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Feynman rules are derived for computing quantum corrections to the mass of a 
soliton in quantum field theory. These rules exhibit a finite propagator, but in contrast 
to previous methods, no additional effective vertices are introduced beyond those pre- 
sent in the original shifted Lagrangian. The derivation is based on imposing end-point 
boundary conditions appropriate to a soliton state on the functional integral represent- 
ing the soliton-to-soliton transition amplitude. 

1. Introduction 

During the past few years, a great deal of attention has been given to the problem 
of constructing a perturbation expansion around a non-dissipative, finite-energy solu- 
tion to the classical field equations of a quantum field theory [l-9] l **. Classical 
“lump-like” solutions are interpreted as representing particles called solitons. To 
investigate the quantum corrections to various physical processes one must derive 
Feynman rules for the one-soliton sector of the theory. One can begin by shifting 
the quantum field operator by a particular c-number solution to the field equations. 
This defines a shifted Lagrangian from which one can read off a set of interaction 
vertices and a propagator. However, the shifted field operator possesses certain zero- 
frequency excitations correponding to symmetry transformations of the original solu- 
tion, and these appear to contribute a divergent piece to the propagator. The zero-fre- 
quency mode problem seems to render the naive Feynman rules useless. 

This problem has been resolved by introducing collective coordinates and making 
a canonical transformation to a new set of dynamical variables [4,9]. This approach 
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eliminates aN of the contributions of the zero-frequency modes from the propagator 
including the troublesome divergences. However, the propagator is made finite at the 
expense of introducing a complicated set of effective vertices in addition to those of 
the original shifted Lagrangian. Furthermore, in a path-integral approach to quanti- 

zation, great care must be taken in performing the canonical transformation to col- 
lective coordinates [9]. 

Recently, it has been shown that if we regulate the divergences of the original 
naive propagator and proceed with our calculations, then in a computation of the 
soliton-to-soliton transition amplitude all divergences cancel [5,6]. In this direct 
approach, no additional effective vertices are introduced besides those of the origi- 
nal shifted Lagrangian. Instead, a finite contribution from the zero-frequency modes 
to the propagator reproduces the extra terms which come from the new effective 
vertices in the collective-coordinate approach. Although the two methods give the 
same results, the direct method is much simpler. Jevicki has pointed out certain 

ambiguities in this procedure, and has proposed a scheme in which a non-canonical 
collective coordinate is introduced [ 71. Jevicki’s approach again introduces new 
effective vertices coming from a Jacobian factor in the functional integral. 

The great simplicity of the direct approach makes it a convenient method for 
computing quantum corrections to the soliton-to-soliton transition amplitude. This 
is the approach developed in this paper. Rather than using a limiting procedure 
which results in the type of ambiguities discussed by Jevicki [7], we derive the Feyn- 
man rules by carefully analyzing the end-point conditions imposed on the functional 

integral in order to define the soliton-to-soliton transition amplitude. This leads to 
a simple set of Feynman rules with no additional effective vertices besides those of 
the original shifted Lagrangian, and a finite propagator free from any ambiguities 
of definition. 

This direct method was first studied by Creutz in an operator formalism [8]. 
Below, we present the method in a path-integral form. In ref. [8], various cumber- 
some operations on 6 functions occur in the Feynman rules and momentum con- 
servation is not explicitly displayed. These problems are eliminated in the present 
discussion. 

The key to understanding how the divergences and ambiquities of the naive pro- 
pagator are eliminated lies in an appreciation of the role of the soliton end-point 
conditions in defining the functional integral representing the soliton-to-soliton tran- 
sition amplitude. In a perturbative approach these end-point conditions along with 
the quadratic part of the Lagrangian serve to define the propagator. In particular, 
when we evaluate the soliton-to-soliton transition amplitude at finite time and cor- 
rectly handle the soliton end-point conditions all divergences are unambiguously 
regulated and can be eliminated in a well-defined way. Our Feynman rules will 
define a perturbation expansion for this soliton-to-soliton amplitude at zero soliton 
momentum and hence serve to calculate the mass of a soliton. In sect. 2, the soliton 
end-point conditions are discussed and applied to a derivation of the Feynman rules 
for computing the soliton-to-soliton transition amplitude. In sect. 3, we present a 
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heuristic argument to explain how the physics of the one-soliton sector acts by 
means of these end-point conditions to modify the pole prescription for the propa- 

gator and render it finite. 
To simplify and clarify our discussion, we will consider the case of a single scalar 

field in two spacetime dimensions and a time-independent soliton solution. As a 
result there will be a single zero-frequency mode corresponding to translations of the 
soliton in space. The generalization to more complicated cases is straightforward. 

