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The stability properties of Einstein theory with a cosmological constant A are investigated. 
For A > 0, stability is established for small fluctuations, about the de Sitter background, occurring 
inside the event horizon and semiclassical stability is anal~ed.  For A < 0, stability is demonstrated 
for all asymptotically anti-de Sitter metrics. The analysis is based on the general construction of 
conserved flux-integral expressions associated with the symmetries of a chosen background. The 
effects of an event horizon, which lead to Hawking radiation, are expressed for general field 
hamiltonians. Stability for A < 0 is proved, using supergravity techniques, in terms of the graded 
anti-de Sitter algebra with spinorial charges also expressed as flux integrals. 

1. Introduction 

The vacuum energy density of the universe is known to be of magnitude less than 
(0.003 eV) 4. To achieve such a small energy density in the standard models of strong, 
weak and electromagnetic interactions requires extraordinary and unnatural fine 
tuning of parameters. This fine tuning problem leads us to wonder why the 
cosmological constant (defined as 87rG times the vacuum energy density) is so small. 
In particular, one might ask whether theories with a non-vanishing cosmological 
constant can be excluded because of some fundamental instability. With this 
motivation, we examine here their stability properties. 

In flat space, stability can be established for a system by proving it has positive 
energy, the vacuum being defined as the lowest energy state. For gravity, with A = 0, 
the situation is more complicated because energy is defined with respect to a flat 
background space. Nevertheless, for asymptotically flat metrics, it is now well 
established [1-4] that all the desired stability criteria are met, including positivity of 
the total energy. When a cosmological constant is present, flat space is no longer a 
relevant background, since it is not a solution of the Einstein equations. It is 
replaced as the vacuum by either de Sitter [0(4, 1)] or anti-de Sitter [0(3,2)] space 
depending on whether A is positive or negative. Since these spaces have non-vanishing 
constant curvature, there is no asymptotic Poincar6 invariance and the conventional 
energy is not conserved. Instead, the appropriate symmetries are those of the 
de Sitter or anti-de Sitter group generated by the five-dimensional "rotat ion" 
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operators Jab (a, b =  0, 1 . . . . .  4). The question is whether J04, which becomes P0 as 
A ~ 0, provides a reasonable substitute for the energy. In sect. 2 we will show that it 
does because J04 (unlike Jij, for example) is associated with a Killing vector which is 
timelike. We will see, however, that for de Sitter space the presence of an event 
horizon limits the region in which a timelike Killing vector can be defined and thus 
where stability can be tested in the usual way. We will show that the "Killing 
energy", J04, has the same desirable properties, for a gravitational system, that the 
normal energy has in an asymptotically flat space. It is de Sitter (rather than 
Poincar6) covariant. It can be written as a flux integral over a two-dimensional 
spatial surface, and it is conserved. These features are demonstrated in sects. 2 and 
3, which are also intended to provide a self-contained review of the relevant 
formalism. The results obtained are, in fact, applicable to all background metrics 

which solve the field equations and have Killing symmetries. 

Once an energy-like quantity (in our case the Killing energy) has been defined, 
there are several stability tests which can be performed. First, one can check that 
small oscillations have positive Killing energy. We do this in sect. 4. For de Sitter 
space, we find that this is the case for excitations inside the event horizon, but not 
for those beyond it. This is a reflection, in hamiltonian form, of a feature which 
leads to Hawking radiation [5]. For anti-de Sitter space, small oscillations are 
everywhere positive. One can also check for semiclassical stability by looking for 
euclidean "bounce" solutions [6-8] which would signal an instability to quantum- 
mechanical tunnelling. In sect. 5 we find no evidence of such an instability in 
de Sitter space. Finally, stability can be established by proving that the Killing 
energy is positive for all asymptotically vanishing fluctuations, large or small. This is 
done for the case of anti-de Sitter space in sect. 6, using supergravity techniques 
which have been used to establish positivity [2] of the energy for A - 0. Throughout 
this work we will, for simplicity, treat gravity without sources. However, additional 
couplings to normal matter do not change our arguments about the existence of 
conserved flux-integrals or about stability. 

Thus, while it would have been appealing to be able to exclude the cosmological 
constant on stability grounds, our results indicate that the situation for A 4 = 0 is 
quite similar to A : 0. To be sure, there are global peculiarities of spaces with a 
cosmological constant [9], e.g., the event horizon in de Sitter space and the absence 
of a global Cauchy surface in anti-de Sitter space. However, from the point of view 
of stability, cosmological theories cannot be excluded. 

2. Definition of conserved quantities 

In this section we will construct conserved quantities corresponding to symmetries 
of a background metric satisfying the Einstein equations with a cosmological term, 

R ~-½g~R + Ag ~ v = 0  (2.1) 
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(conventions are R ,~=  R~,,~ ~ +0fff~,  signature - +  + +).  Our main interest is 
with a background de Sitter or anti-de Sitter metric; however the formalism is 
completely general. These conserved quantities are constructed from the gravita- 
tional energy-momentum tensor and the Killing vectors of the background metric 
and have the essential property that they can be expressed as two-dimensional flux 
integrals*. 

