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We prove that the S-matrix can be correctly obtained from the gauge-invariant effective action 
in the background field approach to gauge theories. In addition, we present a computation of the 
two-loop fermionic contributions to the Yang-Mills/3-function. 

1. Introduction 

It is well established that the background field method [1-6] greatly simplifies 

calculations of renormalization factors in gauge theories [4, 7-10]. Less appreciated 

is the fact that the method can also be useful for calculating S-matrix elements. The 
S-matrix is constructed from trees with vertices and propagators given by the 1PI 

Green functions. When constructing these trees, it is sometimes convenient to use 

a gauge, which is particularly well suited to the physical process being considered. 

This is often a Lorentz non-covariant gauge. In the usual formulation of gauge 

theories, the 1PI Green functions must also be computed in this non-covariant 

gauge making loop calculations extremely difficult. In the background field approach 

the gauge used for calculating 1PI graphs and the gauge used for constructing trees 
out of 1PI parts are unrelated and can be chosen independently to best suit each 

phase of the complete calculation. 
To take advantage of the background field technique in S-matrix calculations we 

must know that the S-matrix can be correctly constructed in the background field 
approach. In the conventional approach the effective action is used to generate 1PI 

Green functions and from these the S-matrix is constructed in the usual manner. 

In ref. [4], the gauge-invariant effective action calculated in the background field 
method was related to the usual effective action. This relation was sufficient for 
proving that renormalization factors could be correctly obtained using the back- 

ground field method. However, the 1PI Green functions generated by the gauge- 
invariant effective action are not the same as those of the conventional approach. 
In sect. 2, we prove that, nevertheless, the correct S-matrix can be obtained*. 

DeWitt has discussed the S-matrix in his formulation of the background field method 

1 Supported in part by the Department of Energy under contract DE-AC02-76ER03230.A0111 
2 Supported in part by NSF contract PHY 79-20801. 
* The need for such a proof was emphasized to us by P. van Nieuwenhuizen. 
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[5] and this discussion has been extended by Hart [11]. Here, we prove that the 
correct S-matrix is constructed by the simple graphical procedure presented in ref. 
[4]. In addition, we describe in sect. 3 a background field calculation of the fermionic 
contributions to the two-loop Yang-Mills /3-function. When added to the pure 
Yang-Mills result computed in ref. [41 this gives the complete two-loop/3-function. 
The background field method makes this calculation much easier than previous 
calculations [12, 13] using the conventional approach. 

2. The S-matrix in the background field method 

The background field method is a technique for computing a gauge-invariant 
effective action,/J'[A], which is used to generate 1PI Green functions. The Feynman 
rules in this approach (given in ref. [41) distinguish between lines which appear 
inside loops and external lines. Initially, a gauge is chosen (the background field 
gauge [11) for internal lines but the gauge-invariance of external lines is left intact. 
An effective action, IliA], is then computed which is a gauge-invariant functional 
of its argument, A. Once the 1PI Green functions have been determined the S-matrix 
is constructed from trees of 1PI parts in the usual way. To define the propagator 
used to connect the 1PI pieces a gauge-fixing term is added to/~[A]. As stated in 
the introduction this gauge-fixing term is not related to the original term used to 
fix the gauge inside loop diagrams. 

In ref. [4], a relation between the gauge-invariant effective action, /~, and the 
conventional effective action, F, was derived. To understand this relation consider 
the usual generating functional in a Yang-Mills theory, 

I ( I  r_,_:a:4 i ,,+Lgko t_2i_aGa_l_J A l: ]) Z [ J ] =  8 A S O 6 0 * e x p  i d 4 x  L , (2.1) 

computed with an unconventional gauge-fixing term 

__ a a ~ a b c T  , b  ~ c  Ga - O~,A, - O , , V ,  +g f  v~,,/t,, , (2.2) 

where fabc are the group structure constants and V~ is an arbitrary function. In 
eq. (2.1) 0 is the ghost field and Lghost is the ghost lagrangian corresponding to the 
gauge-fixing term (2.2). Although we have introduced the function V~,  (2.2) is still 
a perfectly acceptable gauge-fixing term. In particular, the gauge-independence of 
the S-matrix assures us that the correct S-matrix can be computed in this gauge 
using the conventional construction. The effective action, F, is obtained from Z[J]  

by Legendre transformation. Because of the presence of V~, in the gauge-fixing 
a 

term, F will depend on V~, as well as on its usual argument, the vacuum expectation 
a value of the gauge field in the presence of the source J~,. We will therefore write 

it as F[A; V]. The relation derived in ref. [4] between the gauge-invariant action, 
/~, and F is 

i l iA]  = F [ A ;  V]lv= A . (2.3) 



374 L.F. Abbott et al. / Background field method 

The S-matrix in the conventional approach is defined by generating 1PI Green 
functions from F[A; V] and using them to construct tree graphs. The same procedure 

is used in the background field method. However,  the two approaches are not 
identical because the 1PI Green functions they use are different. In the conventional 
approach the 1PI functions are defined by taking A-derivatives of F[A;  V] at fixed 
V. The background field 1PI Green functions are defined by taking A-derivatives 
of/~[A] which from eq. (2.3) is equivalent to taking A-derivatives plus V-derivatives 
of F[A;  V] and then setting V =A.  To prove that the correct S-matrix can be 
obtained in the background field approach we must show that the presence of the 
extra V-derivative terms in the background field 1PI functions does not affect the 
S-matrix. 

