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The gravitational coupling R& 2 plays a crucial role in determining the fate of the symmetric, 
high temperature state in a grand unified model with Coleman-Weinberg type symmetry breaking. 
If this term enters in the lagrangian with a negative sign, it drives the SU(5) breaking phase transition 
at a temperature of about 101° GeV. If it enters with a positive sign, and in particular with the 
coefficient i which is required for a conformally invariant classical theory, this term prevents the 
phase transition from being completed, at least until temperatures are reached for which the SU(5) 
coupling becomes large. 

1. Introduction 

In the s tandard  big bang  cosmology,  the early Universe  is character ized by very 
high t empera tu res  at which the gauge symmetr ies  of e lec t roweak and grand unified 

(GUT)  models  were  p resumably  unbroken .  As the Universe  cooled,  phase t ran-  
sitions took  place which b rought  these theories  into their present  spontaneous ly  
b roken  form. If these phase transit ions were first order ,  ex t reme supercool ing might  

have occur red  with interesting cosmological  consequences  [1-3].  Spon taneous  

symmet ry  breaking  induced by radiative correct ions  is known to exhibit  such 

supercool ing  [2, 3]. In fact, the phase transit ion in C o l e m a n - W e i n b e r g  type models  

[4] is so slow that  it can be driven by unexpec ted  sources. Wit ten  [2] has shown that  if 
the scalar potent ia l  in the s tandard  e lec t roweak gauge theory  is of the C o l e m a n -  

Weinberg  form,  then the phase transit ion which breaks  S U ( 2 ) x U ( 1 )  is actually 

driven by Q C D - i n d u c e d  chiral symmet ry  breaking.  In this paper  it is shown that  if 
symmet ry  breaking  at the G U T  scale occurs in the C o l e m a n - W e i n b e r g  mode ,  then 

the phase  transit ion which breaks the grand unified group ( taken to be SU(5) [5]) 

down to S U ( 3 ) ×  S U ( 2 ) x  U(1) is governed,  i.e., ei ther  driven or  suppressed,  by 
gravitat ional  effects. 

The  C o l e m a n - W e i n b e r g  mode l  is character ized by the absence of a mass term in 

the zero t empera tu re  effective potential .  Finite t empera tu re  effects [6] p roduce  an 
effective mass term T2~b 2 which is posit ive and produces  a barr ier  (at all non-ze ro  
tempera tures)  be tween  the high t empera tu re  state 4, = 0 and the low tempera ture ,  
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spontaneously broken vacuum state. This barrier causes the slow phase transition 
and extreme supercooling in this model. 

Gravity plays an important  role in all first-order phase transitions through 
cosmological effects [1-3]. While the Universe is stuck in the (high-temperature) 
false vacuum state, the vacuum energy density is positive. This causes the Universe to 
expand rapidly. The phase transition to the new vacuum states occurs through 
tunnelling which forms bubbles of new vacuum. If the phase transition is to be 
completed,  these bubbles must fill space at a faster rate than space itself is expanding. 
Gravity (with minimal gravitational coupling) also plays a role in determining the 
tunnelling amplitude for the phase transition [7], but this effect is only of the order of 
the scalar vacuum expectation value divided by the Planck mass which is tiny (10 4) 

even at the G U T  scale. 
The gravitational effect which plays such an important  role for the Co l eman-  

Weinberg type G U T  model  is the non-minimal  coupling RO e. This coupling is fully 

expected to occur and is in fact required if the scalar field theory is to be renormaliz-  
able in a classical gravitational background [8]. The Coleman-Weinberg  model has a 
zero mass term. However ,  since R is non-zero in the false vacuum (due to the 
non-zero vacuum energy) the t e r m  g ~  2 acts like a mass term while the Universe is in 
the false vacuum state. Although R~b 2 is suppressed by inverse powers of the Planck 
mass, it is the leading term in the zero tempera ture  potential  near ~b = 0 so unlike 
other gravitational effects, it plays a crucial role in determining the fate of the & = 0 
state. We introduce this non-minimal  coupling by adding a term ~bR~ 2 to the scalar 
lagrangian. Depending on the sign of the constant b, this term either stabilizes or 

destabilizes the false vacuum. 
Below, we will investigate the three possibilities b = 0, b < 0 and b > 0 for the 

