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We analyze neuron models in which the maximal conductances of 
membrane currents are slowly varying dynamic variables regulated by 
the intracellular calcium concentration. These models allow us to study 
possible activity-dependent effects arising from processes that main- 
tain and modify membrane channels in real neurons. Regulated model 
neurons maintain a constant average level of activity over a wide range 
of conditions by appropriately adjusting their conductances. The in- 
tracellular calcium concentration acts as a feedback element linking 
maximal conductances to electrical activity. The resulting plasticity of 
intrinsic characteristics has important implications for network behav- 
ior. We first study a simple two-conductance model, then introduce 
techniques that allow us to analyze dynamic regulation with an ar- 
bitrary number of conductances, and finally illustrate this method by 
studying a seven-conductance model. We conclude with an analysis of 
spontaneous differentiation of identical model neurons in a two-cell 
network. 

1 Introduction 

Mathematical models based on the Hodgkin-Huxley approach (Hodgkin 
and Huxley 1952) describe active neuronal conductances quite accurately 
over time scales ranging from milliseconds to several seconds. Model 
neurons constructed from these descriptions (see for example Koch and 
Segev 1989) exhibit a wide variety of behaviors similar to those found 
in real neurons including tonic spiking, plateau potentials and periodic 
bursting. However, neuronal conductances can change over longer time 
scales through additional processes not modeled by the Hodgkin-Huxley 
equations. These include modification of channel structure and/or den- 
sity through biochemical pathways involving protein phosphorylation 
(Kaczmarek 1987; Chad and Eckert 1986; Kaczmarek and Levitan 1987) 
and gene expression (Morgan and Curran 1991; Sheng and Greenberg 
1990; Smeyne et al. 1992). These processes can be activity dependent. For 
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example, when rat myenteric neurons are chronically depolarized they 
show decreased calcium currents (Franklin et al. 1992). Electrical activity 
can induce the expression of immediateearly genes like fos over a period 
of about 15 min (Morgan and Curran 1991; Sheng and Greenberg 1990; 
Smeyne et al. 1992) and expression of the immediate-early gene ras has 
been associated with an increased potassium conductance (Hemmick et 
al. 1992). From these studies it is clear that the biochemical processes that 
affect membrane conductances act on many different time scales. Rela- 
tively fast effects, such as the voltage and calcium dependence of channel 
conductances, are included in the usual Hodgkin-Huxley descriptions. 
However, activity-dependent modifications of membrane currents due to 
slower and less direct processes are not. 

Unfortunately, there is not enough information available at the present 
time to build a detailed model of the biochemical processes producing 
slow modification or, as we will call it, regulation of membrane conduc- 
tances. However, we feel that it is not too early to try to assess what 
impact such a process might have on the behavior of neurons and neural 
networks. To do this we have constructed a simple phenomenologi- 
cal model with slowly varying, dynamically regulated conductances and 
studied its behavior using computer simulation (LeMasson et al. 1992). 
The model reveals several interesting features: 

0 Starting from a wide variety of initial conductances, the model neu- 
rons can automatically develop the currents needed to produce a 
particular pattern of electrical activity. 

0 Slow regulatory processes can significantly enhance the stability of 
the model neuron to environmental perturbations such as changes 
in the extracellular ion concentrations. 

0 The intrinsic properties of model neurons are modified by sustained 
external currents or synaptic inputs. 

0 In simple networks, model neurons can spontaneously differentiate 
developing different intrinsic properties and playing different roles 
in the network. 

These features have obvious implications for the development and plas- 
ticity of neuronal circuits. Our previous work (LeMasson et al. 1992) 
relied solely on computer simulation involving a fairly complex neu- 
ronal model. In this paper we devise a general procedure for analyzing 
the process of dynamic regulation. We will examine the properties listed 
above in detail both for a simple neuron model and for the more complex 
model considered previously. 
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2 A Model of Dynamic Regulation 

We consider a single compartment, conductance-based neuron model 
with the membrane potential V determined by the basic equation 

(2.1) 

C is the membrane capacitance and Ii are the membrane currents, which 
are written in the form (Hodgkin and Huxley 1952; see Koch and Segev 
1989) 

(2.2) 

where Ei is the equilibrium potential corresponding to the particular ion 
producing the ith current, pi and qi are integers, and gi is the maximal 
conductance for the current i. The dynamic variables mi and hi are deter- 
mined by first-order, differential equations linear in mi and h; but with 
nonlinear voltage-dependent coefficients, 

I. , - - g,mfh?(V - - Ei) 

and 

These equations describe the voltage-dependent characteristics of the 
conductance. Calcium dependent properties can be included by allowing 
a and p to depend on the intracellular calcium concentration as well as 
on the voltage. 