2. The soliton-to-soliton transition amplitude 

The transition amplitude (in a two-dimensional scalar field theory with Lagrangian 
,C) from a field configuration r$r at time -4 T to another configuration @a at time 4 T 

is given in the path-integral formalism by the functional integral 

K(@r , G2 ; T) = N r 6 [@I exp(i J’” dt Jti d: (4)) , (2.1) 
01 -T/2 

where N is a normalization factor. The end-point conditions on the functional inte- 
gral are thus determined by the properties of the states I& > and iti ) which define a 
particular transition amplitude. Our problem is to extract the transition amplitude 
from a soliton state of momentum pr to another of momentum p2 from expressions 
like (2.1). 

Let us consider the Lagrangian 

a: =&l@)2 - %#J) 1 (2.2) 

and assume the existence of a time-independent soliton solution to the classical field 
equations 

- $ @c(x) + V(‘)&(x)) = 0 , (2.3) 

where we use the notation 

(2.4) 

The classical energy of r&(x) is just the lowest-order approximation to the soliton 
mass 

M = j-dx[;&) 2 + V(@J] . (2.5) 

Of course, a particular solution &.(x) is only one member of a family of soliton solu- 
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tions generated by translations and boosts. The general form is 

C=&(S). (2.6) 

In the following discussion we will need only those solutions with u = 0. The role of 

solutions with u # 0 is, however, indicated below. 

We may now write 

$(x, t) = @,(x - a) + 77(x - a, t) . (2.7) 

Then, from (2.2) we find that the original Lagrangian in terms of the shifted field 
7$x, t) is 

d: = @$,P?)* - ; V(*)($,) r1* - U(@,, rl) , (2.8) 

where 

- 1 
U&V q) = nFs 2 V(“) (4,) rln . (2.9) 

Let us introduce eigenfunctions and eigenvalues appropriate to a normal-mode decom- 
position of (2.8): 

[ 
- -$ + V(*)(@e)] J/, = C&, . (2.10) 

The zero-frequency mode corresponding to translations of the original soliton solu- 
tion, obtained by shifting the parameter a, is the n = 0 mode with 

$0(x> = ;&(x) > (2.11) 

Cd(j=O. 

All of the other modes are taken to satisfy 

o,>o for n#O. 

(2.12) 

(2.13) 

From eqs. (2.3) and (2.5) with (2.11) we find 

s dx G;(x) = M. 

Let us now isolate the zero-frequency mode from $J(x, t) and write 

tix, r) = $,(x - a) + q(t) $0(x - a) + P(X - a, t) , 

or equivalently, from eq. (2.7), 

r?CC t) = q(t) #o(x) + P(& 0 * 

(2.14) 

(2.15) 

(2.16) 



L.F. Abbott /Corrections to the mass of a soliton 163 

By definition, the field p(x, t) will be constrained to satisfy the orthogonality con- 
dition 

s ch PC& a J/o(x) = 0 - (2.17) 