We can think of F[A;  V] as generating Green functions with two types of fields. 
Taking A-derivatives of F[A;  V] generates the usual 1PI Green functions with 
external A-fields. Differentiating with respect to V gives graphs with external 
V-fields. The usual construction of the S-matrix uses only the A-field 1PI functions. 
On the other hand, in the background field approach, as discussed above, the 
A-derivatives of/~[A] correspond to A-  and V-derivatives of F[A;  V] with V = A 
so in this approach the S-matrix is constructed from 1PI parts with both A and V 
fields. This is shown in fig. 1 where a typical contribution to the S-matrix is drawn. 
We indicate A-derivatives of F by a circle and V-derivative by a square. The 
S-matrix is obtained in the background field approach by summing over all trees 
with all possible combinations of circles and squares. The graphs with only circles 
(A-derivatives) are the same as those of the conventional approach. Thus, to prove 
our claim we must show that trees of 1PI parts with one or more squares (V- 
derivatives) do not contribute any additional terms to the S-matrix. 

Consider a 1PI Green function with one external V-field and an arbitrary number 
of A-fields. Any S-matrix graph with only one square is obtained from this 1PI 
function by building trees on the external lines as in fig. 2. The part of this graph 
to the right of the dashed line is the V-derivative of a connected Green  function. 
To obtain a contribution to the S-matrix from fig. 2 the external propagators are 

Fig. 1. A typical contribution to the S-matrix in the background field approach. Solid circles represent  
A-derivatives and squares V-derivatives. 
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Fig. 2. A contribution to the S-matrix with one square or V-derivative. The part to the right of the 
dashed line vanishes when the external lines are amputated and put on shell as discussed in the text. 

amputated and the external lines are put on shell with physical polarizations. The 
part  to the right of the dashed line then becomes the V-derivative of an on-shell 
amputed Green  function. We will show below that the V-derivative of an on-shell 
Green  function vanishes for a n y  value of V. Thus, this graph and graphs with more  
than one square like fig. 1 which are proport ional  to higher V-derivatives of 
connected Green  functions will not contribute to the S-matrix. This proves that the 
S-matrix is given by graphs without squares and is equal to the S-matrix in the 
conventional construction. 

Since the field V~ only enters into the gauge theory through the gauge-fixing 
term (2.2), the V independence of amputated,  on-shell, Green  functions is related 
to the gauge-independence of the S-matrix. We prove this result using Ward 
identities [ 14] derived f rom BRS invariance [ 15] applied to the generating functional 
(2.1). 

A simple consequence of the anti-commuting nature of the ghost field 0 is the 
identity 

I (I r ]) ~ A 6 0 6 0 * O * b ( y )  e x p  i d4x[_ 4Jr t~ v - 2 - - - ~ G a + J ~ A a ~  = 0 .  (2.4) 

We perform the BRS transformation 

6 A ~  = D ~  b ( A )  ObA , 

- -  1 abc 
60a - ~gf  ObOcA , 

~0'~ =I GaA, (2.5) 
O/ 

whereDa~ b ( A ) 6 ab acb c = 0~, + g f  A~, and A is an anti-commuting parameter .  Using the 
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BRS invariance of the lagrangian we derive the Ward identity 

f 6aso60*{1Gb(y)+O~(y)Id4ziJCu(z)D~a(a)Od(z)} 

xexp i d4x[. = 0 .  (2.6) 

On the other hand, by directly differentiating Z[J] in eq. (2.1) with respect to 
V~ (y) and using 

g g h o s t  - -  t ac cb --OoO. (V)D. (A)Ob, (2.7) 

we find 

6 V , ( y ) - a  6A6080' - D",b(A)Gb(y)+gf Ob(y)D, (A)Oa(y) 

). 
Now, operating on eq. (2.6) with D~b(--i 6/6J(y)) we obtain the identity 

f ~A 6060* {1D:b(A)Gb(y)-gfabco*b(y)D:d(A)Oa(y) 

+i[D~b(a)o*b(y)] f d4zj~(z)D~a(a)Od(z)} 

Xexp(ifd4xr-!r'aZ+Lghost ~-~G~+J~aa~])=O. (2.9) 
L 4a ~v 

Finally, (2.8) and (2.9) can be combined to give our final result 

i ~3V~(y) 6A~060' [D~b(A)O~(y)] d4zj~(z)D~d(A)Oa(z) 