We divide the metric tensor into two parts, 

g,~= ~,,~ + h,~, (2.2) 

where ,~,~ is any solution of (2.1), for example a de Sitter or anti-de Sitter metric, and 
h , ,  represents deviations which vanish at infinity. The energy-momentum tensor for 
the gravitational field is defined by expanding the left-hand side of eq. (2.1) into a 
piece independent of h~,~ [which vanishes because ~,~ itself satisfies the field equation 
(2.1)], a piece linear in h,~, and terms of quadratic and higher order in h~,~. To 
facilitate this decomposition, we will use the convention throughout this paper that 
all operations such as index moving or differentiation are with respect to ~ .  Once 
this division of eq. (2.1) is made, we define all the terms of second and higher order 
in h,~ to be the gravitational energy-momentum tensor and write eq. (2.1) as 

R#V i -p,  ui~ _ z L - - ~ g  "'L Ah~'" ( - - g )  1/2T"~" (2-31 

The subscript L refers to terms linear in h, , ,  and T ~'~ is the energy-momentum 
tensor density of the gravitational field. Because the l.h.s, of eq. (2.3) obeys the 
background Bianchi identity, r~ tR~,~ - !c,~,~ _ Ah~,~) = 0, we find by virtue of the ~ *" L 2~S "~L 

field equations the exact result 

m 

D,T ~ =  O, (2.4) 

where D, is the covariant derivative with respect to the background metric ~,~. 
However, the derivative in eq. (2.4) is a background covariant, not an ordinary 
derivative; furthermore, only integrals over divergences of contravariant vector 
densities have invariant content, so eqs. (2.3) and (2.4) cannot be used directly to 
construct conserved quantities. This problem is easily resolved. Let us introduce a 
Killing vector ~, associated with one of the symmetries of the background metric 
it satisfies 

/)~,~ + / ~ ,  = 0. (2.5) 

* Note that the other conserved local quantity in gravity, the Bel-Robinson tensor, does not lead to 
useful integrated constants because it lacks an underlying Bianchi identity. It is therefore only 
conserved with respect to the full (rather than background) metric, except in linearized theory [10]. 



L. F. Abbott, S. Deser / Stability of gravi(v 7 9  

Then,  since 

we find that 

T " ~ = T  ~,  (2.6) 

is t ime dependent .  
quant i ty  defined by  

D . ( T ~ ' ~ ) : ( D ~ , T ~ ' ~ ) ~ + ½ T ~ ' ~ ( [ ) ~ , ~ + ~ , ) : O .  (2.7) 

N o w  the quant i ty  T " ~  is a vector density whose covariant  divergence becomes  an 
ordinary one, and gives the desired conservat ion law, 

/ ) . ( r " " ~ . )  = O . ( r . "~ . )  = 0. (2.8) 

If  h~,. vanishes sufficiently rapidly at spatial infinity then, as usual, we find that 

f dSx T°"~, (2.9) 

Thus, associated with any Killing vector  ~ is a conserved 

l 3 
(2.10) 

If  ~ is a timelike vector, this quant i ty  is just  what  we refer to as the Killing energy. 
When A = 0, it is well known that the ene rgy-momen tum tensor for the gravita- 

tional field can be writ ten in terms of a superpotent ial  and that the energy can be 
expressed as a flux integral over  a two-dimensional  spatial surface. The same 
s ta tements  apply  for A :/:0. Here,  the ene rgy-momen tum tensor can be written, 
using (2.3), as follows: 

( _ g ) - , / : T , , ~  = b . D , K , - , . ~  + X ~'~. 

The superpotent ia l  K ~ B  is 

where 

K~,.~ = ½ [ gt'lSH ~,, + g~'~H~/z _ gt*~H~,fl _ g,~BHt*~] , 

H,~ = hU~ _ ! r , , ~ -  2 / 5  , t  a "  

It has the algebraic symmetries  of the Riemann tensor, 

Kt,~/~ = K ~/~,,~ = _ K,,,,~/~ = _ K,,,~,~. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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The additional term X ~ can be written in several equivalent ways. The first is the 
most immediate from the field equation expansion: 

X~'~= ½[,D,,,D~]H~"~- A H " ~ =  X~*'. (2.15a) 

Alternatively, one may replace the commutator by a curvature to obtain a manifestly 
(/~v) symmetric form, 

X ~"= ½[ R-~ , jH  ° f l -  AHUq (2.15b) 

Finally, a form involving only K is obtained algebraically from (2.15b) using (2.12) 
and the background equations/~,,  = A~,~: 

X,~- lb -~  ~,, ,x,,/~ (2.15c) 
- -  ~ . .  X a B * ~  

It can be checked explicitly that each term on the right of (2,11) is separately 
symmetric so that T "~ = T'",  and that T "" is conserved (DuT "~ = 0), provided both 
the background field equation and its derivative consequences, 

DBR "~°" = D"R "~ -- D"R "~ = 0 = DBR "~, (2.16) 

are used. 
To show that (2.10) is actually a flux integral, multiply (2.11) by ~:  

The Killing vector identity, 

(2.17) 

together with (2.12) and (2.15b) then removes the last term in (2.17) leaving a total 
]xv divergence. Furthermore, the latter is of the form D~F , where F ~*~ is an antisym- 

metric tensor density*, and the divergence, therefore, becomes an ordinary one. This 
means that E(~) has the flux integral form 

1 fd3xTO, ,{~  

1 f d S i v , ~  [ g K O i , f l _ K O j ~ i ~ j ] ~ "  
8rrG 

* Antisymmet D' follows from that of /~ ,~  and the properties of (2.14). 

