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We consider cosmologies having an inflationary period during which the Robertson-Walker 
scale factor is an arbitrary function of time satisfying /~ > 0 (not necessarily an exponential). We 
show that any such inflationary period will produce long-wavelength gravitational waves which 
can affect present observations of the microwave background. Using present bounds on the 
quadrupole anisotropy we derive constraints on general inflationary cosmologies. Models with 
power law inflation (R ~ P') are considered in detail and the maximum reheating temperature is 
given as a function of p. Finally, predictions for the anisotropy of the microwave background 
produced by gravitational waves generated by ordinary exponential inflation are presented. 

1. Introduction 

The homogeneity and spatial flatness of the present universe strongly suggest that 
some time in the past a period of  inflationary expansion occurred [I]. In the usual 
inflationary cosmology [1], the Robertson-Walker scale factor grows exponentially 
during this period. However, exponential inflation is by no means uniquely required. 
It is straightforward to characterize what sort of behavior is needed to explain the 
present homogeneity and flatness. The evolution of the Robertson-Walker scale 
factor is governed by the equations 

=~Go R2, (1.1) 

,~ 
- -  = - ~ f f G ( p  + 3 p ) ,  (1.2) 
R 

where p and p are the energy density and pressure and k = + 1. The flatness problem 
is solved if, during the inflationary epoch, the term ~rGp in eq. ( l . l )  grows much 
larger than 1/R 2 which characterizes the magnitude of  the curvature term in ( l . l ) .  
From ( l . l )  we can write the ratio of  these terms as ~,rGp/(I/R 2) = ~2+k.  Since 
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this must grow and become very large, /~ must increase with time, or equivalently 
/~ must be positive during inflation. From eq. (I.2) this implies that p +3p must be 
negative so that the normally decelerating force of  gravity in an expanding universe 
becomes accelerating. This is what uniquely characterizes inflationary expansion. 
The physical distance between fixed coordinates in an expanding Robertson-Walker 
universe grows like R. The horizon size is proportional to the inverse of the Hubble 
constant. Since /~ > 0 during inflation, the ratio of this physical distance to the 
horizon size, R ( f ~ / R ) = / ~ ,  increases with time. This means that fixed coordinate 
lengths get pushed outside the horizon and, if enough inflation occurs, this solves 
the horizon problem. Thus, if sufficient growth in R takes place, any model with 
an inflationary period during which /~ > 0  can solve the horizon and flatness 
problems. 

The fact that fixed coordinate lengths get pushed outside the horizon in any 
inflationary cosmology has an important consequence. Short-wavelength quantum 
fluctuations in the gravitational field will get red-shifted out of the horizon during 
the inflationary period. There they remain with constant amplitude until, much later, 
they re-enter the horizon during the radiation or matter dominated eras as long- 
wavelength gravitational waves. Such waves can disturb the isotropy of the micro- 
wave background through the Sachs-Wolfe effect [2]. The large-scale anisotropy 
induced by gravitational waves is dominated by physical wavenumbers of order the 
present Hubble constant, Ho. We will show in sect. 3 that the amplitude of these 
waves in any generalized inflationary cosmology is of order HHc/mp where HH¢ is 
the value of the Hubble constant at the time when a wave of present physical 
wavenumber Ho crossed the horizon during the inflationary era. These waves produce 
a 8 T / T  of the order of  their amplitude, Hnc/mp.  Since observations indicate a 
large-scale isotropy of  less than 10 -4, we find 

HHc < 10-4my. (!.3) 

This result applies to any model and it indicates that at least some part of the 
inflation must occur at scales well below the Planck mass where quantum gravitation- 

arl effects are weak. 
If we know R as a function of time during the inflationary period we can turn 

the result (1.3) into a bound on the reheating temperature after inflation. We will 
consider the cases R - t p with p > 1 in sect. 2 However, it is useful to present an 
order of  magnitude estimate of the result here before proceeding to the detailed 
analysis. The gravitational waves which dominate the anisotropy have a physical 
wavelength of  order 1/H0 today and had a physical wavelength 1/HHc at the time 
of horizon crossing during the inflationary epoch. Using our knowledge of the scale 
factors and the fact that t ~ I / H  to relate these wavelengths we find 

l , 
H H ~ - ~ ]  ~ ]  ~ ]  - Ho" (1.4) 
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where H~h and Hm are the values of  the Hubble constant at the time of reheating 
and at the time of  matter  domination. Solving (1.4) for Hrh and using the bound 
(1.3) we find 

r / I C t - 4 ~  ~p-l Llll3 ldll6111(p-ll2) 
H r h  < t_', . . . . .  P) " "  o " "  m .I ( i . 5 )  

Finally, using conservation of energy we can relate this Hubble constant to a 
maximum reheating temperature,  

( 4 5 " ~  ' / '  
T~mh "~= \ - ~ 3 ]  (mpH~")  I/2. (1.6) 

Although this analysis has been quite crude, eqs. (I.5) and (1.6) provide a fairly 
good approximat ion to our results in sect. 2. 