SU(5) model  [5] broken down to SU(3)x  S U ( 2 ) x U ( 1 )  by a scalar field with a 
Co leman-Weinbe rg  potential  [4]. The results are as follows. At temperatures  above 

about 1014 GeV,  the Universe is in the state & = 0. Then: 
(i) If b = 0, extreme supercooling to a tempera ture  of about  ½ GeV takes place 

before the SU(5) ~ SU(3) x SU(2) x U(1) phase transition can occur (see refs. [9] for 

more  detailed studies). 
(ii) If b < 0, then the term ½bRc~ 2 acts as a negative mass term. For temperatures  

below about  101° G e V  this term dominates  over  the tempera ture  dependent  mass 
term T24~ 2 and destabilizes the ~b -- 0 state. Thus, the Universe will supercool only to 

about  10 l° G e V  at which point a rapid phase transition will occur. 
(iii) If b > 0, the term lbRO 2 acts as a positive mass term creating a barrier  even at 

zero temperature .  This barrier prevents the S U ( 5 ) -  S U ( 3 ) × S U ( 2 ) x  U(1) phase 

transition from ever being completed.  
Strictly speaking, results (i) and (iii) are statements about the Coleman-Weinberg  

potential  and not about  the SU(5) model  in general. This is because at temperatures  
as low as those found in (i) and (iii) the SU(5) model becomes strong coupling. Then, 
fermion condensates may form breaking the SU(5) symmetry dynamically [10]. A 
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considera t ion of this mechan i sm is outside the scope of this paper .  The  results (i)-(iii) 

are sufficient to demons t r a t e  the impor tance  of gravitat ional  effects on the C o l e m a n -  
Weinbe rg  mode l  at the G U T  scale. 

If the C o l e m a n - W e i n b e r g  m o d e  of symmet ry  breaking  actually occurs,  this is 

p robab ly  due to some sort  of  conformal  invariance acting at the classical level. If this 
is the case, then the value b = ~ is favoured.  This is because the choice of b = 61- makes  

the massless scalar lagrangian conformal ly  invariant  [11]. However ,  result (iii) 
indicates that  for  this conformal ly  invariant theory,  the G U T  phase transit ion can 
never  be completed .  

2. Results 

Consider  the SU(5) mode l  [5] b roken  down to S U ( 3 ) x S U ( 2 ) x U ( 1 )  in the 

C o l e m a n - W e i n b e r g  mode .  The  effective potent ia l  which determines  the scalar 
vacuum expecta t ion  value is [4] 

V(~b) = B~b 4 (In d~z - ~-~ ~) + 1Bo'4, (1) 
\ 

where  (we take O/GU T ~- ~5) 

O" = 1015 G e V ,  (2) 

B = 8 × 10 -4 . (3) 

At  finite t empera tu re  a term is added  to eq. (1) which is a compl ica ted  funct ion [6] of 

th and the t empera tu re  T. However ,  for ~ << T << tr this term is well approx imated  by 
an effective mass term 

VT = 85- gZT2~b 2 (4) 

where  g is the SU(5) coupl ing constant .  This term stabilizes the false vacuum,  ~b = 0, 
far be low the critical t empera tu re  at which the true vacuum ~b = tr becomes  the 
lowest energy  state. 

Note  that  the t e r m  ~Bo "4 has been  added  to eq. (1) so that  the true vacuum state, 

~b = t  r, has zero energy*.  Then,  the false vacuum,  ~b = 0, has the positive energy 

densi ty ½Bo "4. This  energy  densi ty creates a space- t ime  curvature  de te rmined  by the 
Einstein equa t ion  

R = -327rG(½Bo'4) .  (5) 

This means  that  while the Universe  is supercool ing in the false vacuum state, space is 
expanding.  The  t ime scale for  this expansion is 

[87rG (½Bo'4)] -1/2 . (6) 

* Why the present vacuum should have an energy density of magnitude less than (0.003 e g )  4 is a great 
mystery. 
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The rate per unit volume for tunnelling f rom the false vacuum to the true vacuum is 
approximately [12]* 

4 - A  o" e , (7) 

where A is the euclidean tunnelling action calculated by the techniques of Callan and 
Coleman [12]. In order  for tunnelling to be significant, the tunnelling probabili ty in a 
space- t ime volume determined by the time scale of eq. (6) must be of order one. 
Thus, the condition for the phase transition to occur is [1-3] 

[38-'n'G ( 1 B o ' 4 ) ] - 2 0  "4 e - a  ~- 1 .  (8) 

Putting in the various numbers,  we find that (8) is satisfied if 

A ~ 5 0 .  (9) 

