. Single cell behaviour 

The behaviour of a. single model neuron is given by (2.13) and (2.14) which can be 
analysed with the aid of figure 1. In  the presence of a constant current (including zero 
current), the cell will remain i n  a passive state, S = -1, if 

2 u -  1 
1 - a  

I-OF-- 

It will remain in an active, firing state, S = $1, if 

2 a -  1 
1 - U  

I - e ?  - 
and it will oscillate between t<he S = $1 and S = -1 states if 

2cl- 1 'La- 1 -- < I - O < - ,  
1 - U  1 - U  
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In the case of oscilla.tion, the cell will rema,ining in the S = $1 state for a period of 
time 

1 2a + 1 - (1 - a ) ( l  - 6 )  
2a - 1 - (1 - n ) ( l -  6 )  T+ = r l n  

and in the state S = -1 for a time 

2a + 1 + (1 - a ) ( i  - e )  
2u - 1 + (1 - a ) ( [  - e )  T- = r l n  

(3.4) 

(3.5) 

These formulae indicate that the behaviour of a cell in the absence of external or 
synaptic currents can be controlled, for example, by adjusting the parameter 6.  For 
fixed values of parameters, cell behaviour can be modified by external or synaptic 
currents. In these ways the cell can be placed in a passive, active or oscillating 
state with the period and the rat,io of on ( S  = $1) to off (S = -1) times fully 
adjustable either by changing t,he parameters of the model or through external or 
synaptic currents. 

The variety of behaviours exhibited by a single model neuron is shown in figure 2 .  
In figure 2 ( a ) ,  the response of a cell which is normally passive ( a  = f and 6 = 3) to 
external current pulses I is shown. Such a passive model cell has a resting potential 

To become excited t,o the S = $1 state, the potential v must be pushed above -1 
which is possible if the niodel cell is exposed to a positive current pulse of amplitude 
A satisfying 

A > 1 - 2a + ( I  - w)e. (3.7) 

A short current pulse of this amplitude will teniporarily raise v to an excited level 
v = 4 -  (1 - a)(6 + 2 )  > 1 and the cell will remain in the S = $1 state until v goes 
down to 1 at  which point. it will ret,urn to the S = -1 state. The time for this to  
happen and thus the duration of the plat,eau can be computed directly 

40 
'piateau = 7'' I ( 2 u  - 1) + (1 - a)6 

and it can be significantly longer than the duration of the current pulse itself. This 
plateau property is demoitstrated by the first current pulse and response shown in 
figure 2( a). 

We have seen that it takes a positive current of magnitude A > 1 - 2 a +  (1 - a)6 to 
excite a normally passive cell t#o the act>ive stmatme. However, immediately after a plateau 
burst, the cell is in  a hyperpolarised state U = 1 - 6 ,  v = -3. At this time, a current 
pulse of magnitude A > 2 is required to re-excite the cell. If 6 < (2a + 1)/(1- a )  this 
current is greater than the current need to excite the cell from its resting potential 
and the model exhibits post,firing inhibition. 

The second current applied in  figure 2 ( a )  is a short negative pulse that causes a 
reduction of v but no change i n  the state S = -1 of the cell. However, a longer pulse 
applied after that induces a postinhibitory rebound. To induce a rebound from the 
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Figure 2. The behaviour of a single model cell. (a) shows the response of a cell 
to various current pulses. First a positive current pulse induces a plateau lasting 
much longer than the current pulse itself. Next a negative current pulse of short 
duration produces no lasting change in the state of the cell. However, a subsequent 
longer pulse causes a post-inhibitory rebound to another plateau. ( 6 )  shows how a 
negative constant curivnt can freeze a cell into the S = -1 state while it oscillates 
in the absence of current and freezes into the S = +1 state when a postive current 
is applied. In ( c )  various oscillatory waveforms obtained by varying the parameter B 
are illustrated. 

S = -1 state to  S = +1, the variable U must be reduced to  U < -1  - 8. This requires 
a negative current pulse of niagnit,ude A mtisfying 

In addition it takes a time 

(3.9) 

(3.10) 

for U to  be reduced to  this value. Both of the above conditions must be met for a 
pulse to  induce the rebound phenomenon. If a long pulse of sufficient magnitude A is 
applied the duration of tthe S = $1 rebound will be 

(3.11) 

Note that the more nega.t.ive tho current, pulse is (i.e. the large its magnitude A )  the 
longer the rebound plateau lasts. 