In conventional Hodgkin-Huxley type models, the maximal conduc- 
tances gi are fixed constants. However, these are likely candidates for the 
slow modulation that we refer to as dynamic regulation. This is because 
the maximal conductance of a given current is the product of the conduc- 
tance of an individual membrane channel times the density of channels 
in the membrane. Any slow process that alters the conductance proper- 
ties of the channel or adds or removes channels from the membrane will 
affect gi. These slow, regulatory processes can be included in the model 
by making the maximal conductances dynamic variables instead of fixed 
parameters (LeMasson et al. 1992). Regulatory mechanisms could also, in 
principle, mod* the kinetics of channel activation and inactivation, but 
we will not consider this possibility here. 

To construct a model with dynamic regulation, we need to describe 
a mechanism by which the activity of a neuron can affect the maximal 
conductances of its membrane currents. Numerous possibilities exist in- 
cluding modified rates of channel gene expression, structural modifica- 
tions of the channels either before or after insertion into the membrane, 



826 L. F. Abbott and Gwendal LeMasson 

and changes in the rates of insertion or degradation of channels. These 
(and many other) processes often depend on the intracellular calcium 
concentration (Kennedy 1989; Rasmussen and Barrett 1984; Sheng and 
Greenberg 1990; Murphy et al. 1991). For example, activity-dependent 
expression of immediate early genes has been linked to an elevation in 
calcium levels due to influx through voltage-dependent calcium channels 
(Murphy et al. 1991) and calcium is implicated in many other examples 
of slow, activity-dependent modulation (Kennedy 1989; Rasmussen and 
Barrett 1984; Sheng and Greenberg 1990). In addition, the intracellular 
calcium concentration is highly correlated with the electrical activity of 
the neuron (Ross 1989; LeMasson et al. 1992). For these reasons, we use 
the intracellular calcium concentration as the feedback element linking 
activity to maximal conductance strengths (LeMasson et al. 1992). 

Since the maximal conductances gi depend on both the number and 
properties of the membrane channels, their values will be affected by the 
processes outlined above. If these processes are regulated by calcium the 
values of the maximal conductances will also depend on the intracellular 
calcium concentration. We will assume that the kinetics is first-order 
and that both the equilibrium values of the maximal conductances and 
the rate at which they approach the equilibrium value may be calcium 
dependent. As a result, the behavior of the maximal conductances g, is 
described by the equations 

(2.5) 

where [Ca] is the intracellular calcium concentration. At fixed intracellu- 
lar calcium concentration [Ca], the maximal conductance g, will approach 
the asymptotic value Fi[Ca] over a time of order q[Ca]. If the calcium 
concentration changes the maximal conductances will also change their 
values. This regulation is a slow process occurring over a time ranging 
from several minutes to hours. This time scale distinguishes the calcium 
regulation of equation 2.5 from the more familiar and rapid calcium de- 
pendence of currents like the calcium-dependent potassium current. 

The full neuron model with dynamic regulation of conductances is 
described by equations 2.1-2.5 and an equation for the intracellular cal- 
cium concentration [Ca]. For the model to work, it is crucial that one 
of the membrane currents Z, = Zca be a voltage-dependent calcium cur- 
rent because this is what links the intracellular calcium concentration to 
activity. We will assume that entry through voltage-dependent calcium 
channels is the only source of intracellular calcium and will not consider 
release from intracellular stores. Calcium is removed by processes that 
result in an exponential decay of [Ca]. Thus, [Ca] is described by the 
equation 
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The constant A depends on the ratio of surface area to volume for the 
cell. We typically use a value between 1/(100 msec) and l/sec for the 
constant k controlling the rate of calcium buffering. 

