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The background field approach to multi-loop calculations in gauge field theories is presented. 
A relation between the gauge-invariant effective action computed using this method and the 
effective action of the conventional functional approach is derived. Feynman rules are given and 
renormalization is discussed. It is shown that the renormalization programme can be carried out 
without any reference to fields appearing inside loops. Finally, as an explicit example, the two-loop 
contribution to the fl function of pure Yang-Mills theory is calculated using the background field 
method. 

1. Introduction 

Explicit gauge invariance, which is present at the classical level in gauge field 
theories, is normally lost when quantum corrections are included. The background 

field method [1,2] is a technique which allows one to fix a gauge, and thereby 
compute quantum effects, without losing explicit gauge invariance. It thus makes 

calculations in gauge theories easier both technically and conceptually. The back- 
ground field method is used extensively in analyses of gravity and supergravity and 
has been used by Weinberg [3] to construct light effective field theories from grand 
unified models. In its original formulation, the method was applicable only to 
one-loop processes. However, the extension to multi-loop effects has been made by 
't Hooft  [4] and by DeWitt [5]. (In addition, very recently a discussion of the 
gauge-invariant effective action by Boulware [6] has appeared.) Here, the back- 
ground field method which is applicable to multi-loop processes will be presented in 
detail. The result is a prescription, including Feynman rules and a renormalization 
scheme, for computing an explicitly gauge-invariant effective action. (Feynman rules 

for a general gauge theory have also been given by DeWitt [5].) The method is 
equivalent to that of 't  Hooft  [4], although the formulation (like that of DeWitt [5]) 
follows more closely the conventional functional approach. 

The basic idea of the background field method is to write the gauge field 
appearing in the classical action as A + Q, where A is the background field and Q is 
the quantum field which is the variable of integration in the functional integral. 
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Then, a gauge is chosen (the background field gauge) which breaks the gauge 
invariance of the Q field, but retains gauge invariance in terms of the A field. 
Background field gauge invariance is further assured by coupling external sources 
only to the Q field [4]. Thus, quantum calculations can be performed, yet explicit 
gauge invariance in the background field variable is not lost. 

The generating functionals and effective action of the conventional functional 
approach to field theory are reviewed in sect. 2. The analogous quantities used in the 
background field method are then introduced. They are defined exactly as in the 
conventional approach except that, as outlined above, the gauge field appearing in 
the classical action is written as A + Q. The generating functionals and effective 
action thus become functionals of the background field A as well as of their usual 
arguments. Furthermore, in the background field gauge they are gauge-invariant 
functionals of A. The gauge-invariant effective action is just the background field 
effective action considered as a functional of A and evaluated with vanishing 
quantum field. It is shown in sect. 3 that this gauge-invariant effective action is equal 
to the conventional effective action evaluated in an unusual, but nevertheless valid 
gauge. It can thus be used in the normal manner to generate the S-matrix of the 
theory. 

In the background field approach, it is desirable to work only with background 
field Green functions and not with those of the quantum field, as it is only the 
background field gauge invariance which is retained. The renormalization pro- 
gramme beyond one loop would then seem to present a problem, since calculation of 
the quantum field renormalization factor necessarily involves working directly with 
Q field Green functions. However, as shown in sect. 4, it is not necessary to 
renormalize the quantum fields. The only renormalizations required are those of the 
gauge coupling constant, background field and gauge-fixing parameter. Further- 
more, the gauge-fixing parameter renormalization can be avoided by going to the 
Landau-type background field gauge (after the calculation has been performed with 
an arbitrary bare gauge-fixing parameter; see sect. 4). The coupling constant and 
background field renormalizations can be determined from the A field two-point 
function. Thus, it is possible to carry out the renormalization programme without 
any reference to quantum field Green functions. 