(I ]) xexp i d4x[ 4--,~ -2---~Ga+J~A~ . (2.10) 

To obtain an identity for the V-derivative of an N-point Green function from 
(2.10) we expand both sides in powers of the source J. Then, the connected term 
with N powers of J will give the N-point Green function. The implications of the 
identity (2.10) on the N-point function is shown diagrammatically in fig. 3. Recall 
that we are interested in V-derivatives of on-shell, amputated Green functions with 
physical polarizations. The condition of physical polarizations is met by using a 
transverse source satisfying 0. J = 0. Thus, for the Green functions with transverse 
polarizations the terms a and b in fig. 3 do not contribute. Next, we remove the J 
factors from the external lines, amputate the external propagators and put these 
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J Jt + N - I  

(el) 

Fig. 3. Diagrammatic representat ion of the identity (2.10) derived in the text. Wiggly lines are gauge 
propagators and straight lines with arrows are ghost propagators.  

lines on shell. In the terms c and d in fig. 3 one of the J factors is attached to a 
loop involving a ghost and a gauge propagator, rather than being attached to a 
single gauge propagator. This loop does not have any on-shell pole so when we 
amputate and put the momentum on shell diagrams (c) and (d) in fig. 3 will also 
vanish. Thus, we have shown that amputated, on-shell N-point  functions with 
physical polarizations are V-independent. As discussed above, this means that the 
extra V-terms introduced in the background field method will not contribute to the 
S-matrix and completes our proof. In conclusion, the S-matrix can be obtained in 
the background field method from the gauge-invariant effective action, /~A],  in 
the standard fashion [4]. 

3. Computation of the fermionic contribution to the IS-function 

In ref. [4] the fl-function for a pure Yang-Mills theory was computed to two-loop 
order  as an illustration of the background field technique. We have now extended 
this calculation to include fermions. We use the same procedure and notation as in 
ref. [4]. In the background field approach, we only need to calculate the background 
field renormalization constant ZA to obtain the E-function. This greatly simplifies 
the computation. 
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Fig. 4. Fermionic one- and two-loop contributions to the background field propagator. Straight lines 
with arrows are fermion propagators. 

ZA is determined by renormalizing the background field inverse propagator.  To 
compute the fermionic contributions to two-loop order we must calculate the 
Feynman graphs in fig. 4. Graphs 4f and 4g are due to gauge-fixing parameter  
renormalization. To regularize and renormalize the divergences we use dimensional 
regularization and minimal subtraction. In this method ZA can be written as a series 
of poles in e. If ZA is written up to two-loop order as 

1 2 1 4 

then the/34unct ion is given by 

/3(g) = - g  0 +/31 • 

The calculation of graph 4a leads to the well-known resu l t /30( fe rmion ic )=-4T 
where if T a is a group generator  then T~ ab =-- Tr {T~Tb}. To simplify the presentation 
of the results for graphs 4b-4g we express them in the form i (g /4~)a~ab{Ag~k2-  
B k ,  k~}. The values of A and B for individual graphs* as well as their sums are 
given in table 1. Note that the 1/e  2 divergences are transverse graph by graph as 
was found previously in the pure Yang-Mills theory [4, 8]. From these results we 
see that /3~(fermionic)=-T(~CA+4CF) with CFI = T~T a and CA~b=f~cdf  boa. 
When added to the beta function for pure Yang-Mills theory from ref. [4] we get 

* The algebriac manipulation program MACSYMA was used in the evaluation of fig. 4e. 
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TABLE 1 

Results from the calculation of the graphs in fig. 4 
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Graph A B 

4 4 7 
b TCFf~e2(l+4e--2pe) TCF~e2(l+~e-2pe) 

c 

8 7 
d TCA~e2 (1 + ~ e  - 2pe) TCA~e2 (1 +~e - 2pe) 

1 4 11 1 4 
e -T (Cr -~CA)~e2( l+~-e -2pe )  --T(CF--~CA)~e2(I+Se--2pe) 

20 46 20 46 
f --TCA~e2(I+T3e--pe) -TCg~e2( l+~3e-pe)  

TCg20 2 20 28 T C g ~ (  l + i3e-  pe) g 

1 lo 1 lO total - -  (-yTCA + 2TCF) --(~-TCA+2TCv) 
g 8 

Here p -- 7E--ln 4rr +ln k2//x 2, facafbca ...:CA tsab, T~T ~ = CF L and T8 ab = Tr { TaTb}. 

t h e  w e l l - k n o w n  resu l t  [12,  13] 

L . F . A .  wishes  to  t h a n k  P. van  N i e u w e n h u i z e n  fo r  e n c o u r a g i n g  h i m  to  beg in  w o r k  

on  this  p r o j e c t  and  M. V e l t m a n  fo r  n a g g i n g  h i m  to  c o m p l e t e  it. 
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