(2.19) 
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When A = 0 and the background is chosen to be flat, introduction of cartesian 
coordinates simplifies (2.19) to be the usual form for the energy, 

E =  16~'~lf dSi[ojhij-oihjj] , (2.20) 

when ~, is taken to be the timelike Killing vector (1,0). 
The expression (2.19) is actually generic for any Killing generator. In particular, 

for A = 0, it yields the other Poincar6 generators (P,, Juv) as ~ ranges over the other 
nine Killing vectors of flat space, and automatically ensures that they obey the 
global Poincar6 algebra. 

We may also use the general form (2.19) with A ~ 0  to express the ten Killing 
generators corresponding to the symmetries of a background de Sitter or anti- 
de Sitter space, in which case they will automatically satisfy the appropriate global 
algebra. 

A final remark concerns the relation between (2.19) and the canonical framework 
of sect. 4. The latter is simply a first order way of obtaining E(~) by taking the parts 
of the Einstein constraints linear in (hi j, p'J) and multiplying them by ~ .  

When A < 0, the anti-de Sitter algebra can be graded by introducing spinor 
charges Q. The resulting local supersymmetry gives rise to supergravity with a 
cosmological constant [11] and a spin 23 "mass" [12] term. Grading of the de Sitter 
algebra is not possible. In terms of supergravity, this is because the Rarita-Schwinger 
lagrangian acquires a "mass" - ( ~ ,  so when A > 0 the resulting mass term would 
not be hermitian. Also, in the 0(4, 1) de Sitter space there are no Majorana fermions, 
so the real gravitational field cannot have a fermionic partner. In sect. 6 we will use 
the graded algebra to show that "/04 is positive and thus to establish stability. 
However, in preparation, we must demonstrate that the spinor charges of supergrav- 
ity can be written as surface integrals as in eq. (2.19) so that they will satisfy the 
graded anti-de Sitter algebra for asymptotically anti-de Sitter metrics. The spinor 
charge can be written in terms of the vector-spinor density 

Q~' = e~'~B~75"~,~/)~+ ., (2.21) 

which is just the Rarita-Schwinger equation divided into linear and non-linear parts, 
as in (2.3) for gravity. Here qJ~ is the spin 3 field, 5~ are the background covariant ~, 
matrices defined through the background vierbein and 

~ = g + ½rn'~B, m2=½lAI.  (2.22) 

The current Q~ satisfies/)~Q~ = 0, but as for T ~ we must construct a contravariant 
vector density from Q~ which will satisfy ordinary conservation. The remedy is again 
to introduce an appropriate Killing quantity, in this case a spinor satisfying the 
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~ OL ~ 0 .  

This equation has non-vanishing solutions because the/)~ satisfy 

o 

(2.23) 

(2.24) 

for any spinor ~b. Now from (2.23) and the definition of (2.21) we find that 

f fQ ,=  ~e~'~'B" ysS,,,151~#~ = ~ (  f f e ~  757~b, ) 

= O/~(ffe"~/~ 75 5,q~.). (2.25) 

This last equality follows from the fact that the quantity in parentheses is an 
antisymmetric tensor density. Now from (2.25) and the antisymmetry of the e tensor, 
it follows immediately that 

0 , ( a Q ' )  = O. (2.26) 

As a result the spinor charge 

Q(a) = f d3x~Q ° (2.27) 

is a conserved quantity. Furthermore, from (2.25) it can be written as a two- 
dimensional surface integral: 

Q(a )  = ~ d S f i e  °i'k Y57~+,. (2.28) 

This is the desired analogue of eq. (2.19) for the bosonic generators. We will choose 
the parameters a to be commuting spinors (for convenience) in order to preserve the 
anticommuting character of Q(a). 

It is essential to note that the spinor a plays the same role as the Killing vectors 
play for the bosonic generators. Just as there are ten independent Killing vectors, 
~am, each of which defines a particular generator J~ab), there are four independent 
Killing spinors a ~) which define four fermionic charges Q~),/3 = 1 ..... 4. The labels 
(ab) on J~h) and (fl) on Q~) refer to the particular Killing vector or spinor motions 
along which they generate. It is these functions which satisfy the global graded 
algebra. In particular, we have 

{ Q,B,' Q(B',} = ±"("' ! + , , ( ~ ,  i (2 .29)  
2 I '( /~/~,)o(p,4) - -  v ( ~ f l ' ) ~ ( / L v  ) ,  
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where, in this relation, the appropriate correspondence between the Killing spinors 
on the left and the Killing vectors on the right is to be made. In (2.29), J<04) is just the 
Killing energy and all y matrices are the ordinary numerical ones. 