Figure 2 ( b )  shows an oscillating cell (a, = 4 and 8 = 0) in the presence of three 
constant currents. First,, a iiegat'ive current freezes the model cell into the S = -1 
state. Then, under zero current the cell oscillates, and finally with a positive I the 
cell is held in the S = $1 sta.te. This property allows other cells to  modulate the 
behaviour of the model cell t,lirough synaptic couplings. In figure 2( c) various oscilla- 
tory waveforms obtained by varying 0 wit,h I = 0 are shown. The oscillation may be 
symmetric or either predominantly S = +1 or predominantly S = -1. This variety of 
behaviours could a.lso be induced by non-zero external currents which, up to  a sign, 
have the same effect ns a. shift i n  t,he value of the parameter 8. All of the results related 
to  figure 2 can be obtained analytically from the model equations. The  simulation 
used to  generate this figure is just, a. realisatmion of the iterations (2.13) and (2.14). 
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4. Two coupled cells 

Before considering a network of cells, two interesting behaviours displayed by a pair 
of coupled model cells will be illustrrated. A coupled pair of identical van der Pol 
oscillators has been considered in  the original differential equation form elsewhere 
[14]. Here, I will concentmtc on two cases for which one or both of the cells is not an 
intrinsic oscillator. 

Consider first a pair of passive cells coupled by mutually inhibitory couplings, an 
arrangement known as a half-centred oscillator. If the coupling is strong enough so 
that the bound (3 .9)  is satisfied by the inhibitory synaptic current, and if the duration 
of the induced rebound plat,eau in one cell (3.11) is longer than the length of the pulse 
(3.10) needed to induce post,-inhibitory rebound in the other cell, sustained oscillations 
can be realised, This is shown in  figure 3 ( a ) .  The oscillations are started by placing 
one cell in the excited S = $1 state and the other in the passive S = -1 state. 
When the S = +1 plateau of the excited cell terminates, the release from inhibition 
causes the second cell t,o jump to the S = $1 state until its plateau terminates. 
The process contiiiues like this indefiiiitely despite the fact that neither cell has any 
intrinsic oscillatory properties, iior are any positive synaptic currents present which 
could induce oscillation in either cell separately. 

"1 

"2 

t 
I b )  

"2 m 
f 

(cl 

Figure 3. The behaviour of two coupled model cells. In ( a )  two normally silent 
cells are coupled with  mutual inhibition. Starting with one cell in the S = +1 state, 
the plateau behaviour and postinhibitory rebound produce stable oscillations. ( b )  
and ( c )  show an oscillatory cell coupled with inhibitory coupling to a tonically active 
cell with a very slow time constant. In this case, the slow cell acts as a fixed-phase 
follower, firing at a fixed pliase angle during the cycle of the oscillator independent of 
the oscillatory frequency. This is shown for two frequencies in ( b )  and ( c )  where the 
frequency of the oscillator has been adjusted without changing any of the parameteis 
governing the follower cell. 

A second interesting example OCCUYS when ail oscillatory cell interacts with another 
cell which would remain continually 111 the state S = $1 in the absence of coupling. 
The only interaction between the two cells is an inhibitory synaptic coupling from 
the oscillator to  the tonically active cell. For simplicity we assume that the oscillator 
produces a short burst of activity during its cycle. In addition, the intrinsic time 
constant of the active, non-oscillatory cell is taken to be much longer than the period 
of the oscillator. In this case the slow, active cell will act as a fixed-phase follower. 

The activity of this pair of cells is shown i n  figure 3 ( b )  and 3 ( c ) .  Let us begin 
the analysis of the situation a t  the time during the cycle when cell 2 (the follower or 
non-oscillatory cell) first goes to the active S = +1 state. At this moment U = -1 - 6 
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for the follower cell. The variable 71 will grow from this value until the active period 
is terminated by the inhibitory pulse from the oscillator, cell 1. If this active state 
lasted for a time to,, then at, this point U will be given by 

uf = -(I  + O)e-*oJr + a(2  - e) ( i  - e-*0JT) (4.1) 

where a ,  6' and T refer to the parameters of the follower (those of the oscillator will 
not enter the discussion). When cell two is in the S = -1 state, U decreases from this 
value until it reaches -1 - O and the follower becomes excited again completing one 
cycle. This re-excita.tioii will take a time 