As we recall from eq. (2.1), a particular transition amplitude can be defined by 
specifying two field configurations @r and &. By eq. (2.15) this is equivalent to 
specifying a, q(fi T) and a field p(x, ?$T) subject to condition (2.17). The field 
p(x, t) is associated with the normal-mode oscillations of eq. (2.10) with non-zero 

frequencies, and thus represents the physical meson excitations in the presence of 

the soliton. On the other hand, the zero-frequency mode is not associated with a 
physical meson state, but rather with translations of the soliton itself. Since we are 
interested in computing the transition amplitude between states with one soliton 
and no mesons at times *AT, the end-point conditions for the field p(x, t) are those 
of the ordinary no-meson vacuum. It is well-known that the no-meson end-point 
conditions on the functional integration over p(x, t) serve only to determine the 

ie pole prescription in the p propagator [lo]. Thus, instead of constraining the 
end-points of the functional integral over p(x, t) we can add a term $iep* to the La- 
grangian and integrate freely over the p field, subject only to the condition (2.17). 
This is the usual convention used to derive Feynman rules in the_vacuum sector. How- 
ever, to complete our specification of the end-point conditions in the one-soliton sec- 
tor we must also specify a and 4(+&T). We set 

q(-;T) = -&j, q(g) = iif. (2.18) 

These boundary conditions will assure that the variable a of eq. (2.15) will serve as 
the c.m. coordinate for the soliton, while for small values ~7 represents fluctuations 

around the c.m. Of course, for large values ~7 does not represent a translation coordi- 
nate, but the correctness of the boundary conditions of (2.18) will nevertheless be 
evident by the correct momentum conservation relation which will appear in the soli- 
ton-to-soliton transition amplitude. These end-point conditions define a transition 
amplitude which, when we write the original Lagrangian (2.2) in terms of 4 and p, 
is given by 

K(a, @, T) =N exp(-NT) 7” 6 [ql JS [PI 6 CJ~-X P(K t) $0(X)) 

-z/2 

T/2 
X exp(i 1 dt #@ + ~d.x[~(a,p)2 - 3 v(2)(9C) p2 + &p2 - Wk, dll) 

-T/2 (2.19) 

where a is the position variable in eq. (2.15). 
The perturbation expansion for the amplitude (2.19) is defined by introducing a 
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source term 

a: so”rce = J(x - a, t) 77(x - a, t) . (2.20) 

Note that the source has been defined as J(x - a, t) and not J(x, t). The perturbation 
expansion for the amplitude (2.19) is then 

with 

Jo(t) =Jdx 4x, t) h)(x) (2.23) 

The integrals in eq. (2.22) can easily be performed. The result is [ 1 l] 

k?&;J) =gexp(i[!$ +Fy dtJe(t) t 
-T/2 

. 

1 TIQ 
t- 

2M s 
-T/2 

;I,-,, t;-$ 
II) 

X edi l-i r dt ds sd’ dy [J(x, t) .I& S) D(X, JJ, t - s)]}) , (2.24) 

--TP 
where 

(2.25) 

At first sight, the perturbation expansion defined by (2.21) and (2.24) would 
appear to have all the problems outlined in sect. 1. Although the vertices are clearly 
those of the shifted Lagrangian given by U(&, r)), the propagator obtained from 
eq. (2.24) would naively appear to be divergent. From eq. (2.24) we obtain the pro- 
pagator 

T-fir-sl-; -kD(x,y,t-s). 1 (2.26) 
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Note that it is the contributions of the n = 0 mode which appears to cause problems 
with the propagator (2.26). First as T-f m we have the divergent piece 4T. The last 
term ts/T contributes the kind of ambiguities discussed by Jevicki when it multi- 
plies a term_ iT in a diagram involving a product of two propagators. Finally, we 
note that &(?j;J) has a factor (1V/2niT)~/* multiplying it which actually vanishes 

as T + 00. This is clearly the zero coming from the n = 0, zero eigenvalue in the func- 
tional determinant normally obtained from performing quadratic functional inte- 
grals. 

All of these problems are eliminated when one correctly defines the transition 
amplitude between soliton momentum eigenstates. This is done by defining the tran- 
sition amplitude between a soliton of momentum p1 and another of momentum p2 
by the Fourier transform 

K(p, P, T) = J&I d?j ebaepGK(q, T) , (2.27) 

with 

P’Pl -P* 5 (2.28) 

p=;Go, +P*) * (2.29) 

Using the perturbation expansion of eqs. (2.21) and (2.24) and performing the inte- 
grals in eq. (2.27), we find 

K(p, P, T) = 2a6(p) exp(-iMT) exp -i [ E df Jdx u(Gcv$ $)]%(P;J) lJzo 

(2.30) 
with 

~~(P;~)=exp(-i~T)exp[-iX~ dtJdxiJ(x, t) $&)] 

X exp(-ii 7 dt ds [ti dy[J(x, t)J(j, s) L(x, y, t - s)]) , 

-T/z 

(2.31) 

where 

J/o(x) 900) ii(x, y, I - s) = -$t - SI - - 
90(x> J/00) 

bf hf 
+D(x,y,t-s)+tTx *. 