In the limit p -~ ~o power law inflation becomes equivalent to exponential inflation 
and the results (1.5) and (1.6) give us the bound on the reheating temperature,  or 
equivalently on the scale of  the potential [3, 4]: 

T~"~ ~ = 1017 GeV.  

For completeness we present the predictions of  exponential inflation for the gravita- 
tional wave contribution to moments of  the microwave background temperature in 
sect. 4. These have previously been given in ref. [4]. 

2. Bounds on power law inf lat ion 

We consider cosmologies in which 

R =hp-l t  p (2.1) 

during inflation. Here p > 1 and h is a constant. Using the conformal time variable 
r = t I -p / ( I  - p ) h  ~-~ we can write the metric in the form 

ds 2 = S 2 ( r ) [ - d z  2 + d r .  d r ] ,  (2.2) 

where 

1 
S ( r )  = ~ [( l - p ) r ]  p/<' -P). (2.3) 

To compute  the ampli tude of gravitational waves generated from quantum fluctu- 
ations during the inflationary period we follow the methods used in ref. [5]. We 
define fluctuations in the metric by writing the spatial metric as 

g,j = S2(r)[8~j +2h0] ,  (2.4) 

The computat ion of the fluctuation spectrum for h o can be reduced to a calculation 
for a massless scalar field g, with a factor of  ~ relating the amplitude of  the 
fluctuations in the two cases. We define the amplitude of fluctuations in ~ at 
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coordinate wavenumber k in terms of  the scalar two-point function by [5] 

I 3X . 
Ia k(,)l k ~ ~ e '~''(~o(x, r)tp(O, , ) ) .  (2.5) 

(zTr) 

It is straightforward to calculate the scalar two-point function in the spaces described 
by (2.2) and (2.3). The result is* 

h2T2v f 
(~(., r)~o(O, r))=32~r~(l_p),_~ d ~ k e - ~ " l I - L ( k r ) [  ~ , (2.6a) 

where 
3p - 1 

v - - -  (2.6b) 
2 ( p - l ) '  

and H~ is the Hankle function. We want to know the fluctuation amplitude for 
wavelengths well outside the horizon so we take the limit kz-~ 0. Then, using 

- i  
- -F(v ) (~kz )  , (2.7) H~(kr) ' ~ -v 

k~'~O "II" 

we find from (2.6) and (2.7) that 

h2F2(v)22~-~ (2.8) 
la~k(~)l 2 ~ k2~-~[l _ pl'-2V~r"" 

We now make the transition from a quantum to a classical analysis by equating 
the result (2.8) (multiplied by x/8--~) with the square root of  the correlation function 
for a classical gravitational wave of  coordinate wavenumber k and polarization A. 
Outside the horizon such a wave has a constant amplitude which we write as 
A(k)~ (k), where t~(k)  is a random variable with statistical expectation value 

(a*~(k)a~,(q)) = -~ ~3(k - q) ~,,~,. (2.9) 

This assures us that the correlation function of  the wave with amplitude A(k)~ (k) 
defined in analogy with (2.5) will be A2(k). If we match this result with the quantum 
result (2.8) and include the normalization factor x/8~rG we find that the amplitude 

for gravitational waves satisfies 

h2F2( v)22v-2 (2.10) 
A2(k) = kEv-3(p _ l)~-2~,ram~" 

To summarize, quantum fluctuations in the gravitational field get pushed outside 
the horizon during inflation where they remain as classical gravitational waves with 
amplitudes given by a random variable t~a (k) satisfying (2.9) times a factor A(k) 
satisfying (2.10). Note that as p--,co, v-*~, so A in (2.10) is independent of k. This 