We note finally that the same "Coulomb" component of ~p, is involved in Q0 here 
as for A =0 .  There, an arbitrary vector spinor ~p, may be uniquely given an 
orthogonal decomposition into projections: 

~i=~pTq-tCie4-OiTI,  tCi=~(2 ( 6 i j - - ~ ) y  j , (2.30) 

where 

x?p~ x = Oi~p7 = 77p, x : 0, x,Oi : Oix, = 0, K 2 = 1. (2.31) 

As a result, the Rarita-Schwinger constraint Q0 = 0 may be written in the Coulomb 
form ~ =  QO, where QO is the non-linear part of the constraint involving 
deviations of the metric and affinity from their flat values. Here, exactly the same 
development can be made, with all a i (and ~7 2) replaced by /), (and /~2). Since 
[/)i,/)j] = 0, all required properties (2.31) may be verified to hold and Q 0  ~e, so 
that in the surface integral for Q only the e component of ~p~ actually occurs. 

We have now defined all the conserved quantities which we need. The next step is 
to find the appropriate Killing vectors to use in eq. (2.19). This is done in sect. 3. 

3. Properties of de Sitter and anti-de Sitter spaces 

3.1. DE SITTER SPACE 

De Sitter space corresponds to a four-dimensional surface in a flat five-dimensional 
space with metric ( - ,  + ,  + ,  + ,  + ) described by 

- z g + z ? + z 2 + z 2 + z 2 = 3 / A ,  A > O .  (3.1) 

The symmetries of this space are then the ten rotations and boosts of this five- 
dimensional embedding space, Rotations among the zl-z 4 clearly result in spacelike 
Killing vectors. However, boosts which mix zl-z 4 with z 0 can lead to Killing vectors 
which are timelike. For example, the Killing vector which corresponds to a mixing of 

z 4 and z 0 is 

~a = (-z4,0,O,O,  Zo). (3.2) 

Now 

~2= _zZ + z 2, (3.3) 
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~2 < O, (3.4) 

Iz41>lzol. (3.5) 

This is a distinctive feature of de Sitter space which implies the existence of an event 
horizon. Clearly, the resulting restriction on where the Killing vector corresponding 
to J04 is timelike will restrict the region of spacetime where the Killing energy can be 
used to establish stability. 

To be more specific, consider the de Sitter space metric in the form 

d~ -2 : - d t  2 +f2( t ) [dx  2 + d y  2 + dz2],  (3.6) 

where 

I I f ( t )  = exp~/?A t. (3.7) 

The coordinates (t, x) only cover half the space defined by eq. (3.1), but this metric 
will exhibit the event horizon problem and has the advantage of simplicity. There 
also exist static forms of the de Sitter metric, but they become singular at the event 
horizon and so will not be used here. If we wish to make a time translation for the 
metric (3.6), we must simultaneously dilate the spatial coordinates to generate a 
symmetry because of the factor f2( t ) .  The Killing vector for this symmetry is 

(3.8) - 1,~/~A . 

Now 

~2= 1 t 2 - + AU Ixl 2, (3.9) 

which is timelike in the region 

I 2 2 Ixl < 1. (3.10) 

This ~, generates a Killing energy through eq. (2.19). However, the restriction (3.10) 
limits the region of applicability of this quantity. In order for E(~) to act like an 
energy, the surface of integration in eq. (2.19) must lie inside the event horizon 
defined by 

~Af2lx l  2 -  1. (3.11) 
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This restriction will be exhibited clearly below in terms of a simple field model and 
in sect. 4. It makes sense physically since an observer fixed at the origin will only 
detect or be affected by events occurring inside the event horizon. Thus, we are 
testing whether the de Sitter spacetime is stable to fluctuations visible to this 
observer when we use the Killing energy E(~). Finally, we mention that the spacelike 
translation Killing vectors have the flat space form, ~j~=(0,6~),~ so that the 
translation generators are defined as usual in terms of the momentum density: 

T°~,~j)  = T °.,. (3 12) 

If we use the Killing vector of eq. (3.8) and the metric (3.6) in eq. (2.19), we find 
explicitly that 

+xf l  2 ,_{~-x/[f 2 ,j6 8o{ f z  kkh ) + f - z ( 6 i J O k h ° k - S i h ° ' ) - 8 o h i l  ] 

(3.13) 

As a reassurance that our E(~) makes sense as a physical quantity we will evaluate 
(3.13) for the de Sitter-Schwarzschild solution [13]. Let us consider this metric with 
Schwarzschild radius f lr 0 much smaller than the radius of the event horizon, 
f - l i f t S - .  Thus, we require that 

ro << ~ ~ (3.14) 

In this case, one can perform the surface integral in eq. (3.13) far away from the 
Schwarzschild radius and yet still be inside the event horizon. To evaluate (3.13) in 
this limit we only need to know the terms of h~,~ of order ro/r, which are 

hiJ=~i j f -2[(1-~- tp)  4 -  1] = 4 f  38ijr0+ - . .  
r 

( 1 - ~ )  2 
h ° ° = 1 -  ] - ~  = 4 f  ' r ° + ' " ' r  (3.15) 

,k = r o / f r .  