To complete the model we must specify the functions ~i([Ca]) and 
Fi( [Ca]) appearing in equation 2.5. As in our previous work (LeMasson 
et al. 1992) we are guided in the choice of these functions by consid- 
erations of simplicity and stability. We are primarily interested in the 
equilibrium behavior of the regulated model. Because of this, we can 
simpllfy equation 2.5 by setting all the time constants equal and making 
them calcium-independent, 

Ti( [ca]) = 7 (2.7) 

where T is a constant independent of [Ca]. This simplification has no 
effect on the equilibrium behavior of the model. In our simulations, we 
have taken the time constant T to vary from 1 to 50 sec. We expect 
real regulatory processes to be considerably slower than this. However, 
the only condition on the model is that T be much longer than the time 
scales associated with the membrane currents so we have accelerated the 
regulatory process to speed up our simulations. 

The functions Fi determine how the asymptotic values of the maximal 
conductances depend on the calcium concentration. We assume that the 
regulation mechanism can vary the maximal conductances gi over a range 
0 < gi < Gi where Gi is the largest value that gi can possibly take. In ad- 
dition, a given maximal conductance can either increase or decrease as a 
function of the intracellular calcium concentration. These considerations 
lead us to consider just two possible forms (up to an overall constant) 
for the Fi, either a rising or a falling sigmoidal function, 

where Gi, CT, and A are constants and u is the standard sigmoidal func- 
tion 

1 
1 + exp( - x )  

u(x) = (2.9) 

In equation 2.8, the parameter Gi sets the scale for the particular maximal 
conductance gi. CT determines the concentration at which the asymptotic 
value of gi is Gi/2 and A sets the slope of the sigmoid. The choice of the 
plus or minus in equation 2.8 determines whether gi will fall or rise as a 
function of [Ca]. 

The slow regulatory processes we are modeling must not destabilize 
the activity of the neuron. To assure stability of the neuron, the choice of 
the plus or minus sign in equation 2.8 must be made correctly. Suppose 
that a specific set of maximal conductances has been established produc- 
ing a certain level of electrical activity. If the neuron becomes more active 
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than this level, calcium entering through voltage-activated channels will 
raise the intracellular calcium concentration. Under these conditions, out- 
ward currents should increase in strength and inward currents decrease 
so that the activity of the neuron will be reduced back to the original 
level. Conversely, if the activity level drops, the calcium concentration 
will also fall. In this case, the inward currents should increase in strength 
and the outward currents should decrease. In other words, the feedback 
from activity to maximal conductances should be negative. To assure this 
we use the plus sign in equation 2.8 for inward currents and the minus 
sign for outward currents. With this sign convention increased calcium 
results in an increase of the outward and a decrease of the inward cur- 
rents while decreased calcium has the opposite effect. With the choices 
we have made, the evolution of the maximal conductances is given by 

(2.10) 

where the variable sign is plus for inward currents and minus for out- 
ward currents. Because the intracellular calcium concentration depends 
on the maximal conductances, these are highly nonlinear equations. 

The parameter CT in equation 2.10 plays the role of a target calcium 
concentration. If [Ca] is well below CT, activity will increase due to the 
enhancement of inward and depression of outward currents. This will 
bring [Cal up closer to the target value CT. If [Ca] is well above CT, 
there will be an opposite effect on the currents and [Ca] will drop toward 
CT. Since the electrical activity of the neuron is highly correlated with 
the intracellular calcium concentration, stabilization of the intracellular 
calcium concentration results in a stabilization of the electrical activity 
of the neuron. As we will see, there is a direct connection between the 
target calcium concentration CT and the activity level maintained by the 
model neuron. 

Even without the dynamic regulation we have added, conductance- 
based neuronal models tend to be quite complex. However, the model 
specified above can be analyzed in considerable detail because of the 
large difference between the rates of the slow regulatory processes de- 
scribed by equations 2.10 and the faster processes of equations 2.1-2.4 
and 2.6. 