71,f + a(2  + 0) 
- 1 - 6 '  

If, as we have assumed, r >> to,, a.nd T >> to, we can expand these expressions to 
get a simple relation between L O R  anti t,,,, namely 

2a + 1 + (1 - u)B 
2u - 1 - (1  - u)B ) t o n ,  toff = ( 

The phase during the cycle when cell 2 begins to fire is given by 

t o f f  - 2a. + 1 + (1 - a)O - 
4 a, o =  

t o ,  + ton 

(4.3) 

(4.4) 

The key feature of t,liis result is t1ia.t it depends only on the parameters associated 
with the follower cell and in  particula,r is independent of the frequency and waveform 
of the oscilla.tory pa.cemaker. This means tha,t' the firing of the slow follower cell will 
follow that of the fast pacema.ker wi th  a time delay which varies in precisely the right 
way to maintain a. constant. phase difference no matter what the frequency of the cycle 
is. 

The fixed-phase of the follower can be seen by comparing figure 3( b)  with figure 3( c) 
where the behaviour of t8he two cells is shown for two different cycle frequencies. 
These figures have been ohtained by changing the behaviour of the oscillator without 
adjusting the pa.ramet,ers of t,he follower cell in  any way. The fixed-phase behaviour of 
the follower is an automat.ic dynamical adjustment. This feature provides an extremely 
valuable tool for const8ructsing net,work generators which can produce a fixed pattern 
of activity over a. wide ra.nge of frequency. For exa.mple, a chain of such follower cells 
driven at  one end by a,n oscillator can  provide a travelling wave with fixed phase shift 
per segment over a wide range of driving frequencies. However, it should be noted 
that the oscillator follower arrangement, is only stable for 

Thus, for the fixed phase follower to work we must require 

2a+ 1 1 -- < e < - - .  
l - a  1 - a. 

The bound of f on the fixed phase 4 is true for any follower like the one being 
discussed which has the property t1ia.t the time spent in the silent state during one 
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cycle is proportiona,l to the time spend firing in the previous cycle. If we number the 
cycles using the label 11 then 

where for the present case 

2a + 1 + (1 - a)e 
2a - 1 - (1 - a)e  

a =  

(4.7) 

and the fixed phase a.ngle is 

(4.9) 
2a, + 1 + (1 - toff - - - - - 

4a d =  
toff + to,, 1 + a 

To solve the recursion relation (4.7) we note that toff +to, is just the total period of 
the driving oscillator T .  The fixed-point. solution of (4.7) is then 

The stability 

and 

of this fixed point ca.n be tested by writing 

m 

(4.10) 

(4.11) 

(4.12) 

Then (4.7) turns int,o a simple recursion rela,tion for 6,, 

6, = -a6,-1. (4.13) 

This shows immediately t81iat the fixed-point solution is only stable for or < 1 or, 
equivalently, 4 < f. 

5. Response of a single cell to an oscillating current 

In the next section we will consider the phase locking of a large system of coupled 
model oscillators. We will find that for certa.in parameter ranges synchronous phase 
locking occurs wit8h t,he ent,ire network of oscilla.t,ors acting in unison. The effect of this 
on any one oscillator of the nettwork is tto produce a synaptic current which is a square 
wave. Therefore, a mean-field approximation for the behaviour of a set of coupled 
oscillators is provided by studying a single oscillator being driven by an external 
square-wave current. Driven van der Pol oscillators have been treated previously [15] 
and our results are similar to these numeric results, but for this simplified model we 
will obtain analytic conditions for the phase locking of the driven cell which can be 
used as the basis of a mean-field description of the oscillatory network. 
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Consider a single oscillator described by (2.13) and (2.14) where for simplicity 
we will take B = 0 corresponding to a symmetric intrinsic oscillator. We drive this 
oscillator with an  external current, consisting of a square wave oscillating between 
I = f A  with a period T. Figure 4 shows a plot of the variable U of the driven cell 
measured at integer multiples of the driving period for a wide range of driving periods. 
For this plot the amplitude of the driving current was taken to  be  A = 0.25 and at 
each value of T the cell was r u n  for 50 cycles to relax the oscillator and then 100 
points were plotted. Shown in t,he figure are regions of chaotic behaviour, various 
cycles and a window of phase locking around T = To where To is the intrinsic period 
of the  oscillator. I t  is this phase-locking window which will be of interest for network 
application. 