For a metric of the form 

h ij= A6 ij, h °° = B, (3.16) 
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f3 
E ( ~ ) =  ~ d S , {  - 0 i A  +xi[~3(~3Af20o A + ~A(2f2A + B ) ] ) .  (3.17) 

Substituting in eq. (3.15) one immediately finds that 

2r0 
E(~)  = ~ -  = M, (3.18) 

since 

r o ½GM. (3.19) 

There are various types of corrections to the result (3.18). First, there are terms of 
order M(ro/fR ), where R is the radius at which the surface integral of eq. (3.17) is 
performed. These are completely analogous to corrections in flat space and merely 

tell us that we must choose a radius such that fR >> r 0 if we are to include all of the 
energy M inside the boundary of our integration region. If fR is not much greater 

than r o, this also tells us that we should use a comoving volume element to evaluate 
the Killing energy in order to prevent a loss of energy out through the surface of 
integration. [For an integration surface far away from the Schwarzschild radius, 
fR >> r o, it should not and does not matter whether we use a comoving or fixed 
volume element.] In addition, there are corrections to eq. (3.18) of order M~ A( fR )r o. 

IA, Inside the event horizon ~, ( fR)2 is always less than one so these terms are always 
smaller than Mro/fR, i.e., smaller than those we have just discussed. However, such 
corrections signal a problem if one were to try to move the surface of integration 
outside the event horizon. Similar comments clearly hold for higher order effects. A 
potentially dangerous term would have been of order M(JAf2R 2) which is r 0 
independent, and therefore would not vanish even for small mass. However, these 

cancel upon explicit evaluation. 
An illuminating application of the Killing energy in de Sitter space is to a scalar 

field theory in a background de Sitter metric given by (3.6). The action for this 

theory is 

I=fd'xf3[½;  ' -  Jf (3.20) 

and it has an energy-momentum tensor density 

_ TO(): ½f-3~2 + ½ f ( v  ~)2 + f 3 V ( ~ ) ,  (3.21) 

T°i = - ~r0~¢~, (3.22) 
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where 

• n" = f 3~p. (3.23) 

Note that T ° is explicitly time dependent through the various f factors. For this 
theory, the Killing energy is, of course, not expressible as a flux integral but rather as 
the volume integral 

= f d2x T°"~.  (3.24) 

Conservation of E(~) can easily be checked from the field equations. Using the 
Killing vector of eq. (3.8) we see that the integrand of eq. (3.17) is 

r ° ~ = ½ f  31rZ+½f(veO)2+f3V(ep)--~½Ax. TrVep. (3.25) 

For a positive definite potential V, this will be positive provided that 

½[ f-37r2 + f ( v  q~)2] > ~ - x "  7r V q,. (3.26) 

Now define the vectors 

A = f  3/2~j~, 

B = f l / 2  V#,. (3.27) 

Then eq. (3.19) can be written as 

I[IA 12 + [BI 2] > ¢~TAflxfA - B. (3.28) 

But, by the triangle inequality, 

½[[A [ 2 + In[ 2] > A - B .  (3.29) 

Thus, (3.28) and (3.26) will be satisfied and as a result the Killing energy (3.24) will 
be positive provided that 

Vlr~Aflx[ < 1. (3.30) 

By eq. (3.10) this is just the condition that the integration volume of (3.24) lie inside 
the event horizon. Thus, the contributions to the Killing energy are positive inside 
the event horizon but not outside, so this scalar field theory is stable to fluctuations 
inside the event horizon. Furthermore, we learn that the stable vacuum state is given 
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by ~r-- V q~ = 0 and q, chosen to minimize V just as in flat space, with no added A 
dependence. Note the correlation between the event horizon and positivity which is 
expected from results on the Hawking effect [5]. 

3.2. ANTI-DE SITTER SPACE 

Anti-de Sitter space is the covering space for the four-dimensional surface, in a 
flat five-dimensional space with metric ( - ,  + ,  + ,  + ,  - ) ,  described by 

2 _ _  Z 2 = 3 / A ,  A < 0 .  + z? + z2 + (3.31) 

Once again the symmetries of this space are just the rotations and boosts in the 
five-dimensional embedding space. Here, however, there is a global timelike Killing 
vector corresponding to the rotation mixing z 0 and z 4, 

~a = (--Z4,0 'O'O,  Zo)" (3.32) 

and 

~2 = 2 2 (3.33) - -  z 4 - -  z 0 < 0 .  

Thus, ~, is timelike everywhere [note that the condition (3.31) excludes the point 
z 4 = z 0 = 0], and there is no event horizon. 

A complete metric for anti-de Sitter space is, for example, 

d~ 2 = -cosh2~f~l A I r d t  2 + dr  2 + sinh2V)l A I r(d02 + sin2 0dq~2). (3.34) 

This has the timelike Killing vector 

= ( -  1,o), (3.35) 

which can be used in eq. (2.10) to define a Killing energy, this time in terms of T~ ° 
alone since ~i vanishes. The properties of the resulting E(~) are given in sects. 4 and 
6. We mention also that the Schwarzschild-anti-de Sitter metric gives exactly 
E(~) = M since one may integrate at spatial infinity in this case. 