3 A %o-Conductance Model 

The simplest model we will use to study dynamic regulation of conduc- 
tances is the Morris-Lecar model (Morris and Lecar 19811, which has one 
inward and one outward active current. The inward current is a calcium 
current given (using the parameters we have chosen) by 
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and the outward current is a potassium current, 

IK =g,n(V - EK) 

with n given by 

3 v-10 

829 

(3.2) 

(3.3) 

In addition, there is a passive leakage current 

IL = 0.5(V + 50) (3.4) 

and we will sometimes add an external current as well. In these equa- 
tions, V is measured in millivolts and time in milliseconds. Under control 
conditions, we take EG = 100 mV and EK = -70 mV although we will 
vary these parameters to simulate changes in the extracellular ion concen- 
trations. We have added a persistent component (the 0.1 in equation 3.1) 
to the calcium current, which is not present in the original model (Morris 
and Lecar 1981). This is useful in the regulated model because calcium 
provides the feedback signal for the regulation process. Without a per- 
sistent component, loss of the calcium current would mean a loss of this 
signal. We take C = 1 pF/cm2, GQ = 3 mS/cm2, and GK = 6 mS/cm2. 
The behavior of this model neuron for the control values of the parame- 
ters is shown in Figure 1A. 

In the two-conductance model, the maximal conductances gc, and gK 
are regulated by equations like 2.10, specifically 

and 

(3.5) 

(3.6) 

We wish to analyze the dynamics of these two maximal conductances. 
Dividing the first equation by Gca and the second by GK we find that the 
quantities gca/GQ and g K / G ~  obey very similar equations. By adding the 
resulting two equations and using the identity u(x) + cr(-x) = 1 we find 
that the quantity y defined by 

- - 
y = h + &  (3.7) 

Gca GK 

obeys the trivial equation 

7 - = l - y  dY 
at 

(3.8) 
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Figure 1: (A) Membrane potential versus time at the quasi-steady-state point 
for the two-conductance model. (B) Maximal conductance "phase-plane" for 
the two-conductance model. Straight lines are nullclines of the slow, regulatory 
dynamics. Region marked Osc. is where oscillations of the regulatory system 
occur. The quasi-steady-state is where the two nullclines cross. Dashed paths 
marked 1 4  show routes to the steady-state point from four different starting 
conditions. For convenience (and without loss of generality) we have chosen 
the units of [Ca] so that the coefficient A in equation 2.6 is one. In these units 
CT = 20 and A = 5. In addition, we take k = 1/(100 msec). These parameters 
are used for Figures 2-4 as well (except that CT is vaned in Fig. 3). 

Likewise taking the difference of these two equations and defining 
- - 

, = B c a - &  (3.9) 
GCa GK 

we find that 

r - = t a n h (  dz CT 2h - [ca] ) - z  
dt 

(3.10) 
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Using equations 3.8 and 3.10, we can completely analyze the behavior 
of the model in the "phase-plane" of maximal conductances 9c, and gK. 
First, there is a nullcline y = 1 or equivalently 

(3.11) 

from equation 3.8 and this is approached exponentially with time con- 
stant 7. The behavior of the z variable is more complex. Under some 
conditions, z will approach a quasi-equilibrium state. An equilibrium 
solution of equation 3.10 would occur when z = tanh[(CT - [Ca))/2A]. 
However, if this value of z results in oscillatory behavior of the model 
neuron the calcium concentration [Ca] will oscillate as well. Thus, this 
value of z will not truly be fixed. We can circumvent this complication 
because we are assuming that the time scale T governing the motion of 
z is much greater than the time scale of the membrane potential oscilla- 
tions. Although z will oscillate around the quasi-equilibrium value, if 7 

is large these oscillations will be very small. The quasi-equilibrium value 
of z is just the average value of the hyperbolic tangent 

z = (tanh ( cT ;PI)) (3.12) 

where the brackets denote a time average over many membrane potential 
oscillation cycles. Equation 3.12 defines an approximate nullcline for the 
dynamics of the z variable for the maximal conductances. 