Because explicit gauge invariance is retained, the gauge coupling and background 
field renormalization in the background field approach are related. This allows one 
to determine the/3 function from a calculation of the background field two-point 
function alone; no vertex functions need to be considered. This leads to a consider- 
able simplification in the background field calculation over those performed using 
conventional methods [7, 8]. The one- and two-loop contributions to the/3 function 
for pure Yang-Mills theory are calculated using the background field approach in 
sect. 5. Since the subtleties of the renormalization programme first arise at the 
two-loop level, it is reassuring to see the formalism verified in an explicit example. 
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For simplicity, throughout the paper only pure Yang-Mills theory is considered. The 
inclusion of fermions or scalars is straightforward. 

2. The method 

In the conventional functional approach to field theory, one defines the generating 
functional (throughout, the letter Q is used to denote the quantum gauge field which 
is the variable of integration in the functional integral) 

where 

with 

1 [ 1 ] no,~ ]exp;fd"x e(Q) -2-d{G ~ +ayQ~, (2.1) 

a F~ = O~,Q~ - OvQ~, + =efat'cobo C~,~ . (2.3) 

G a is the gauge-fixing term (for example, G " =  0.Q~ is a typical choice) and 
8Ga/&o b is the derivative of the gauge-fixing term under an infinitesimal gauge 
transformation 

sOu ~'abc br'~c low (2.4) 

The functional derivatives of Z[J] with respect to J are the disconnected Green 
functions of the theory. The connected Green functions are generated by 

W [ J ]  = - i l n Z [ J ] .  (2.5) 

Finally, one defines the effective action by making the Legendre transformation 

where 

The derivatives of the effective action with respect to Q are the one-particle- 

Q~ _ 8W 
8J; " (2.7) 

irreducible Green functions of the theory. 

4 a ~ a  F[Q] = W [ J I -  f d xJ~,Q,, (2.6) 

E ( Q ) =  - -± I ra  ~2 (2.2) 
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We now define quantities analogous to Z, W, and F in the background field 
method. We denote these by 2, 1~, and f'. They are defined exactly like the 
conventional generating functionals except that the field in the classical lagrangian is 
written not as Q but as A + Q, where A is the background field. Following 't Hooft 
[4] we do not couple the background field to the source J. Thus, we define 

a] [ lJa2 1 2[ J,A ] = f ~Qdet[ SG~ expi f d4x E( A + Q ) - ~---d( G ) + J2Q~ , (2.8) 
" I  L 8o~ ° 

where 8Ga/8o~ b is the derivative of the gauge-fixing term under the infinitesimal 
gauge transformation 8Qu z ' a b c  b ,  A c  ¢ a a = _ j  w t . . t ~ + Q . ) + ( 1 / g ) 8 ~ 0 .  Then, just as in the 
conventional approach, we define 

W[J,AI = - i l n Z [ J , A l  

and the background field effective action 

where 

P[O,A]= W[J,.4I-- f d 4 xJ~Q~,,"'~ 

(2.9) 

(2.10) 

02 - 61~ (2.11) 8J2" 

Since there are several field variables being used here, it is worthwhile to summarize 

them: 

Q~ = the quantum field, the variable of integration 
in the functional integral; 

a A t = the background field; 

Q2 = 6W/6J~ = the argument of the conventional effective action, F [Q] ;  

= 8W/SJ~ = the quantum field argument of the background 

field effective, action, I'[(~,A]. 

One now chooses the background field gauge condition 

a g/  ) I Q ,  G" = OuQ~ + ~h,. h < (2.12) 

in eq. (2.8). By making the change of variables Q~ ~ Q~ _f~b<~Q£ it is easy to 
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show that Z[J,A] and hence I~[J,A] are invariant under the infinitesimal transfor- 
mations 

- - J  ~o/-1~ + 60 a , 

(2.13) 

when this gauge-fixing term is used. It then follows that r'[Q,A] is invariant under 

1 
8A, a = _ _ j  ~o ~lt~ + "~ut~ed a , (2.14) 

8Q.; = -f'bc~obO~ (2.15) 

in the background field gauge. In particular, f'[0,A] must be an explicitly gauge- 
invariant functional of A since (2.14) is just an ordinary gauge transformation of the 
background field. The quantity I'[0,A] is the gauge-invariant effective action which 
one computes in the background field method. In sect. 3 it will be shown that ['[0,A] 
is equal to the usual effective action F[Q-], with Q =  A, calculated in an unconven- 
tional gauge which depends on A. Thus, I'[0,A] can be used to generate the S-matrix 
of a gauge theory in exactly the same way as the usual effective action is employed. 
Furthermore, it is explicitly gauge-invariant. The advantages of this will become 
apparent when the two-loop 13 function is calculated in sect. 5. 