T h e  boundaries of the phase-locking window can be calculated analytically. For a 
driving force faster than the natural period of the oscillator, 

To = 27111 [;:: - :] 
the  critical condition is that PL must go from the value A - 1 to the value 1 - A during 
the time tha t  the  current takes tthe value I = A ,  a time T/2 .  When driven slower 
than its natural period, the oscillator must go from U = -1 - A to U = 1 - A while 
the current has the value I = - A  a.nd then go from U = 1 - A to U = 1 + A while 
the current is I = A all in one half the driving period, T/2.  From this we find tha t  
phase-locking will occur in the ra.nge 

'I [ (1 - a 2 ) A 2  + 6aA + 4a2 - < T < 27 In 1 ( 2 a  - 1)2 - ( U  - 1)2A2 
2~ + 1 - (1 - u ) A  
2 a - l + ( l + u , ) A  2 r l n  [ 

In the region indicated by the stceply falling curve in figure 4 ,  the driven cell follows the  
driving current but is not synchronous with i t .  The  critical condition for synchronous 
phase locking when the oscillator is driven more slowly than its natural period, is t ha t  
it must go from PL = -1 - A to zi = 1 + A while I = A in a time T/2 .  Therefore, 
synchronous phase-locking occurs only in the more restricted region 

(5.3) 

a basis for 

2a + 1 + (1 + a)A ] < T < 2 ~ 1 n [  2~ - 1 - (1 - u ) A  
2a + 1 - ( 1  - a ) A  
2 a - - l $ ( l + a ) . 4  

2 r l n  [ 
These results are summarised i n  figure 5 (for U = 9)  which will provide 

the analysis of a network of oscillators. The  lower bound for locking goes to zero at a 
current magnitude A = 1 because for this value the cell can remain a t  the fixed value 
U = 0 while v jumps  back and forth regardless of how fast the driving current oscillates. 
The  upper bound for phase locking goes to infinity when A = (2a  - 1)/( 1 - a )  which is 
the point at which the cell will follow the current no matter how slow it goes because 
intrinsic oscillation has been ha1 ted by the imposed current. 

6 .  A network of oscillators 

Phase locking is a well known phenomenon [16] exhibited by systems of coupled os- 
cillators so it should be no surprise that a network of model oscillators can display 
this effect. Wha t  is exceptional about the present model is tha t  phase locking can be 
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Figure 4. A single niodel cell driven by an external square wave. The slow current 
U has been plot.ted at integer multiples nT of the driving period T for n = 50. .  .150. 
To is the intrinsic period of the cell. A region of phase locking in the neighbourhood 
of T = To can be seen. For this figure the amplitude of the driving square wave was 
0.25 and B = 0 with a = $ .  
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Figure 5 .  The behaviour of a driven model cell. T is the driving period, To the 
intrinsic period of the oscillatory cell and A the amplitude of the driving square wave. 
Bebween t.he full curves synchronous phase locking occurs. Inside the broken line is 
a region where the cell locks but is out of phase with the driving current. Outside 
these lines no phase locking occurs. 

treated analytically (although fairly crudely) even for strong coupling while keeping 
the full nonlinearity of the unclerlyiiig oscillators intact. After treating the problem 
in mean-field theory we will compare the results with those that are obtained using a 
phase-coupling approximation for the network of oscillators. 

We will consider a t  first a uniform coupling of N oscillators described by (2.15),  
(2.16) and (2.17) with the coupling matrix 

When the network is in the stsatme Si = $1 (for all i) each cell receives a synaptic 
current Ii = A while in the stat8e Si = -1  the synaptic current is li = -A.  For 
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the individual oscillators we will t,ake ai = 4, Oi = 0, but the time constants T~ will 
be chosen randomly over a specified range. Since all the network cells are intrinsic 
oscillators we can equivalentsly choose their natural periods randomly and uniformly 
over a range 

We can cha.ra.cterise the behaviour of such a network using the alignment of the 
state Si at time t 