~ We determine the vacuum by considering times when the modes k have wavelengths small compared 
to the horizon length. Then the curved nature of spacetime is unimportant and the vacuum is defined 
by having the usual particle modes unoccupied. 
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is the scale-invariant spectrum predicted by exponential inflation. For finite p we 
do not get a scale-invariant spectrum. The gravitational waves thus produced remain 
outside the horizon until the radiation or matter dominated eras. The waves of 
relevance to the large-scale anisotropy of the microwave background re-enter the 
horizon during the matter dominated era. During the matter dominated period 
gravitational waves have amplitudes which go like jm(kr)/kz where j~ is a spherical 
Bessel function. Matching this to the constant amplitude predicted by (2.10) when 
the wavelength is well outside the horizon (i.e. in the limit kz-*0) we obtain our 
prediction for the behavior of the gravitational waves generated by inflation, during 
the matter dominated era 

ho(x, r)=~ I d3k 3a(k)~(k)~e~'Xe~(k,A ) , (2.11) 

where e~j is a polarization tensor, ~x(k) satisfies (2.9) and A(k) is given by (2.10). 
The result (2.11) can be applied directly to the Sachs-Wolfe formula which 

predicts that deviations in the isotropy of the microwave background temperature 
measured along the unit vector e are given by 

8To 
_ _ f[- 'E dYho(Ye, ~'o-Y) e'e~ (2.12) 

To " 

Here the dot denotes a z derivative and Zo and ~E are the conformal times today 
and at the time of recombination respectively. Using eq. (2.12) we can derive 
predictions for multipole moments of 6To/To by projecting out a given multipole 
in (2.12), squaring and taking a statistical expectation value. If we write 6To/To in 
a multipole expansion 

6To= ~, a~,,Y~,,,(e), (2.13) 
To ~,,. 

and define 
I 

a~ 2-= ~.. la,.I 2, (2.14) 
m=-- !  

then we find 

f k'':° toAd(t° I (a~)=727r~l(l-l)(l+l)(l+2)(21+l) dto 
a o k r o /  

r f  ,-,d,. ( 3 c o s [ ~ ( l - z ' ]  3 s i n L ~ z ~ , ] + s ~ [ ~ ( , - z ) ~  
X ~ o  dz ( ~ ( l _ z ) )  3 ( ~ ( l - z ) ) '  ( ~ ( l - z ) )  ~ } 

( x (2 / -  1)(2/+ 3)J~(~) +~2/-  1)(2/+ l ) 'k-~(~)  

~ ( ~ . l S /  
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Fig. 1. The maximum reheating temperature as a funct ion o f  p for  power law inflation. 

The result* (2.15) is an expectation value but since the individual at,,'s have gaussian 
fluctuations about zero we can compute the statistical probabilities for fluctuations 
about the mean (2.15). The ultraviolet cutoff k,~ax restricts the integral to waves that 
entered the horizon in the matter dominated era. For l =  2 we find that at 90% 
confidence level a~ will be greater than 0.3(a~) and we use this in computing our 
bounds. Requiring that the expected quadrupole moment  be no larger than the 

experimental  bound [8]: 

a ~ < 5.2 x 10 -8 . (2.16) 

gives us a limit on the parameter  h which can easily be converted into a limit on 

the value of  the Hubble constant at the time of  reheating through the relation 

Hrh = [ pPh p- ~ H~ 2/3 H tm/6] ~/(p-~/2) (2.17) 

Finally, this can be related to a maximum reheating temperature through eq. (!.6). 
The resulting values are plotted in fig. I. Any inflationary model must produce 
sufficient reheating to reintroduce baryons into the universe. Depending on the 
energy scale at which baryon number  vioilation is allowed this restricts the value 
of p allowed through the results in fig. 1. For example,  p = 2 as predicted by domain 
wall driven inflation can only have reheating to a maximum temperature of  108 GeV 
so baryon violation would have to occur below this scale if such a model is to be 

viable. 

3. Results for general R(t) 

In the introduction we stated that for any R(t) satisfying /~ > 0 ,  gravitational 
waves will be produced with amplitude of  order HHc/mp outside the horizon. This 

* For p < ½ this expression diverges in the infrared. We cut off the infrared divergence by restricting 
the integral to wavelengths that crossed the horizon in the inflationary epoch when the Hubble 
constant  was less than m, .  
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resulted in a model-independent bound of 10-4mp on the value of the Hubble 
constant when wavelengths which are now of order 1/Ho crossed the horizon during 
inflation. In this section we derive this result. 

As in sect. 2 we can relate the gravitational problem to a scalar field problem. 
The expectation value of the square of the amplitude for a gravitational wave well 
outside the horizon with coordinate wavenumber k is 87rG times IA~k(7-)l 2 as defined 
in eq. (2.5) in the limit kT--* 0. Thus, we must compute the scalar two-point function 
in a general inflationary metric in this limit. 