In Figure lB, the solid lines indicate the nullclines 3.11 and 3.12 for 
the regulatory dynamics. The diagonal line with negative slope is the 
y nullcline g&/G& + gK/GK = 1 while the more horizontal line is the z 
nullcline. In the center of the figure, where the two nullclines cross, is the 
quasi-steady-state point of the full system which results in the behavior 
seen in Figure 1A. This point is stable and its domain of attraction is the 
entire plane. There is a region of the plane (at the lower left of Fig. 1B) 
where z does not approach quasi-steady-state behavior at fixed y but 
instead goes into oscillations with a period of order 7. In this area there 
is, of course, no z nullcline. Instead, we have drawn the upper and lower 
bounds of the region over which the oscillations in z take place. Regions 
like this provide an interesting mechanism for generating rhythms with 
very long periods such as circadian rhythms. These slow oscillations 
arise from the regulatory process interacting dynamically with the more 
conventional mechanisms producing the much faster membrane potential 
oscillations. 

The dynamically regulated model can spontaneously construct its con- 
ductances starting from any initial values of gc, and &. The dashed 
curves in Figure 1B show the approach to steady-state behavior from 
four different sets of initial conductances. There are no obstructions to 
the recovery of the quasi-steady-state values from any initial position in 
the plane. 
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Figure 2: The range of steady-state oscillation frequencies that can be obtained 
using different values of the target calcium concentration CT. Units of calcium 
concentration are as in Figure 1. 

In the usual, unregulated, conductance-based models, the values of 
the maximal conductance parameters determine the behavior of the 
model neuron. In the regulated model, the maximal conductances are 
dynamic variables and, instead, the behavior of the model is governed 
by the parameters CT and A that control the quasi-steady-state values of 
the maximal conductances. Of these, CT is by far the more important pa- 
rameter. By adjusting the value of this target calcium concentration, we 
can determine what sort of behavior the neuron will exhibit. In contrast 
to conventional models, once this value is chosen the desired behavior 
will be exhibited over a variety of external conditions. In Figure 2, we 
see that a wide range of oscillation frequencies can be obtained in the 
regulated, two-conductance model by choosing different values for the 
target calcium concentration CT without changing any other parameters 
of the model. 

The stabilizing effects of dynamic regulation are illustrated in Fig- 
ure 3. When dynamic regulation is not included in the model, the firing 
frequency is extremely sensitive to the values of Eca and EK and firing 
only occurs over a limited range of these parameters. With dynamic reg- 
ulation, stable firing at roughly the same frequency can be maintained 
over a wide range of Eca and EK. Since these parameters are affected 
by the extracellular ionic concentrations, this reflects the ability of a dy- 
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Figure 3: The dependence of oscillation frequency on the equilibrium po- 
tentials for (A) potassium and (B) calcium in the regulated and unregulated 
two-conductance models. Dynamic regulation stabilizes the frequency against 
changes in EK and Eta. For the unregulated case, we fix the maximal conduc- 
tances at the control values for the unregulated model. 
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Figure 4: The quasi-steady-state value of z as a function of the amplitude of 
an injected current. Both DC and pulsed injection cause shifts in the value of 
z that modify the balance between inward and outward currents and change 
the intrinsic properties of the model neuron. Pulses last for 250 msec and are 
repeated every 500 msec. 

namically regulated neuron to adjust to varying external conditions. The 
model maintains its firing frequency by shifting its maximal conduc- 
tances in response to changes of these parameters. This is done through 
shifts in the value of z,  which change the balance of inward and outward 
currents. 

Dynamically regulated neurons also exhibit activity-dependent shifts 
in their intrinsic characteristics. As we have seen, the regulatory mech- 
anism tends to stabilize the activity of the neuron by shifting the values 
of the maximal conductances to maintain the level of activity that results 
in an average intracellular calcium concentration near the target value 
CT. The introduction of external or synaptic inputs will likewise cause 
slow shifts in the values of the maximal conductances as the regulatory 
mechanism tries to maintain the same level of calcium and activity that 
existed in the absence of inputs. As a result, prolonged inputs cause 
changes in the intrinsic characteristics of the neuron. This is shown in 
Figure 4 where we investigate the effect of external current on a regulated 
model neuron. The external current causes a shift in the value of z which 
changes the intrinsic electrical properties of the neuron by modifying the 



Analysis of Neuron Models 835 

balance between inward and outward currents according to equation 3.9. 
The quasi-steady-state value of z depends not only on the amplitude of 
the applied current but also on its time course. As shown in Figure 4, 
DC current injection has a different effect than pulses of current and we 
have found that the shift in z is also sensitive to the frequency and duty 
cycle of the pulses, in particular, the relation of the pulse frequency to the 
natural frequency of the model. These shifts occur over a slow time scale. 
Thus, the regulated model neuron will respond normally to brief pulses 
of current. However, prolonged current injection or synaptic input will 
change intrinsic properties. 