(2.32) 

In deriving this result we have used the definition of Jo(t), eq. (2.23). Note the appear- 
ance of the factor P* /2M and the higher-order kinematic corrections expressed by the 
tadpole term in (2.3 1). The potentially ambiguous term ts/T has been removed from 
the propagator and the troublesome (M/2ni7’) If2 factor has been cancelled. Further- 
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more, momentum conservation is explicitly displayed. 
Note that eq. (2.3 1) contains a tadpole term proportional to P/A4. This term tells 

us that if we are calculating amplitudes with P # 0, we should expand around one 
of the moving soliton solutions of eq. (2.6) with u # 0. For the present, it is more 
convenient to restrict ourselves to those frames for which P = 0. This eliminates the 
tadpole and gives for the soliton-to-soliton transition amplitude, 

I&, 0, T) = 2nS(p) exp(-tiT) exp -f [ .c dtS& u(m,,f ;)]%“;J)~,;, > 

with 

(2.33) 

Eo@; 4 = exp(-ii s dt ds /d” du [J(x, t) J(Y, S) &x, y, t - s)] ) . (2.34) 

-T/2 

Finally, we must deal with the problem of the term in the propagator of eq. (2.32) 
which is proportional to g T and thus which diverges for infinite time T + 00. It has 
been proven elsewhere [5,6] that the perturbation expansion defined by eqs. (2.33) 
and (2.34) remains unchanged when the propagator is transformed by 

A(x, y, t - s) + A(x, y, t - s) t c $$$ F . (2.35) 

Therefore, choosing 

c=-:T 

we find the finite propagator 

(2.36) 

$0(x) J/o(Y) A(x, y, 1 - s) = -1 It - s( - - tD(x,y,r-s). 
&f &f 

(2.37) 

Thus, a perturbation expansion which gives results identical to those of eqs. (2.33) 
and (2.34) but which features a finite propagator is defined by 

M$, 0, T) = 2n@) exp(-iMT) exp[-i p dtldx U(&,f k)] Ko(o;J)l J=. , 
-T/2 

with 

(2.38) 

Ko(O;J) = exp(+ 7 dt ds& du [J(x, t) J(Y, s) A(x, y, t - s)] ) . (2.39) 

-TD 
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This gives us a simple set of Feynman rules with vertices given in terms of the original 

shifted Lagrangian by U(rj,, r]) and a propagator A(x, y, t - S) given in eq. (2.37). 

No new vertices have been added, and no divergences or ambiguous terms appear. 
Calculations using the Feynman rules of eqs. (2.38), (2.39) and (2.37) have pre- 

viously been performed and give results in agreement with those of the collective 
coordinate method, as has been explicitly demonstrated up to the two-loop level 
[5,7,12]. As outlined in sect. 1, the extra term 

in the propagator (2.37) provides the additional factors obtained by using the propa- 
gator D(x, y, t - s) and the extra vertices of the collective coordinate method. 

3. The propagator pole prescription 

As we have seen in sect. 2, a careful analysis of the end-point conditions imposed 
on the functional integral to define the soliton-to-soliton transition amplitude yields 
a simple set of Feynman rules with a finite and well-defined propagator. We now 

present a heuristic argument which demonstrates how these Feynman rules includ- 
ing the finite propagator can easily be obtained by considering the physical proper- 
ties of the one-soliton sector. This should not be viewed as an independent deriva- 
tion, but rather as a discussion of the physics contained in the more rigorous deriva- 
tion of sect. 2. 