. N  

to  characterise the system. We denot8e time averages by angle brackets. For example, 
(m) is the value of m ( l )  averaged over a long period of time starting after the system 
has relaxed. Three types of behaviour are observed. For small coupling A ,  the cells all 
oscillate independently so (in) = (1.') = 0. For larger coupling the oscillators phase 
lock and the whole netrwork oscillates between the states Si = +1 and S, = -1. In this 
case, the average value of ??I is zero, since the system oscillates symmetrically between 
m = $1 and m = -1. Phase locking is signalled by a non-zero value of ( m 2 )  so that 
(m) = 0 while (in2) # 0. Finally, [or '4 2 2, the model neuron becomes equivalent to 
a Hopfield neuron and the model just described goes over to the infinite range Ising 
model. At the point A = 2 ,  there is a sudden transition from a state characterised by 
(m) = 0 and (d) = 1 to a state with (m) = f l  and (m2)  = 1 and the phase-locked 
oscillating state turns into a frozen, aligned ferromagnetic state. 

When phase-locking occurs, all sites i make the transition S --+ -S at virtually 
the same moment. Thus, the synaptic input to each cell looks like a square wave of 
amplitude A .  The mean-field approximation consists of demanding that each individ- 
ual cell be capable of phase-locking with this square wave input. For this situation, we 
are only interested in the syuchronous phase locking region. We will assume that the 
lower limit of (5.3) for T,,,,,, and the upper limit for Tm,, can be used to determine the 
ratio of the maximum to minimum periods allowed. We find that for a given coupling 
strength A ,  locking should occur if 

(10 + 7A)(10 - A )  
( 2  - A)(2  + 7.4) 

L a x  - Tmin 5 ill [ ( 10 + 7 A ) ( 2  + 7 A )  
Tmax + Tmin ( 2  - .4)( 10 - ' 3 )  (6.4) 

To keep this equa.t,ion ma.nagea.hle the value a = $ has  been substituted in. This 
mean-field result is quite crude i n  t!liat, it does not depend on the exact form of the 
probability distribut,ion governing individual oscillator frequencies. Instead i t  only 
depend on the boundaries of t,liis dist,ribution. We expect that effects of different 
distributions oiily inodify our results hy a factor of order one, at  least for distributions 
with definite boundaries. 

The result (6.4) has the great, advant,a.ge of being applicable even for large differ- 
ences in intrinsic periods, (T,,,,, - Tmin)/(Tma, + Tmin) near one, and strong coupling, 
A of order one. For a given ratio (T,,,,, - Tnlin)/(Tm,, -k Tmi,,) we define the critical 
value of A as the miniinum va.lue which allows for phase-locking. The value of this A ,  
from (6.4) is plotted aga.inst (T,,, - Tn,in)/(Tn,ax + Tmin) in figure 6.  Also shown in 
this figure is data taken from computer siinulation of the model with both N = 50 and 
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N = 100. The simulation was done by starting the system in the state S, = 7 with U ,  

chosen randomly between -1 and +l.  For given values of T,,, and T,,, the individ- 
ual time constants 7% were chosen randomly and uniformly in the appropriate range. 
After an initial relaxation period, m(l) was computed at  each time step, squared and 
averaged over many subsequent time steps. The simulation was repeated using several 
different random choices of intrinsic periods and starting U values. From theee results 
the critical value of A was determined by defining the transition to  a phaie-locked 
state as occurring somewhere in  the range between (m2) of 0.4 and 0.6. The data 
shown in figure 6 indicate escellent agreement with the mean-field result for this case. 

AC 

1.0 

0.6 

0.2 

0 0 

T m o x  - T m i n  / T m a x +  Tmin 

Figure 6. The predicted critical coupling .4, for a network of oscillators as a function 
of the range o f  intrillsic oscillator periods. The predicted curve is obtained from 
results on a single driven cell. The data points are from repeated simulations with 
networks of 50 a n d  100 cells. 

A common method for analysing systems of oscillators is the phase-coupling ap- 
proximation [lG, 171. This consists of describing each oscillator in terms of a phase 
variable Q i ( t )  which changes by 27r during the course of an oscillatory cycle. The phase 
is defined so that it evolves linearly with time, d i ( t )  = q5i(0) + w i t  in the absence of 
coupling. The coupling is then modelled by an effective interaction involving only the 
difference in the phases of the coupled oscillators. Since the ferromagnetic coupling we 
have used thus fa.r tends to bring two coupled oscillators into phase with each other, 
we write the coupled system as 

The coupling parameter ,i is a renormalised effective coupling strength. It is pre- 
sumably proportional to .4, a.t least for small coupling. On dimensional grounds we 
take 