4 General Analysis 

The type of analysis we performed for the two-conductance model in the 
last section can be extended to models with arbitrarily large numbers of 
conductances. The key observation is that when equation 2.10 is divided 
by Gi, all of the ratios gi/Gi satisfy the same equation except for the 
plus and minus sign difference for inward and outward currents. This 
implies that the difference gJGi - gj/Gj between any two outward or 
any two inward currents will go exponentially to zero with the time 
constant r. Furthermore, the identity D ( X )  + D ( - X )  = 1 we used before 
implies that the sum gi/Gi + gj/Gj, where i is an outward current and 
1 is an inward current, goes exponentially to one with the same time 
constant. As a result, we can write an explicit solution for all of the 
maximal conductances satisfying equation 2.10 expressed in terms of just 
one dynamic variable z, 

where the plus/minus sign is for inward/outward currents and ci are 
constants that determine the initial values of the maximal conductances 
gi(0).  The remaining dynamic variable z obeys the same equation as 
before, 

r -=tanh(  dz CT 2a - [cal ) - z  
dt (4.2) 

Thus we have reduced the analysis of dynamic regulation in a model with 
any number of currents to the study of this single equation interacting 
with the rest of the model through the z dependence of [Ca]. 

As in the two-conductance case, there are two general types of be- 
havior. First, the system can settle down to a quasi-steady-state as far as 
the slow dynamics is concerned. Again, although the membrane poten- 
tial and calcium concentration may fluctuate (due to action potentials for 
example), there are no fluctuations over the time scale associated with dy- 
namic regulation. These faster fluctuations have little effect on the slowly 
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varying maximal conductances. Alternately, the slow system may never 
settle down and oscillations or even chaotic behavior characterized by 
the slow time scale typical of regulatory processes may appear. Again, 
these can provide a model of circadian or other slow rhythms. 

5 A Seven-Conductance Model 

We have studied dynamic regulation in a more complex and realistic 
model, a variant of the model of Buccholtz et al. (1992) describing the 
LP neuron in the stomatogastric ganglion of the crab. This model has 
seven active conductances corresponding to Hodgkin-Huxley sodium 
and potassium currents, a slow and a fast A current, a calcium-dependent 
potassium current, a calcium current, and a mixed-ion current ZH. In 
addition, there is a passive leakage current. We allow all seven maxi- 
mal conductances for the active currents to be modified by the calcium- 
dependent regulation scheme as described by equations 2.10. 

Depending on the value of the target calcium concentration CT, the 
regulated LP model can exhibit silent, tonic firing, bursting, or locked- 
up (permanently depolarized) behavior. Although the model has seven 
dynamic maximal conductance variables, we can analyze the regulatory 
dynamics quite simply by using the z variable defined in the last sec- 
tion. After the exponential terms in equation 4.1 get small, the maximal 
conductances will take values 

(5.1) 

with z determined by equation 4.2. To study the behavior of z in this 
model, we plot dz /d t  given by the right side of equation 4.2 as a function 
of z in Figure 5. We also note the type of activity displayed by the model 
neuron for different values of z .  For this figure, we have chosen the target 
calcium concentration CT so that the neuron exhibits bursting behavior 
once the z parameter has relaxed to the point where d z / d t  = 0. The 
quasi-steady-state is given by the zero crossing in the center of the figure 
and it exhibits bursting behavior. In the bursting range, Figure 5 shows 
a double line because we have plotted both the maximum and minimum 
values of dzldt.  At a given z value (the quasi-steady-state value for 
example) dz/dt will oscillate rapidly between the two lines shown due to 
the bursting behavior. These oscillations are not the same as those shown 
in Figure 1. The oscillations in Figure 1 are slow and are caused by the 
regulatory mechanism itself, while the oscillations here are just the result 
of the normal bursting activity of the neuron. 