We conclude with some comments on the bearing of the absence of a global 
Cauchy surface in anti-de Sitter space on our analysis. In this space, specification of 
initial data on a complete spacelike surface does not lead to a unique prediction of 
the future state of a dynamical system (including gravity itself). This is because 
radiation, not specified by the initial conditions, can propagate in from infinity. 
Whenever a conserved quantity is defined, one must impose boundary conditions 
excluding incoming radiation. Normally, it suffices to make this restriction at the 
initial time and it will then hold for all time. Here, however, one will only be safe 
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from incoming radiation within an ever more restricted region of space (the "Cauchy 
development"). Therefore, if at a later time we wish to extend the integration volume 
in the energy integral outside this region we must impose the further (timelike) 
boundary condition at infinity that no incoming radiation appears. In any case, at 
the initial time, the energy is perfectly well-defined by the initial data. 

4. Analysis of small fluctuations 

We will now evaluate the Killing energy, which was shown to be well-defined in 
the last two sections, for small fluctuations about the de Sitter or anti-de Sitter 
background metrics. We will use the canonical approach to gravitational dynamics 
[14] to derive an expression for the Killing energy valid to second order in the 
fluctuation h~.  An expression for T~ ° has previously been derived for de Sitter space, 
using these methods, by Nariai and Kimura [15]. Our approach is different from 
theirs, but our results agree. We will begin by determining T~ ° and then construct 
E({) using the appropriate Killing vectors. 

In the canonical approach, the action for the gravitational field with a non- 
vanishing cosmological constant is written as 

I=f d"x{=%g,, + Ng- ' /~[g( 'R-2A)+½vr2- -g ikgj t r r ' J r rkq  + 2Ni[cr",j] }, 

(4.1) 

where 

N=__(-g°° )  - l / z ,  Ni=__go, , 

g = det( gis ), vr =--- gii~riS, 

' 0 mn 0 ~r'S =-- Nv/g [Fkt-- gklg F~.] gikgjl. 

Here 3R is the three-dimensional curvature scalar and ~'iJ I ~ is the three-dimensional 
divergence of the density ~r i-/. Our background decomposition is now with respect to 
the basic set (gij, ~-u, N, N,): 

g i j = g i j - ~ - h i j ,  77 . i j=~iJ - ] -p  ij,  

N = N + n ,  Ni = ?¢/+ h0i, (4.2) 

and we wish to evaluate the action to second order. The two terms in brackets in eq. 
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(4.1) are constraints:  
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g(3R - 2 A )  + ½~r 2 - gikgjtrriJTr kt = 0 = 7r'J I/. ( 4 . 3 )  

Eqs. (4.3) must,  of course, be satisfied by the background metric ~, , .  In addition, 
they are imposed  as constraints  on the hij and p'~ by requiring that they hold to 
linear order  in these variables. For  convenience we will impose the gauge condit ions 

pi = 0 = DJh,j, (4.4) 

w h e r e / ) J  is the three-dimensional  background covariant  divergence. For  the cases 
we are considering, namely  the de Sitter metric  of eq. (3.6) and the anti-de Sitter 

metric of eq. (3.34), the linear parts  of the constraint  equations (4.3) imply that 

h~i=O= Djp 'j. (4.5) 

The  gauges (4.4) and constraints  (4.5) together ensure that the excitat ions are 
transverse-traceless with respect to the background metric*.  Also, for these metrics 

the background  par t  of N, vanishes, N i~,~,o = 0. Then,  f rom eq. (4.1) we can 
immediate ly  determine that the hamil tonian is 

" . k = - - T ° o = - - N ~ ,  ' / 2 [ g ( 3 R - 2 A ) + ½ ~ r 2 - g ,  kgj, v'i~rk' ] , (4.6) 

with the quant i ty  in brackets  to be evaluated to second order in h,j and p'J, subject 
to the condit ions (4.4) and (4.5). Because the zeroth order  and linear constraints  
have been satisfied, the complete  lagrangian up to second order  in hij and p , / i s  just  

given by 

= ptJOohij - ~ ,  (4.7) 

with ~ defined as above. 

4.1. DE SITTER SPACE 

To  evaluate the hamil tonian  for the de Sitter space metric  (3.6), 

- 28 ( 4 . 8 )  g i j - f  ij, g0o = - 1 ,  

note that  the three-space is flat so 3~-= 0 and the first constraint  of  eqs. (4,3) 

* The covariant decomposition of a spatial tensor with respect to a constant curvature metric is 
discussed in ref. [16]. Of course, in the de Sitter case the three-space is flat, but not in our form of the 
anti-de Sitter metric. 
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requires that 

Thus, 

I ,~2 __ f 4 ~ i y ~ i j  = 2 f 6 A .  (4.9) 

, /Cr 2 h 
Q i j  ~ v 2 y iy~ 

p i j =  ~/~f2( p , j _  2 ~fT~3A f 'h,j ), (4.13) 

the hamiltonian takes the particularly simple form 

- TO,, = ½[ f 3(P/J) 2 ~ - f ( v Q i j ) 2 ] .  (4.14) ~ =  

Note that this is similar to the scalar field hamiltonian found in sect. 3. The form of 
T°,, whose correctness is also.justified below by conservation of T ° ~ .  is just 

T°, = - PJkOiQjk. (4.15) 

Notice that the hamiltonian of (4.14) is not time-independent. Using the field 
equations*, 

ao Pij = f  V 2Q,j, OoQij z f - 3 P  i j, (4.16) 

* These equations, incidentally, are equivalent to the covariant wave equation [] h' s = 0, where [] is thc 
scalar d'alembertian, which is correct since h'z is effectively a background scalar in our gauge. 