(6 .6 )  
A A m  

TI,,, + T,,,,, ' 
Note that the phase-coupling inorlcl is quitfe different in  structure from the original 
model. In fact for many purposes i t  does not provide an adequate description. How- 
ever, in certain cases it, may give some reliable results [17]. 
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The  system of phase equations (G.5) has been considered in great detail 1161. For 
this system the critical coupling strength for phase locking is given by 

The constant of proportionality can be computed but will not be need for our pur- 
poses, Instea.d, this const.a.nt, a,nd t,he unknown constant in (6.6) can be determined 
by comparing this result wit,li t.lie value of A,  given by figure 6. A good fit for small 
couplings is given by 

This result agrees with the mean-field result when TmaX and T,,, are close to each 
other and A, is small. However, as (T,,,, - T,,,,,)/(TmaX + T,,,) - 1 the phase- 
coupling approximation predicts A ,  -t 00 when in fact A,  -+ 1 in this limit. This 
is because the phase-coupling model does not contain any information about the fact 
that  these oscillators can h e  frozen by large enough currents. Nevertheless, up to 
about (T,,, - Tml,,)/(Tmax t T,,,,,) = 0.5 the phase-coupling result is quite accurate. 
In this region the difference between the phase-coupling and mean field results is a t  
most about 10%. Actually, if a simple analytic expression for the curve in figure 6 is 
desired the result 

provides a much better fit,. 

7. An oscillator associative inenlory 

When Bd = 0,  the cell model g i w i  by (2.13), (2.14) a.nd (2.17) has a loca,l invariance 

for an arbitrary pattern ti = kl .  Because of this, we could have evaluated phase 
locking of the state Si = &ti using the coupling matrix 

(7.2) 

in the last sectmion and we would have obtained identical results. This raises the 
possibility of phase locking int,o one of a. number of different target patterns Ef = kl  
for p = 1 , .  . . , P .  The easiest wa.y tso do this is to use the Hebb matrix [18] 
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It has been shown that for tlie Hopfield model, an initial state near S, = E r  for some 
p value will reach a final state with overlap 

(7.4) 
i=l  

very near 1 provided that P < 0.14N [19]. Here something very similar happens. 
Figure 7 ( a )  shows the time dependent value of m with chosen randomly from 
P = 10 memory patterns in a n  AT = 100 network (a = P/N = 0.1). In this case 
the initial state was chosen to be Si = with the initial ui chosen randomly. The 
random, uniformly distributed range of natural frequencies for the oscillators was  
(T,,, - T,,n)/(Tmax + T,,,,) = 1/2 and the coupling strength was take to be A = 1. 
As can be seen, nz oscillates between +1 and -1 indicating phase locking onto this 
memory pattern. The network is similarly able to phase lock onto any one of the ten 
stored patterns. On the other hand if the memory is overloaded as in figure 7( a) where 
P = 20 patterns have been encoded into a Hebb matrix for N = 100, no memory phase 
locking is evident. 

m :+ 1 

m O  

-1 -1 
0 1 2 3 0 1 2 3 

t t 
la1 ( b l  

Figure 7. The overlap nz of an oscillatory associative memory with one of the stored 
memory patterns as a fnnction of time. In ( a )  10 patterns are stored in a 100 x 100 
HebL matrix and memory recovery is indicated by phase locking. When storage of 
20 patterns is attempted, no phase locking occurs ( b ) .  

The storage ca.pa.city of such a phase-locking memory with Hebbian coupling is 
investigated in figure 8 for ,'V = 100, (T,,,, - Tn,in)/(T,ax + Tmin) = 1/2 and A = 1. 
We see that the storage capacit.y is approximately the same as that of the Hopfield 
model although some degradat.ion of t,he recover is seen near P = 10. These data 
points represent the a,veyage of miwy runs wi th  different random choices of memory 
patterns. Detailed esamination reveals large fluctuations in  performance for the region 
near P = 10 depending on the random choice of pa.tterns. 

