
Nuclear Physics B244 (1984) 454-468 
© North-Holland Publishing Company 

INFRARED DIVERGENCES AND A NON-LOCAL GAUGE 
FOR SUPERSPACE YANG-MILLS THEORY 

L.F. ABBOT171 and M.T. GRISARU 2 

Physics Department, Brandeis University, Waltham, MA 02254, USA 

D. ZANON 3 

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA 

Received 24 April 1984 

The usual superspace approach to supersymmetric gauge theories suffers from problems with 
infrared divergences which greatly complicate multiloop calculations. We eliminate these divergen- 
ces by introducing a non-local gauge-fixing term. In the background field method this term leads 
to unusual quantum-background interactions. Functional methods are presented for dealing with 
these interactions. As an example we compute the two-loop Yang-Mills E-function using the 
background field method in superspace. We also show how a non-local gauge can be used in 
ordinary, non-supersymmetric Yang-Mills theory. 

1. Introduction 

Supergraph techniques provide an elegant and powerful approach to perturbative 
calculations in supersymmetdc field theories. In the case of supersymmetric gauge 
theories, supergraph techniques can be combined with the background-field method 
resulting in a formulation which is explicitly gauge invadant and supersymmetric. 
However, along with the usual on-shell infrared divergences of Yang-Mills theory 
[l], the supergraph approach suffers from severe problems with additional infrared 
divergences [2, 1] which occur at the one-loop level in an arbitrary Landau-type 
gauge and at the two-loop level even in the Feynman gauge. Although these 
divergences are not expected to affect physical quantities they must be separated 
from ultraviolet divergences before renormalization and this procedure is cumber- 
some, especially when dimensional regularization is used. In this paper we present 
a procedure to eliminate such divergences by introducing a non-local gauge-fixing 
term. 

The infrared divergences in the superspace approach to a supersymmetric gauge 
theory described by the real superfield V arise because of the form of the propagator 
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in a general covariant gauge. After conventional gauge-fixing with a term 
( I / a )  D 2 VD 2 V the propagator  is 

I + ( 1 - a ) ( D 2 D 2 + D 2 D 2 ) k  -2 
a - k~ a ~ ( o - o  ') (1.1) 

The leading term in D 2 ~ 2 + ~ ) 2 D  2 as  k 2 approaches zero is a constant so this 

propagator  goes like 1/k  4 at small k 2. This causes the infrared divergence problems 
mentioned above. By comparison, the corresponding term in ordinary gauge theories 
goes like k, ,k~/k 4. 

If  we choose the Feynman gauge, a = I, the propagator  ( I . l )  is better behaved 

and the problems with infrared divergences appear  to be cured. However, at the 
two-loop level we find diagrams containing a one-loop corrected propagator  as an 

insertion. The one-loop correction to the inverse propagator  has the transverse form 

D~'~)2D,~II(k 2) = (k 2 + D~/~ 2 + ~)2D2)H(k2) .  (1.2) 

In dimensional regularization in n = 4 - 2e dimensions, I I ( k  2) ~ 

( l / e ) [ ( k 2 ) - ~ +  O(e)]  so it contains divergent and finite constant terms and a finite 
term proport ional  to In k 2. The correction (I.2) induces a term 

/3:D2 + D2E) ~ 
k4 H ( k  2) (1.3) 

into the one-loop corrected propagator.  The constant part of  H ( k  2) in (I.3) can be 
eliminated by renormalizing the gauge-fixing parameter  a in (1.1), i.e. in the 
Feynman gauge a = I + O ( g 2 ) .  However  this still leaves the In k 2 term so the 
propagator  goes like In k2 /k  4 at low k: and the infrared divergences reappear  in 
the Feynman gauge at the two-loop level. In a sense, the one-loop correction has 

unavoidably taken us out of  the Feynman gauge and brought back the infrared 
divergences. 

Clearly the key to resolving this problem lies in cancelling the entire correction 
(I.3), not just the constant part of  H(k2).  This can be achieved by a suitable 
modification of  the gause-fixing term. We choose a gauge-fixing term in n = 4 - 2 e  
dimensions of  the form 

D2V[1 ÷ £(-E3o)-~]/)2 V, (1.4) 

where E~o is the ordinary d'alembertian. This gives a contribution of the form 
s~(~2D2+D2/~2)( I -e In k ~) to the inverse propagator. The parameter ~: is then 
chosen so that the entire one-loop correction (I.3) is cancelled. This solves the 
problem of infrared divergences at the two-loop level. To go beyond two loops 
additional non-local modifications of  the gauge-fixing term can be made. We will 
restrict ourselves to two loops in this paper. 