In our previous work on this model (LeMasson et al. 1992) we ob- 
served an interesting phenomenon when two regulated neurons were 
electrically coupled. The techniques we have developed here allow us 
to explore this phenomenon more completely. The two-neuron circuit 
is shown in Figure 6. We start with two dynamically regulated model 

Gi gi = -(1 f 2 )  2 
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Figure 5: Plot of dz/dt versus z for the seven conductance model. Both mini- 
mum and maximum values of dz/dt at a given z value have been plotted. Two 
lines appear in the bursting region due to fluctuations in the calcium level dur- 
ing bursting activity. Distinct behaviors obtained for different values of z are 
indicated by the inserts. Locked-up refers to a permanently depolarized state. 
The quasi-equilibrium value of z produces bursting behavior as indicated by 
the zero crossing of dz/dt .  Model parameters used for Figures 5 and 6 are as in 
LeMasson et al. (1992). 

neurons described by identical sets of equations with the same param- 
eter values. The identical activity of the two model neurons when they 
are uncoupled is shown in Figure 6A. The two neurons are then cou- 
pled through an electrical synapse (synaptic current proportional to the 
voltage difference between the two neurons) that is likewise completely 
symmetrical. Figure 6B shows the steadystate activity of the coupled 
network. The two neurons burst in unison. To examine the intrinsic 
properties of the two neurons individually, we uncouple them once again 
and show in Figure 6C their activity immediately after they are decou- 
pled. Despite the fact that two model neurons are governed by identical 
sets of equations, the coupling between them has causes one neuron to 
display intrinsic bursting activity while the other fires tonically in isola- 
tion. The symmetric, two-cell network has spontaneously differentiated 
into a circuit involving a pacemaker and a follower neuron. If the two 
neurons are left uncoupled, the regulation process will eventually return 
them to their initial identical states as seen in Figure 6D. 
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To study this system, we monitor the maximal conductances of the 
two neurons and see how the coupling between them affects their behav- 
ior by performing the following numerical experiment. We hold 21, the z 
value for one of the two neurons, fixed but allow z2 to evolve according 
to equation 4.2 until it reaches its quasi-equilibrium value. This value will 
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depend on the fixed value ZI we have chosen for the first neuron because 
the two neurons are coupled and this coupling effects the behavior of zz 
through effects like those shown in Figure 4. We then record the time- 
averaged intracellular calcium concentrations of the two neurons, [Ca] 
and [Ca],. By repeating this process for many different holding values 
21 we obtain the curves shown in Figure 6E. Actually, only one of these 
curves corresponds to the procedure just outlined while the other is its 
reflection obtained by interchanging the roles of neuron 1 and neuron 2. 
One curve thus shows the quasi-equilibrium calcium concentrations of 
neuron 2 when neuron 1 is held fixed and the other the quasi-equilibrium 
concentrations of neuron 1 when neuron 2 is held fixed. 

The values of z1 and zz determine the maximal conductances of the 
two neurons through the relation 5.1 and this in turn will control their 
intracellular calcium concentrations. Because z and [Ca] are related, we 
can use either the value of z or the value of the intracellular calcium con- 
centration to characterize the balance of inward and outward maximal 
conductances. Up to now, we have used z because it is directly related 
to the maximal conductances through equation 5.1. However, to illus- 
trate the two-neuron network we use the timeaverage of the calcium 
concentration in the two neurons rather than their z values because the 
fluctuations caused by the bursting activity of the two neurons are smaller 
for the timeaverage calcium concentration making the plot clearer. 0th- 
envise, the two approaches are completely equivalent. 