After expanding #(x, t) around a soliton solution G,(x) we find the Lagrangian 
for the shifted field 7)(x, t) given by eq. (2.8): 

d: = -$1[02 + V(2)(&)l 9 - U(G,, rl) . (3.1) 

This Lagrangian determines a set of vertices given by U(@,, Q) as in eq. (2.9), and a 
propagator given by 

-A-’ = q 2 t V(2$$,) . (3.2) 

Our problem is to invert this result. Defining the normal modes as in eq. (2.10), 

[ 
-$ + v(2,h)] 9, = w2,J/n , (3.3) 

we can write the propagator formally as 

- J/,(x)$ 0) 
A(x, Y, t - s) =sd$ eiu(f-s)[$!$ g ( o2 y ,2)t n2 

0 
u2 _ L2 ] . 

n(3 .4) 

Actually, it will be convenient to introduce a small mass parameter p satisfying 

O<r_l<<on forallnZ0, (3.5) 
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and define our propagator as 

- tin(x) M_Y) A(x, y, t - s) =Jdz eiw(r-s) [s 9 (A) + C 
n=1 

o2 _ uz 

n 
] 

(3.6) 

(recall that w. = 0). Of course, at the end of our calculation we will take p + 0. 
This will allow us to explicitly display any divergences present. 

Now eq. (3.6) does not actually define a propagator until we specify how the inte- 
gration around the poles at w = fw, for n f 0 and w = +P for n = 0 is to be handled. 
It is well-known that the specification of end-point conditions on the functional inte- 
gral which defines the Feynman rules in the vacuum sector is completely equivalent 
to the specification of the pole prescription in eq. (3.6) [lo]. We have already noted 
in sect. 2 that the no-meson end-point condition in fact determines the ie pole pres- 
cription of the usual Feynman propagator [lo]. This is in accordance with the fact 
that the n # 0 modes represent physical particles with causal propagation. However, 
the mode n = 0 does not correspond to a particle state in the one-soliton sector but 
instead represents a spatial translation of the soliton. This has been explicitly demon- 
strated in the work of Goldstone and Jackiw [2]. As a result, it is incorrect to assume 
that the poles at w = +1_1 associated with the n = 0 mode should also be integrated with 
an ie prescription. Note that if we do use an ie prescription for the n = 0 translational 
mode we obtain the propagator 

2(x, y, t _ s) = 2 e-Clr-sl tie(x) Go01 
--++(x,y,t-s), 
dM &f 

with D(x, y, t - s) given as in eq. (2.25) by 

(3.8) 

Note that this propagator diverges asp + 0. 
However, we have indicated that the ie prescription should not be naively fol- 

lowed because the n = 0 mode does not correspond to a causal particle state. Now 
according to unitarity the imaginary part of the propagator is proportional to the 
amplitude obtained by inserting a complete set of states. Since in this complete set 
of states there is no particle state corresponding to the n = 0 mode the contribution 
of this translational mode to the propagator should be real. This indicates the use 
of a principal value pole prescription for the poles at w = f~ corresponding to the 
n = 0 mode. Such a prescription will assure that no singularities associated with the 
n = 0 mode will appear in the Green functions in accordance with the fact that there 
is no corresponding particle to enter into the S-matrix. 

Using a principal value for the o = +p poles and an ie prescription for the o = 
fo,, n # 0 poles as dictated by the physics of the one-soliton sector, we find from 
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A(x, .v, t - s) = 2 (sin pit - sl) 3 $$ t D(x, y, t - S) . 

In the limit 1_1+ 0 this propagator is finite and given by 

A(x, y, r - s) = -+lf - SI 9 9 t D(x, y, t - s) , 

(3.9) 

(3.10) 

in exact agreement wi.:h eq. (2.37). Thus, we see that a careful consideration of the 
physics of the one-soliton state, which explicitly takes into account the special role 
of the translational mode, eliminates all divergences from the propagator and gives 
us a simple and well-defined set of Feynman rules for computations in the one-soli- 
ton sector of the theory. 

I thank Howard Schnitzer, Marcus Grisaru and Enrico Poggio for helpful conversa- 
tions. 
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