/ I ~,s = - 2V' ~A f8  ij. (4.10) 

Using conditions (4.4) and (4.5), we find that to second order 

g = / 6  _ l f 2 ( h i j ) 2  ' 

3 R = - I f  6 ( v h i s )  2. (4.11) 

The ~r terms in (4.6) are evaluated using (4.4), (4.5) and (4.10) to second order in p~J. 

The resulting hamiltonian from (4.6) is 

- = ~ f  hij ) . (4.12) ~ =  TOo 1 4 f - 3 ( v h i j ) 2 + f ( p , ,  , 1 2 

This gives the expression for -TOo, but before proceeding to evaluate the Killing 
energy it is useful to make a canonical change of variables. Nariai and Kimura [15] 
have noted that in terms of 
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we find instead that 
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~0~.~ "-- --00T00----~[--3f  3(pij)2~f-lf(~Qi])2 ] -~- 3-divergence. (4.17) 

According to the discussion of sect. 2, however, the conserved quantity is 

T°~.= -TOo+ !~3AxiT° i 

= ½[ f -3 (  p~j )2 + f (  V Qs9 )2] _ _  ~/"1 a xi P jk O, Qjk, (4.18) 

using the ~ of (3.8). Now taking the time derivative of the second term in (4.18) and 
using the field equations gives 

20 [ ~_~Axi PjkoiQjk] ~- 13~Axi[ f ~7 2Qjk~i Qjk "~- f 3eJk~ieJk  ] 

={'½A[-3f-3(P'S)2+½f(VQ,j)2]+3-divergence. (4.19) 

Comparing (4.17) and (4.19) we see immediately that the time derivative of T°v~ is 
equal to a total three-divergence so that 

1 fd3xVO,~,, (4.20) 

with T°i given by (4.15) has been explicitly shown to be conserved. Finally, E(~) can 
be shown to be positive for small fluctuations inside the event horizon. If we define 

AiJ=f 3/2ycpij, Bij=fl/2~7Qi), (4.21) 

then, exactly as in the scalar field case 

r ° , L -  - ½[IA'JI  + I B ,  I - n j. (4.22) 

Once again from the triangle inequality we see that T°v~, is positive provided that 

1A ~-2, ,2~ i iXl 1, (4.23) 

which is just the condition that the excitations be inside the event horizon. Thus we 
have shown that de Sitter space is stable against small fluctuations inside the event 
horizon. Notice that the change in sign of E(~) at the horizon occurs exactly as for 
the scalar example. This supports the universality of the Hawking effect [5]. 

Indeed, one would expect all systems with positive energy to behave in the same 
way: the free part of the energy is always -½f(qr2 + (• d?)2), while the momentum 
density is - ~r V qS. 
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For physical matter, the non-linear parts of the energy are [like V(~) in the scalar 
case] positive, so the critical condition for the effect arises primarily because of the 
free field part, where excitations beyond the horizon can give "negative" Killing 
energy contributions. In particular, if the higher terms in T°o(h) are effectively 
positive (as in the A -- 0 case), then the only negative contributions would be those 

due to the horizon. 

4.2. ANTI-DE SITTER SPACE 

For the anti-de Sitter space metric of (3.34), 3/~= 2A so the constraint equation 
(4.3) requires that 

,~ij = 0. (4.24) 

To second order in h,j and piJ, the hamiltonian of (4.6) is straightforward to 
evaluate, taking the manifestly positive form 

~c~: - - T ° o : l V ~ - l / 2 [ P i j p i j ~ - ~ ( l ( n ~ k h i j ) 2 - ~ - l [ a [ ( h i j ) 2 ) ] .  (4 .25)  

The Killing energy for the anti-de Sitter case, being an integral over - T ° o ,  since 
~ = 0 in our choice of g-~,, is thus positive, and anti-de Sitter space is stable against 
small fluctuations. Although the hamiltonian (4.25) contains a mass-like term, the 
field h~j still corresponds to a massless graviton. This is most easily seen by noting 
that the transverse-traceless h~j has only two degrees of freedom, so the spin 2 mass 
term is an artifact in the same way as that of the spin ~ field [12] in supergravity. 

5. Semiclassical  stability for A > 0 

We have proved that de Sitter space is stable against small fluctuations about the 
vacuum within the event horizon. Another test for stability is to look for euclidean 
"bounce" solutions which can signal an instability to quantum-mechanical tunnel- 
ling [6]. Of course, if one knew that the total Killing energy was positive there would 
be no need to check for such decays. However, in the absence of a complete 
positivity proof, a check of semiclassical stability is useful. It is known that unusual 
topologies can lead to stability problems in gravity [17] and semiclassical instability 
has been found for gravity at finite temperature [7] and for the Kaluza-Klein theory 
[8]. 