The quasi-steady-state configurations of the fully regulated, interact- 
ing, two-neuron circuit are given by the points where the two curves in 
Figure 6E cross. The interesting feature of this particular network is that 
the lines cross in three places. The middle of these three crossings is 
the symmetric equilibrium point where the calcium concentrations, the 
z values, and the maximal conductances of the two neurons are identi- 
cal. However, as is typical in cases of spontaneous symmetry breaking, 
this point is unstable for this particular network. The other two cross- 
ings are stable equilibrium points and they have the novel feature that 
the intrinsic conductances of the two neurons are different. One neuron 
exhibits a higher calcium concentration than the other so, according to 
equation 4.2, its z value will be lower than that of the other neuron. As a 

Figure 6: Facing page. (A) The behavior of two identical model neurons be- 
fore they are coupled. (B) Electrical coupling between the neurons results in 
a bursting two-cell network. (C) Decoupling the two neurons reveals their in- 
trinsic properties and indicates that one is acting as a pacemaker and the other 
as a tonically firing follower. (D) Long after the two neurons are decoupled, 
the regulation mechanism has returned them to their original identical states. 
(E) A plot of the time-averaged calcium concentration of one neuron when the 
other neuron's regulation dynamics is held fixed. The three crossing points are 
equilibrium points. The central, symmetry crossing is unstable while the two 
outer crossing are stable quasi-steady-states with nonsymmetric properties. 
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result, one of the neurons will have smaller inward and larger outward 
conductances than the other neuron as given by equation 5.1. This is 
what causes the spontaneous differentiation of intrinsic properties seen 
in Figure 6C. 

The symmetry-breaking phenomenon that we have discussed requires 
electrical coupling between the two neurons that lies in a specific range. 
The coupling must be strong enough so that the two neurons have an 
impact on each other, but not so strong that their activity is forced to be 
identical. 

6 Discussion 

We have used a single second messenger, the intracellular calcium con- 
centration, to act as the negative feedback element linking the maximal 
conductances of a model neuron to its electrical activity. If similar mech- 
anisms exist in real neurons they may be controlled by multiple second 
messengers. In addition, we have taken a particularly simple form of 
the regulatory equations by choosing a single sigmoidal curve (and its 
flipped version) for all of the conductances. What is surprising about 
these simplifications is that they nevertheless allow the full range of be- 
haviors of the model neuron to be explored as seen in Figure 5. The 
parameterization of equation 5.1 may thus be useful even in cases where 
dynamic regulation is not being studied. Any scheme based on a single 
second messenger will similarly probe a single line in the multidimen- 
sional space of maximal conductance values characterizing a particular 
model. The simple form of the functions Fi we used means this line is 
given by the simple equation 5.1, more general forms of the Fi would re- 
sult in more complex curves. Nevertheless, it should be possible to find a 
variable like z, even with nonidentical forms for the Fi, that parameterizes 
path length along this general curve. As a result, we expect that the be- 
havior of the model in the more general case will be qualitatively similar 
to the simple case we have analyzed. This argument also applies to mod- 
els in which some of the maximal conductances are not regulated at all. 

We have thus far studied dynamic regulation as a global phenomenon 
in single compartment models. A local form of dynamic regulation could 
have important consequences in a multicompartment model of a neuron. 
In such a model, the density of channels in various parts of the neuron 
would be correlated with the time-average calcium concentration in that 
region. This provides a mechanism for controlling the distribution of 
conductances over the surface of a neuron (for a different approach to 
this problem see Bell 1991) and for correlating the local channel density 
with structural and geometrical characteristics affecting calcium buffering 
and diffusion (preliminary work done in collaboration with M. Siegel). 

The dynamic regulation scheme was motivated by a need to build 
more robust neuronal models, and Figure 3 clearly shows that this goal 
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has been achieved. The fact that the dynamically regulated model also 
exhibits shifts in intrinsic characteristics due to interactions with other 
neurons is an interesting and unavoidable consequence of this robustness. 
If maximal conductances depend on activity, neurons in networks will 
be affected by each other and will adapt accordingly. O u r  two-neuron 
model resulted in an oscillating circuit with a pacemaker and a follower 
neuron. This differentiation was caused solely by the interaction of the 
two neurons. Either neuron could have developed into the pacemaker 
with the other becoming the follower. As in this simple example, it 
should be possible for identical dynamically regulated model neurons 
to self-assemble into more complex networks in which they play well- 
defined but different functional roles. 
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