We write the scalar field in terms of creation and annihilation operators in the 
usual way 

qg(X, 7") : f d3k {a(k) ea"Xtpk('r ) +a+(k)  e-~k'X~pk*(7-)}. (3.1) 
d 

The functions ~k(7-) a re  solutions to the scalar wave equation, which in the metric 
ds 2 = $2(7-)[-d7- 2 ÷ld lq is 

.. 2.¢ 
~Ok +-~- q~k + k2~o~ = O. (3.2) 

They are normalized so that the canonical commutation relation 

[~o(x, r), ~b(y, r)]  =~-i~ ~3(x-Y) (3.3) 

is satisfied. When the wavelength is well within the horizon the solution to (3.2) 
and (3.3) is 

e-ikr 

¢Pk ( r )  -- S ( T ) x / ~  (2~r) 3/2" (3.4) 

When the wavelength is well outside the horizon, ~0k is constant. We can estimate 
the value of this constant by matching the solution (3.4) to this constant solution 
at the time of horizon crossing. This gives 

e-  iks~c 
~ _ _  

~Ok S(7-,c)x/2k (27r) v2,  (3.5) 

outside the horizon. Multiplying ]~okl 2 in eq. (3.5) by 8~rGk 3 we find that the amplitude 
of gravitational waves outside the horizon satisfies 

A2 - k28"a'G = 1 (HH~c/2 (3.6) 
S2(7-HC)2(2"a') 3 2¢r ~ \ m p  / " 

Here we have used that fact that the time of horizon crossing is defined by 
k/S(7-nc) = Hnc. Eq. (3.6) gives that A is of order Huc/m~,. 



548 LF. Abbott, M.R Wise/ Inflationary cosmologies 

2 
a . ~  12 - 

8 -  

4 

I , 1 i 
3 5 

t t i l  
1 ~ 1 ~  
7 9 

Fig. 2. Predictions for the gravitational contribution to the multipole moments of the microwave 
background for exponential inflation. V o is the value of the vacuum energy density driving the inflation. 

4. Predictions for exponential inflation 

In the limit p--* c~ the results of sect. 2 are equivalent to results for exponential 
inflation [3, 4]. We can use eq. (2.15) to generate predictions for the gravitational 
wave contribution to the expectation value of the moments a~ in exponentially 
inflating cosmologies. This has previously been done in ref. [4]. In fig. 2 we plot 
the results including 68% confidence level error bars coming from an analysis of 
statistical fluctuations about the mean. These predictions do not ditter in their l 
dependence very signficantly from the predictions of microwave anisotropies coming 
from scalar density perturbations [7]. However, scalar perturbations contribute a 
large amount to the dipole anisotropy [8]. This contribution is completely absent 
for gravitational waves. In light of the small value of the dipole anisotropy, an 
observation of quadrupole and higher moments near the present quadrupole bound 
could signal the presence of long-wavelength gravitational waves. 

We thank D. Hitlin for useful discussions. We are also grateful to L. Krauss for 
drawing our attention to ref. [3]. 

[1] A. 
[2] R. 
[3] A. 

V. 
[4] R. 

References 

Guth, Phys. Rev. D23 (1981) 347 
Sachs and A. Wolfe, Astrophys. J. 147 (1967) 73 
Starobinskii, JETP Lett. 30 (199) 683; 
Rubakov, M. Sazhin and A. Veryaskin, Phys. Lett. 115B (1982) 189 
Fabbri and M. Pollock, Phys. Lett. 125B (1983) 445 

[5] A. Guth and S.-Y. Pi, Phys. Rev. Lett. 49 (1982) 1110; 
J. Bardeen, P. Steinhardt and M. Turner, Phys. Rev. D28 (1983) 679 
A. Starobinskii, Phys. Lett. l lTB (1982) 175; 
S. Hawking, Phys. Lett. IISB (1982) 295 

[6] P. Lubin, (3. Epstein and (3. Smoot, Phys. Rev. Lett. 50 (1983) 616; 
D. Fixen, E. Cheng and D. Wilkinson, Phys. Rev. Left. 50 (1983) 620 

[7] J. Peebles, Astrophys. J. 263 (1982) LI; 
L. Abbott and M. Wise, Phys. Lett. 135B (1984) 279 

[8] J. Silk and M. Wilson, Astrophys. J. 243 (1981) 14; 244 (1981) L37; 
L. Abbott and M. Wise, Brandeis University preprint BRX-TH-153 (1983) 