3. The relation between I'[O,A] and F[~)] 

We now derive relationships between Z, W, and F and the analogous quantities ;2, 
IYV, and I" of the background field method. This is done by making the change of 
variables Q ~ Q - A in eq. (2.8). One then finds that when J~[J,A] is calculated in 
the background field gauge of eq. (2.12), 

2?[J,A] = Z[J]exp(-ifd'xJ~A;), (3.1) 

where Z [ J ]  is the conventional generation functional of eq. (2.1) evaluated with the 
gauge-fixing term 

a - -  a ~'abc Abf~c (3.2) 

One can verify that the ghost determinant of Z in the background field gauge goes 
over into the correct ghost determinant for Z in the gauge of eq. (3.2). Note that 
because of the presence of the background field A in the gauge-fixing term (3.2), 
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Z[J] will actually be a functional of A as well as of J. It follows from eq. (3.1) that 
W and lg," are related by 

fie[J, A] = WiJ] - f  d4xj2A~. (3.3) 

Like Z[J] ,  W[J] depends on A through the gauge-fixing term. Taking a derivative 
of (3.3) with respect to J and recalling that Q-= ~ W / M  and Q. = 8fie/M we find that 

a Q~ = Q~-~ - A,. (3.4) 

Finally, performing a Legendre transformation on the relation (3.3) we have a 
relation between the background field effective action and the conventional effective 
action 

t [0 ,A]  = r[0li0=0+A. (3.5) 

The gauge-invariant effective action is just f'[0,A] so from (3.5) we have the identity 
we need 

f 'I0,A] = r [O] [O= A (3.6) 

In this identity, f" is calculated in the background field gauge of eq. (2.12) and F in 
the gauge of eq. (3.2). Thus, in eq. (3.6), F depends on A both through this 
gauge-fixing term and because Q = A. 

The connection with the formalism of 't Hooft [4] can be made using the above 
results. First, note that the gauge-invariant effective action, I'[0,A] is given according 
to (2.10) by 

I'[0,A] = fie[J,A]. (3.7) 

However, the condition Q = 0 must still be imposed. By eq. (3.4), Q = 0 is equivalent 
to Q =  A which, in turn, implies that A and J are related through the dependence of 

on J. Thus, when we take derivatives of W with respect to J, we must include the J 
dependence which enters through the presence of A in the gauge-fixing term (3.2). 
With this in mind, the condition Q = A is just 

~w ~ f d4y =AX. (3.8) 
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Finally, using (3.3) to relate W to Ig/, eq. (3.8) can be written in the equivalent form 

+ f d4y 61'I" 8jb(y) ] 
~AX ~J?(y) ~A~ =--J;" (3.9) 

Eqs. (3.7) and (3.9) are the basis of 't Hooft's formulation [4] of the background field 
method. According to the language used here, (3.7) is just the usual Legendre 
transformation and (3.9) is the condition Q -- 0. The formulation given here is thus 
equivalent to 't Hooft's [4] although it follows more closely the conventional 
functional approach. One advantage of this is that it allows for an easy derivation of 
eq. (3.6) relating the background field and usual methods. 

Note that because A appears in the gauge condition (3.2) and acts as a source 
there, the one-particle-irreducible Green functions calculated from the gauge- 
invariant effective action will be very different from those calculated by conven- 
tional methods in normal gauges. Nevertheless, the relation (3.6) assures us that all 
gauge-independent physical quantities will come out the same in either approach. 