In the background field approach the gauge-fixing term must be background 
gauge invariant. This means that the derivatives in eq. (I.4) must be replaced by 
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background covariant derivatives resulting in unconventional interactions between 
the background field and the quantum fields. One of the purposes of  this paper  is 
to describe methods for dealing with these unusual interaction terms. 

To describe the computat ion techniques we will use with the unusual interactions 
and ghosts coming from our non-local gauge-fixing term and to verify the validty 

of  the method we will consider first ordinary, non-supersymmetric  Yang-Mills 
theory. Here, of  course, there are no problems with infrared divergences of  the sort 
we find in the supersymmetric case. However,  all of  the other issues can still be 

explored. The general Landau-type gauge propagator  is 

g~,v - (1 - ct)k~,k~/k 2 (1.5) 
k 2 

For the Feynman gauge, a = l, and no k,k~ term is present at the tree level. However, 

the loop correction to the propagator  takes the form 

(g~,~k 2 - k~,k~)lI ( k2) , (1.6) 

and this induces a term ( k~ ,k~ /k4) l I ( k  2) into the loop-corrected propagator.  Again, 
we can eliminate the constant parts of  H ( k  2) in this term through a renormalization 

of the gauge-fixing parameter.  However,  a term (k~,k~/k 4) In k 2 will remain. Though 
it is harmless near k 2 = 0, we can also eliminate this logarithmic term by introducing 

a non-local gauge-fixing term 

c~,~A~" [ 1 + ~:(-[-]0)-~]0~A ~ . (1.7) 

The background covariant form of  (1.7) introduces unusual interactions and a 
corresponding Nielsen-Kallosh ghost [3]. In sect. 2 we will examine the computat ion 

of the two-loop Yang-Mills  fl-function in this non-local gauge to develop and 
explain the techniques we will need for the supersymmetdc  case. Although not 
needed for eliminating infrared divergences, such gauges might be convenient for 

certain calculations. In sect. 3 we return to superspace Yang-Mills and illustrate 
the method by performing a two-loop calculation of the fl-function using superfield 
and background field techniques and a non-local gauge-fixing term. In addition to 
exhibiting the successful elimination of  infrared divergences our calculation shows 
that the non-linear background-field splitting used in the superfield approach works 
correctly at the two-loop level. It has never been proven that this is the case. 

2. Ordinary Yang-Mills theory in a non-local gauge 

In this section we will describe the computat ion of  the two-loop fl-function for 
ordinary, non-supersymmetric  Yang-Mills theory with a non-local gauge-fixing term 
to illustrate the use of  such an unconventional gauge. We use a matrix notation for 
the fields and split the gauge field into a quantum part Q~, and a background part 
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A~,. The usual background-field lagrangian is 

L=Tr {(D~,Q,,-D,,Q~,)+[Q~,, Q,]+F,~,(A)} 2 

'--- ] -~ 2CAg2a (D~'Q,,) ~ +c'D"(D.c +[Q~,, c]) . (2.1) 

In the Feynman gauge a = 1. Here all derivatives are background covariant: 

D~,Q~ = o~,Q~ + [A~,, Q~] (2.2) 

and c and c' are the usual ghost fields. 

At the one-loop level the effective action contains a correction to the quantum 
field propagator of  the form 

I '~ )=  s¢ I d"p 2g~Ck ~ Q~,(_p)(8,~p2_p,p~)Q~(p)(p~)-~, (2.3) 

where, in n = 4 - 2 e  dimensions 

g2CA 5 +9 
SC = (4~') 2-': 3---~- (I -- e -- ye). (2.4) 

In the usual approach one can subtract out the divergent part proportional to p,~p,, 
by renormalizing the gauge-fixing parameter a in (2.1), i.e. by choosing a = I +s c. 

This leads to some O(g 2) quantum-background vertices which must be included in 

a two-loop calculation [4]. However, all of the propagator correction proportional 

to p~,p, can be eliminated by introducing a non-local gauge-fixing counterterm as 
described in the introduction. This term must be background covariant. In addition, 

we must introduce a third ghost [3] to cancel the non-trivial determinant produced 

by the gauge averaging with a non-local weight factor. 