There is clearly a minimum value of the coupling strength needed to obtain phase 
locking with a given number of stored memories as can be seen from figure 9. In 
addition, there is a masiinum value of the coupling beyond which there is a transition 
to fixed-point rat,her than oscillat,ory behaviour. Both the minimum and maximum 
values can be estimated from t,lie results of the last section and a knowledge of the 
properties of the synaptic cur ren t .  For phase locking to occur without fixed point 
behaviour we must have 

N 
2a , -  1 
1 - U  

A,  < J i jEf 'E f '  < -. 
j =  1 

(7 .5)  
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Figure 8. The t h e  average of the square of the overlap with one memory pattern 
as a function of the number of pat,terns stored in an N = 100 network. The storage 
capacity is essent,ially the same a5 for a Hopfield network. 

The  critical coupling A, is detreriniiied for given a, T,,, and Tmin by setting the upper 
and lower bounds of (5 .3)  t,o ?;,,,, aiicl Tnin respectively. For a = 5 ,  A,  is given by 
figure 6 or approximately by (6.9).  Let, u s  write the normalisation of the coupling 
matrix as 

and define 

Then, the condition for pha,se lockiiig on the memory pattern (f can be written as 

The reason for writ.ing t4he condition (7 .8)  for phase locking in this form is that  
a great deal is known a.bout t,he distribution of yr values for particular forms of the 
coupling matrix. For example, a slight generalisation of the Hebb matrix (7 .3)  

P 

has the and a 7: dist,ribution which is Gaussian with unit width 
for the Hebb matrix we can substitute y/' = 
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Figure 9. The time average of the square of the overlap for one memory state in a 
100 node net.work storing 10 patterns. A is the magnitude of the coupling matrix. A 
value of A > 1 is needed for memory recall. 

in (7.8) to determine the condition on the Ai required for phase locking with 
oscillation. 

Another commonly used form of the coupling matrix is the pseudoinverse [20] 

where 

. N  

For the pseudoinverse ma.tris the $' values are 

(7.10) 

(7.11) 

(7.12) 

Substituting this into ( i . 8 )  gives t,lie phase locking oscillation condition for the pseu- 
doinverse mahis .  The capacity of the oscillator memory is limited to P < N just as 
in the non-oscillatory case. 

Finally there is a well known class of coupling matrices satisfying [21, 221 

7; > t i .  (7.13) 

These have a masiirium stora.ge ca.pa,city given by [22] 

(7.14) 
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Near this memory satura.tion point, the values of 7; accumulate near 7; = n so in this 
case, phase locking will occur when (7.8) is satisfied with 7; = IC. 

The oscillatory associative ineinory can also be analysed using the phase-coupling 
approximation introduced in the last section. In this formalism the set of N oscillators 
is described N phase angles obeying the set of equations 

(7.15) 

where jij is a renorinalised coupling matrix and is assumed to be proportional to 
J,, . The intrinsic frequencies wi are chosen from some probability distribution to be 
specified. For memory recovery we look for solutions of the form 

7T 
4% = Ji + $: + E ,  (7.16) 

with -n/2 < E < n / 2 .  The pattern (r = f l  which is one of the P patterns encoded 
in the coupling matris j l, now appears as a measure of the phase of a particular 
oscillator. Note that 

sin[dj - 4i] x sin[cj - E ; ] .  (7.17) 

Then, from (7.15) we find 

(7.18) 

This set of equations is currently heing analysed. Although the phase-coupled model 
has some features in coninion wit.11 t.he model discussed in this paper and displays 
interesting dynamics, the above equations do not appear to provide an adequate de- 
scription of the behaviour of the fu l l  model. 

8. Discussion 

Some of the behaviours seen i n  the network of oscillators we have been discussing are 
shown in figure 10. In  figure l O ( o )  an uncoupled set of 50 oscillators with a variety 
of intrillsic frequencies is shown oscilla.tiiig i n  a completely incoherent pattern. In 
figure 10( b )  a coupling inathis which st,ores the pattern ti = $1 has been applied and 
we see that phase locked oscillat,ions bettween this pa.ttern and its inverse occur. By 
adjusting the coupling s1,rengt.h a,t. iiitlivitlual sites it is possible to get a subset of the 
oscillators to phase lock a.ncl oscilla,te hetween a given pattern and its inverse while 
freezing other sit,es in  a fixed stat,e. By doing this, we can get the network to oscillate 
coherently between a.ny t,wo patterns which are not necessarily inverses of each other 
as shown in figure 10(c). 