For the present case, a bounce solution is a solution to the euclidean space 
Einstein equations which is asymptotically de Sitter. The Schwarzschild-de Sitter 
metric might seem to be a possible candidate. When continued into euclidean space, 
this solution has two potential singularities, at the cosmological event horizon and at 
the Schwarzschild radius. One, but not both, of these can be removed by the usual 
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trick of making the euclidean time variable periodic [18]. This discussion has a 

simple physical interpretation in terms of Hawking radiation [5]. De Sitter space 
contains Hawking radiation at a temperature determined by the cosmological 
constant. If a black hole could form in this space with an intrinsic temperature less 
than that of the surrounding radiation, it could accrete this radiation and grow 
forever. However, for the Schwarzschild-de Sitter black hole, the black hole and 
cosmological temperatures are [5] 

T B H = C [ I + ~ 0  1, T c c = C [ l +  D]rH , (5.1) 

where C, D are positive constants, r 0 is the Schwarzschild radius and r H that of the 
de Sitter horizon. Then, clearly since r H > r o, 

T . .  > Lc, (5.2) 

so the black hole can never be cooler than the surrounding radiation. Thus, the space 
is stable against catastrophic black hole growth. 

When A : 0 it is known [4, 19] that there are no bounce solutions. Although it is 
doubtful that such solutions exist for A > 0, it would be desirable to extend the 
proofs to this case. 

6. Stability for A < 0 

In this section, we will see that the Killing energy is positive not only for small 
fluctuations, but for all excitations of the A < 0 theory which are asymptotically 
anti-de Sitter. This will establish stability of the anti-de Sitter vacuum metric. As 
shown in sect. 2, the generators of the graded anti-de Sitter group can be written as 
flux integrals at spatial infinity, eq. (2.28). Thus for asymptotically anti-de Sitter 
metrics they will obey the graded global anti-de Sitter algebra 

{Q(B,,Q-(B')} = ! . , ( # ) j ,  +~(#~) .  (6.1) 2 l ( t i f f ' )  (#4)  ' I ( t i f f ' )  ° {  U~,) • 

The explicit relations between the Killing spinors and Killing vectors required to 
give (6.1) are not difficult to derive in analogy with the A = 0 case*. Although the 
"spinor" labels in eq. (6.1) really refer to the particular Killing spinor defining the 
corresponding charge Q, they can be treated as normal flat space spinor indices. In 
particular, we can multiply (6.1) by y(01 and trace to obtain the desired operator 

* Indeed, because the /} behave essentially like ordinary derivatives, one can reduce the equation 
/)c~ 0 to ~.r/= 0 by making the transformation [20] a s~. A basis for the ~'s is then given by 

, 8H~t ) 
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relation 

J04 = ~ Q{~) ~> 0. (6.2) 

The argument now proceeds just as in the A = 0 case [2]. The quantum operator 
relation (6.2) can be applied at the tree approximation level (h ~ 0) with no on-shell 
fermions. This implies that the Killing energy E(~) which is the conserved tree limit 
expectation value of ,/o4 is positive for classical gravity with A < 0. 

Although we have not tried to carry out all the details, it also appears likely that 
the recent proof by Witten [4] that the energy is positive for gravity with A : 0 can 
be extended to the present case. This proof, inspired by supergravity arguments, is 
based on a consideration of solutions of the spinor equation 7iDie = 0, where Di is 
the spatial component of D r in an asymptotically flat background metric satisfying 
the Einstein constraints G~ = 0. Having determined the asymptotic form of e(x) 
which satisfies this equation, he then shows that O=e*(7.D)2e=--e*(D2+ 
G0"7°7")e = e*D2e, and consequently that ~dS~e*D% = f l v el2d3x ~> 0. But the 
surface integral is just proportional to E, which is therefore positive. The same 
arguments should apply with D~ replaced by Di--Di + ½mTi and the metric now 
satisfying G0u + Ag0u = 0, provided (as is likely) the surface term is proportional to 
E(~). Similarly, it would be of interest to generalize the classical geometrical proof 
of Schoen and Yau [3] to the A < 0 case. 

In any case, the formal supergravity-based proof is sufficient to reassure us that 
this model is stable, since positive energy also ensures semiclassical stability. Indeed, 
it might be possible to establish classical stability in the A > 0 case as well, for 
excitations lying entirely within the horizon, perhaps by using the static form of the 
0(4, 1) metric which covers the interior region and continuing from A < 0 to A > 0. 

7. Conclusions 

We have established linearized stability of Einstein theory, with a cosmological 
term of either sign, for fluctuations about the vacuum. In both cases, the presence of 
a timelike Killing vector made possible the definition of a physically relevant, 
conserved, positive flux integral energy expression, although for A > 0 the event 
horizon caused a restriction. The hamiltonian form we have derived for the scalar 
and gravitational theories makes the peculiar properties of the event horizon for 
A > 0 quite clear and signals the potential for Hawking radiation [5]. For A < 0, 
positivity of the Killing energy for all asymptotically anti-de Sitter metrics was 
demonstrated in terms of the graded extension of the algebra. It appears that the 
type of instabilities which might have ruled out the cosmological term does not 
occur, at least classically. 

We thank G.W. Gibbons for useful conversations. This work is dedicated to 
Andrei D. Sakharov on his sixtieth birthday, for his profound work in quantum 
gravity. 
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