4. Feynman rules and renormalization 

The gauge-invariant effective action, /'[0,A], is computed by summing all one- 
particle irreducible diagrams with A fields on external legs and Q fields inside loops. 
No Q field propagators appear on external lines (since Q = 0) and likewise no A 
field propagators occur inside loops (since the functional integral is only over Q). To 
derive the Feynman rules one must write the determinant factor appearing in the 
functional integral in terms of an anticommuting scalar ghost field. From the 
background field gauge-fixing term of (2.12), using the gauge transformation 

| 

8Q~ = ~o~ ~,-~ _, - j  o, ~A, + Q~) + g 0,~ a, (4.1) 

one derives the ghost lagrangian 

: _ +  2 o ~ _  ~ o ~  ~ a r o u s A l S ,  L:o,, 0~[[] ~ gO,/ ( A , + Q ; ) +  

(4.2) 

The complete Feynman rules are those given in fig. 1. Wavy lines represent 
quantum gauge propagators whereas wavy lines terminating in an A denote the 
external background field. Ghost propagators are represented by dashed lines. 
Because the effective action involves only one-particle-irreducible diagrams, vertices 
with only one outgoing quantum line will never contribute. Consequently, they have 
not been included in the Feynman rules. 
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It was pointed out in the introduction that the renormalization of quantum fields 
was undesirable because it required the calculation of quantum field Green func- 
tions. However, since the ghost and quantum gauge fields appear only inside loops, 
it is not necessary to renormalize them and, in fact, they are best left as bare 
quantities. To see this, imagine that we did renormalize these fields 0 and Q by 
writing 

Oo = Z~/20, Qo = Z~?/ZQ • (4.3) 

Then, one has a factor of Z~/2 at each end of a gauge propagator coming from 
renormalizing the field at each vertex, and a factor ZQ ~ from renormalizing the 
propagator. The two factors Z~/2 and the ZQ ~ associated with each propagator then 
cancel exactly. Likewise, the two Zd/2 factors at the ends of each ghost line cancel 
with the Zo ~ renormalization of the ghost propagator. Thus, the renormalization of 
eq. (4.3) is completely irrelevant and it is better to leave the ghost and quantum 
gauge fields unrenormalized. However, it is still necessary to renormalize the 
gauge-fixing parameter for the quantum gauge field due to the fact that the 
longitudinal part of the gauge field propagator is not renormalized. Thus, coupling 
constant, background field and gauge-fixing parameter renormalizations given by 

go = Zgg, A o = Z~/2A, a o = Z~a (4.4) 

are required. 
In sect. 5, the renormalizations of eq. (4.4) are explicitly carried out in the 

Feynman-type gauge c~ = 1. However, in principle, it is possible to completely avoid 
the gauge-fixing parameter renormalization by calculating with an arbitrary bare 
gauge-fixing parameter a0. Then, one can either extract physical quantities which are 
independent of ~x 0 or one can go to the Landau-type gauge a 0 -c~ = 0. In either 
case, the renormalization of the gauge-fixing parameter need not be performed. 
Because of the presence of vertices proportional to l / a ,  one cannot go to the limit 

= 0  until after the calculation has been performed and all 1 / a  factors have 
cancelled. Thus, during the calculation, an arbitrary c~ 0 should be retained. 

Because explicit gauge invariance is retained in the background field method, the 
renormalization factors Z A and Z g  are related. The infinities appearing in the 
gauge-invariant effective action F[0,A] must take the gauge-invariant form of a 
divergent constant times (F~a~) 2. NOW, according to (4.4), Ff~ is renormalized by 

a _'7 "-11/2tabc.4b ,~c] (F; ,)0 7 ' /2 [~  z -  _ a~A~ + gLgL A I .'t~,~.l (4.5) 

This will only take on the gauge-covariant form of a constant time F~ if 

Z s = Z ~ I / 2 .  (4.6) 
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Fig. 1. Feynman rules for background field calculations in Yang-Mills theory. Wavy lines are quantum 
gauge propagators, wavy lines ending with an A are external background fields and dashed lines are ghost 

propagators. 