In order to account in  a more quantitative way for a variety of cell behaviours, 
more flexibility can be built. int'o t'lie model we have discussed in several ways. First 
the timescale T can be macle state dcpendent 
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Figure 10. Three behaviours in a network of oscillators. Along the vertical axis 
time runs downward. The horizontal axis shows the t value of the cell being plotted. 
Black denotes the state S = +1 and white the state S = -1. The oscillators in (4) 
are uncoupled and oscillate incoherently. In ( b )  a coupling matrix storing the pattern er = 1 with sufficient strength induces phase locking. With a different form for the 
coupling rnatris, the network can oscillate coherently between any two pettems as 
shown in ( c ) .  

so tha t  the excited a i d  silent, state can be characterised by different intriiisic 
timescales. This has proven especially useful for constructing model pattern gen- 
erators [23]. A t8remendous va.riet.y of beha,viours can be obtained by using different 
forms for the fast current f ( v ) .  In biological cells, the excited state voltage region is 
usually characterised by a lower resistance than what is measured at lower voltages. 
More complicated shapes for f( U )  can give rise to delayed responses and more gradual 
changes of oscillat,or frequency wi t  Ii applied current,. 

I t  is clear t8hat the slow t8imescale features discussed here play a vital role in central 
pattern generators [5]. Oscilla.t,ory and plateau cells are essential elements in  biolog- 
ical central pattern generat,ors and t,liey cannot be replaced by simple instantaneous 
binary cells in any model wliic.li hopes to be a t  all realisitic. On the other hand, the 
model discussed here is ideally suited for siinulations of the behaviour and dynamics 
of central pattern generat,ors [ 2 3 ] .  The fixed-pha.se follower analysed in the section on 
two coupled cells is a pa.rt,icularly valua,ble tool for generating fixed patterns over a 
wide range of frequencies. 

There are many indica.t.ions that oscillatory behaviour is an  important element in 
the activit,y of the brain [24] and even some indica.tion that phase locking may play a 
role in visual processing [25]. It has been suggested [25, 261 tha t  phase locking might 
be a way of correlat,ing pat,t.crii recognittion i n  different areas so tha t ,  for example, 
related ima.ges i n  different, part,s of t,he visual field ca.n be grouped together. Some 
models of these heha.viours have recent,ly a.ppeared [27]. 

The  behaviour demonst.ratet1 here for a network of oscillators is associative memory 
through phase locking. The  perforniance of the network for this task is very similar 
to tha t  exhibited by Hopfield-type models although memory recognition is signalled 
by oscillatory rat,her tlian fixed-point, behaviour. It, is natural to ask what possible 
benefits might a.rise from using a.n oscillat,or network for phase-locking memory recall 
instead of the more convent,ional fixed-point a,ttrnctor networks. One answer concerns 
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learning. In all network associative memories, the coupling matrix must be given a 
specific set of values corresponding t,o the memory patterns to be recalled. This is 
usually done using a learning procedure which modifies the coupling matrix while the 
network is placed in a learning mode of operation. The nature of this learning mode 
is mysterious, but in convent,ional net,work associative memories it is essential that it 
be separate and distinct, from t,he normal opera.tion of the memory. Otherwise, the 
network would continually be modifying its couplings in response to normal network 
activity even if the desired patt8erns were already learned correctly. 

The oscillatory netswork memory offers a clear way of defining and initiated the 
learning mode of operatmion. Suppose t,liat synaptic couplings are only plastic over a 
fairly long timescale. In other words, before the Hebb rule [18] or some other learning 
algorithm [4] can actmually modify t,he syimptic strength, the pre- and postsynaptic 
cells must remain in given s t aks  of activit,y for a time period longer than the typical 
oscillation time of the net8work. In this case, no synaptic modification will take place 
during the normal memory recovery opera,tion of the network. However, a learning 
mode could be inititiated by insuring that an input to be learned was presented for a 
time longer than the typical oscillat~ory period so t8hat synaptic modification begins and 
conventional learning t,akes place. This could be a.ccomplished by using the latching 
mode when 0 < U < $ for t.he model ceiis [13]. Learning is initiated by adjusting a 
into this range. Thus, we see that. t,he oscillator network naturally has two modes of 
operation. Signals present,ed while t,he network is in its operating mode ( f  < a < 1) 
cause associative r e d l  of st,ored pat,terns through phase locking. While the network 
oscillates during its normal mode of operation no learning takes place. However, 
signals presented for prolonged periods due t,o cell latching when the network is in the 
learning mode (0 < a < i)  will init,ia.t,e synaptic modification. 
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