If A is larger than this value, the phase transition will not be completed.  
We will now compute  the tempera ture  at which the SU(5) phase transition occurs 

for the case of minimal gravitational coupling [9], b = 0. The potential  for this case is 
just the sum of eqs. (1) and (4), 

In 0"2 1\ VTOT=~g2T202+BO4 ( ~-~-~} +½go -a. (10) 

Witten [2] has devised a clever trick for estimating the tunnelling amplitude for this 
potential.  The potential  (10) at low temperatures  has a narrow barrier near & = 0 
followed by a long drop-off  to the & = o- state. Thus, for the purposes of tunnelling it 
can be well approximated by a wrong sign &4 potential. 
To estimate the size of this (j~4 coupling we write [2] 

In ( ~ )  = In ( ~ )  - l n  ( ~ )  . (11) 

At  low temperatures  the second logarithm on the right-hand side of eq. (11) will 
dominate  over the first logarithm over  the range of the barrier. Thus, for calculating 

the tunnelling amplitude we can write 

VT 52 ,1- ,2 - -2  ( T )  O T ~ g  1 q) - 2 B  In &4 1 4 +~Bo- . (12) 

(At low T, the barrier is narrow enough so that the approximation & << T is also 
valid.) The ampli tude A for this potential  can be determined from previous compu-  

tations [13] and is 

A = (1.5) 4~- 8B In (get~T) " 
* The factor o -4 multiplying the exponential in this equation is determined on dimensional grounds. 

However, the temperature T offers another possibility and in ref. [2] this factor is written as T 4. If we 
took this approach the tunnelling amplitude would be smaller than eq. (7) and tunnelling would be 
further suppressed for b ~ 0. 
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From this we find that eq. (9) is satisfied at a temperature 

T = 0.4 G e V .  (14) 

Thus, for the case b = 0, there is extreme supercooling in this model [9]. 

When b # 0 an additional term is added to the scalar potential, 

Vo = -½bR& 2 (15) 

so that 

lbR'2+5 2T2'2 [ ,  ~2 1"~ Vwow=-~ q~ ~g q~ +BO4~m~-~-~J+½Bo "4. (16) 

If b < 0, this additonal term destabilizes the & -- 0 state. To see this, consider the total 

potential near & = 0. Then, R is determined by eq. (5) and 

VTOT = (87rGbBo "4 + ~g2T2)& 2 + O(& 4) + ½Bo "4 • (17) 

At sufficiently low temperatures the term in brackets will go negative (since b < 0) 

destabilizing the & = 0 state. This will occur at 

[64rrG]b]Bo.4] 1/2 
T = ~ ~g2 ] = 2.8 × 101°4~-[ G e V .  (18) 

Since Ibl is likely of order one, this means that at a temperature of about 101° GeV 

the & = 0 state will decay rapidly into the true vacuum state. 

We now consider the case b > 0. In particular, we will take b = i since this gives the 

conformally invariant classical theory [11]. The R& 2 term in the potential of eq. (16) 

then provides a barrier between the & = 0 and & = ~r states even for T = 0. Our 

results for b = 0 indicate that thermal effects are insufficient to induce tunnelling 

through this barrier. We must, therefore, examine quantum mechanical tunnelling 
for the zero temperature potential 

[, ~2 1\ 
VTOT-- --12 R~b2 +Bq~ 4 ~,n ~ - ~ )  + 1Bo'4. (19) 

1 2 2 • For small values of 0 2, the term -1~2 R& 2 acts as a right-sign mass term ~rn & with m 

given, according to eq. (5) by 

m = [~rrG (1Bo-')]1/2 = 6.7 × 109 G e V .  (20) 

The tunnelling action for the potential of eq. (19) with R given by the Einstein 
equation was calculated numerically by computer. The result is 

A = 637.  (21) 

This is much greater than the limit, A ~ 50, of eq. (9). Thus, in the conformally 
invariant theory, the SU(5) breaking phase transition cannot be completed, at least 

until temperatures have been reached for which the SU(5) coupling becomes large. 
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3. Conclusions 

We have seen that  the sign of the n o n - m i n i m a l  gravi ta t ional  coupl ing R~b 2 in the 

C o l e m a n - W e i n b e r g  mode l  opera t ing  in a grand  unif ied theory  is crucial in de ter -  

min ing  the fate of the high t empera tu re ,  symmetr ic  state. It is unusua l  to see gravity 

p laying such an impor t an t  role in an e l emen ta ry  part icle field theory.  

I t hank  A. Billoire,  S. Deser ,  J. Ellis, Q. Shaft and  K. Tamvak i s  for helpful  

discussions. 
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