197 



198 L. F. Abbott / Background fieM method 

This is the relation between the charge and background field renormalizations in the 
background field gauge. 

5. Calculation of the two-loop ~ function 

As an explicit example of the background field formalism in use, we now compute 
the fl function for pure Yang-Mills theory up to the two-loop level. The fl function is 
related to the dependence of the coupling constant renormalization, Zg, on the 
renormalization mass parameter, tt, by 

fl = -g/t  ~---~ ln Zg. (5.1) 

Likewise, the anomalous dimension "/A is defined by 

"YA = ½# ~---~ lnZA" (5.2) 

Because Zg = Z A- i/2 in the background field method, 7A and fl are related by 

~=g~A.  (5.3) 

The fl function can thus be determined by calculating Z A which only requires a 
knowledge of the background field two-point function. In contrast to conventional 
methods, no vertex functions need to be considered. The great simplification 
provided by the method thus becomes apparent. In previous calculations [7, 8], the 
gauge propagator, ghost propagator and gauge-ghost-ghost vertex all had to be 
computed. Here, only the gauge propagator is needed. 

We will use the dimensional regularization procedure [9] in 4 - 2e dimensions and 
the minimal subtraction scheme [10] in which Z A is written as a series of poles in e 

Z A = I +  Y, ..  (5.4) 
i - - ,  

By using the chain rule of differentiation on eq. (5.2) and the result 

= + 8 ,  

one can derive a relationship between the various Z] t), namely [11] 

(2v.- 

( 5 . 5 )  

(5.6) 
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or using (5.3), in the background field method, 
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(5.7) 

and that of fig. 2b 

..~ /30 ( g 12 , fll [ g )4. 
Z A= 1 -~ -~-~!  +2-~et4-~ (5.10) 

The diagrams needed to compute Z A at the one-loop level are given in fig. 2. The 
divergent contribution of fig. 2a is 

ig2CA~ ab 1 2 
(~-~e) [ g ~ k - k ~ , k , ] ,  (5.11) (4=) 2 

ig2CA~ ab 
• 

/ 

(a) 

(b) 

Fig. 2. Graphs for a one-loop calculation of the fl function. 

(5.12) 

then Z A must be 

Recalling that Z~ °) = 1, this gives 

(5.8) 

Also note that for the piece of Z~ 1) proportional to g2, ( 2 -  gO/Og)Z(A 0 = 0. This 
means that the term in Z~ 2) proportional to g4 will be zero. Thus, in our calculation 
of Z A, there will be no 1/e 2 pole at the two-loop level. From this fact and eq. (5.8) 
we find that up to two loops, if we write the 13 function as 

g 4 
/3-- -g[/30( ~ )2+ fl,( ~ ) l '  (5.9) 
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Adding these together, one determines Z A and hence the well-known one-loop result 

/30 = ~  CA [71. 
The two-loop graphs for computing Z A are given in fig. 3. The divergent 

contributions are all of the form 

ig4f2~ab [ hg .vk2  - Bk.kv ]  . (5 .13)  
(4~r) 4 

The individual contributions to A and B as well as the totals are given in table 1. In 
table 1, p = 3'E --ln41r + ln(k2//~z). Because the calculation was performed in the 
Feynman-type gauge, a = 1, the gauge-fixed renormalization insertion diagrams of 
figs. 31 and 3m are included. The renormalization factor Z~ is determined from the 

+ 

,' ' ~  '\~'~-" (a) 

(b) 

(c) 

(d) 

(e) 

( f )  

Fig. 3. Graphs for a two-loop calculation of the fl function. Boxes represent gauge-fixing term insertions 
resulting from renormalization of the gauge-fixing parameter. 
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(g) 

(hi 

( i )  

( i )  

/ I 

(k) 

(ml 

Fig. 3. (continued) 
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quantum gauge field propagator corrections appearing in fig. 3b. (Recall that if the 
calculation had been performed with an arbitrary et 0 rather than in the Feynman-type 
gauge c~ = 1, this step could have been avoided.) It is 

5 

(4'/7") 2 
(5.14) 

The insertions result from a counter-term of the form 

1( 5g2cA )( o ~r~b'AbO'~ 2 (5.15) 
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TABLE 1 
Contributions to eq. (5.13) of the text from the graphs of fig. 3: O = "YE - -  In 4 ~r + In( k 2 / / . / , 2 )  

Graph ,4 B 

I (l + ~ e -  20e) 1 a 6e 2 ~e2(l  + 6e -- 2oe) 

b 25 43 25 ~e  
6e--s(l + T6e-  20e) ~-~e2 ( 1 + - 2Oe ) 

1 
c 8~ o 

9 
d 0 

8e 

e e-~(1 + 4 e -  2pe) - ~ ( 1  + 4 e -  2pe) 

I + 123e_ 2pe) 1-(1 +~e--2pe) 
f 6e2( l 6e 2 

5 (1 41 5 9 - - -  + r o e -  20e ) + ~ e -  2pe) 
g 24e2 24e 2(1 

h 9 ( l + ~ e _ 2 p e )  9 + ~ e  2pe) - 8e-- S 8e 2 (1 - 

1 + '~e  2pt)  1 + ~ e _  2Oe) 
i 24t2 (1 - 24e2 (I 

- - - -  9 9 l ( l+1e - -2pe )  l + ~ e _  20e) 
j 4e 2 4e 2 (I 

27 27 
k ~e2(l  + ~3ae - 2pc) ~e2(I + ~ ' e  - 2pc) 

1 25 0 + ~ e -  0e) 250 + m e - 0 E )  
9E 2 9e 2 

25 (1 2s 25 2s m 0e) - - -  + ~se- pe) + - 9e2 9~- (1 i5 e 

17 17 
Total 3e 3e 

arising from the renormalization of a 0 by (5.14). Because of the relation Zg = Z ~  i/2, 
there are no counter-term insertion diagrams from the coupling and background 
field renormalizations of fig. 2. From the totals given in table 1 and eq. (5.10) one 
determines that fll = ~ C ~  in agreement with previous results [8]. The algebraic 
manipulation programme Schoonschip [12] was used in the evaluation of fig. 3k. 

A curious feature of this calculation is that the leading pole (1 /e  at one loop and 
1/e 2 at two loops) takes the transverse form [g~,~k 2 -k~,kp] diagram by diagram as 
can be verified from eqs. (5.11) and (5.12) and table 1. In addition, the sum of the 
non-insertion diagrams and the insertion diagrams in fig. 3 separately are of the 
form [g~,,k 2 -k~,k~]. This remarkable uniformity is probably a result of both 
background field techniques and the choice of the Feynman-type gauge. 
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6. C o n c l u s i o n s  

The background  field formalism for generat ing a gauge-invar iant  effective action* 

has been presented and employed in an explicit example. Al though the Feynman- type  

gauge may be easier for calculations,  it is impor tan t  that, in principle, the renormali-  

zat ion programme can be carried out without  reference to any renormal izat ion of 

fields inside loops. Sect. 5 gave an example of the simplif ications provided by the 

method for gauge theory calculations. 

Helpful  conversat ions with S. Deser, K. Ellis, M. Grisaru,  R. Jackiw and  J. 

Vermaseren are gratefully acknowledged. I am part icularly indebted to Mark Wise 

whose many  insights and  cont r ibut ions  made the successful complet ion of this work 

possible. 
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* A gauge-covariant two-loop effective action has been computed in the background field gauge in ref. 
[13]. In this work, the background field is treated exactly and is required to be covariantly constant. 
In this paper, as in refs. [1-6], the treatment of the background field is quite different: the 
background field is allowed to be arbitrary and is considered perturbatively as a source for the gauge 
field. 