We cancel the term in (2.3) proportional to PUP,, by replacing the usual gauge 
averaging by 

f ~f~b6(D~'O~'-f){exp[½f d4x.]~l+~(-~)-~]f] 

xexp[½ f d4xb[l +~(-[~)-~]b]} , 

where b is a scalar field with abnormal statistics (the Nielsen-Kallosh ghost). This 
leads to the modified gauge-fixing and Nielsen-Kallosh lagrangian 

1 zILGF+ZILNK=Tr D~,0 [1 +~( -~ , 1 - [ ] )  ID Q~+~b[l+~,( - [ ] ) -qb , (2.5) 

which replaces the usual gauge-fixing term in the lagrangian (2.1). In (2.5) [] is the 
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background covariant d'alembertian. If ( - ~ ) - ~  is replaced by one the third ghost 
decouples from the background and is therefore usually ignored. 

To illustrate the use of the non-local gauge defined by (2.1) and (2.5) we will 
reexamine the computation of the two-loop Yang-Mills 0-function performed in 
ref. [4]. This calculation was carried out without the factor ( - [ ] ) -~  in the gauge-fixing 
term, but it did include contributions from the quantum-background vertices extrac- 
ted from (~/2g2CA)(D"Q~,)(D~Q~). We now have additional vertices from the 
background fields contained in ( - ~ ) - " .  However, rather than just considering the 
corresponding graphs, we will recompute the whole contribution of the gauge-fixing 
term proportional to ~¢. For the other contributions we will use the results for all 
the two-loop graphs involving conventional quantum and quantum-background 
vertices (the diagrams in figs. 3a-k of ref. 4). The result of these graphs is a 
contribution of -~ggaC~/(4~')4 to the two-loop 0-function. Therefore, we only 
need to compute the contribution coming from the gauge-fixing counterterm (2.5) 
to complete the calculation. 

The non-local term (2.5) involves some unusual interactions between the quantum 
and background fields. In order to handle them we find it convenient to use functional 
techniques rather than a direct Feynman graph computation. This approach will 
also be useful in the supersymmetric case. 

Since the correction of (2.5) is already of order g2 relative to the tree-level 
lagrangian (2.1) we need only compute one-loop corrections to the effective action 
which are first order in s ¢. By the usual rules for functional integration they are 
obtained from the quadratic part of the first line of (2.1) together with (2.5): 

F~ = -½ Tr In {F-I 8~  + 2F~,~ + ~:D~, (-VI)-~D~} 

+½ Tr In {1 + ~:(-E])-'}. (2.6) 

Expanding the logarithms to order ¢ we get 

F~ = -½~: Tr {CI-' D~" (-I-])-~D~, -2[-I-'F~'"[~-'D,.(-E3)-~D~ 

+4[--I-'F~'"L--I-'F,]'CI-tD,~(-[])-'D~, - (-~1)-~}. (2.7) 

We wish to compute the term in (2.7) which is quadratic in the background field. 
From this we can determine the gauge-fixing contribution to the background-field 
renormalization factor which in turn gives us the 0-function. Note that the next-to- 
last term in (2.7) already has two F , ) s  so to compute its contribution to the quadratic 
part of the ettective action we can replace all the D~, and [] factors with ordinary 
derivatives. Our procedure in the other terms is to commute the D~, factors through 
the L'-] -1 factors until they are beside each other. Then their product either cancels 
a []-I  or produces an F~,~. Commutator terms [D~,, D~] likewise produce F , ) s .  Using 

[IZI-', D~]=CI-'(F~,,D" + DVF.~)C] - '  , (2.8) 
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we find that the quadratic part of (2.7) is just 

F~ 2) = -½~ Tr f d4x ( ( O~,F ~ - -  F"~ O~ )~ ~ ~ ( O~ F,,a - Fa,~0x)(-[-]0) -~-2 

+ F~'~D~,[(-D) -~-~, D~]}. (2.9) 

The commutator [(-E]) - '-2, D~] is evaluated in appendix A. ~ e  resulting momen- 
tum space expression for F~ 2) is 

d4k ~ ~ 
F ~ = - ~ T r ~ F  (-k)F~ (k) 

x f  d"q~L[(q k)2(q~) +2+(e+2) fo ~'  (q+k).(2q+k)~ ] 
+ 

(2.10) 

Performing the integrals and using the value of ~ from (2.4) we find 

Tr I d4k ( 10g4C~,'~ 
F(~2)=4g2CA ~ F'~(-k)F~'~(k) 3e ~ - ~ ] "  (2.11) 

From this we determine that the contribution of the gauge-fixing term to the 
E-function is --~gg4C2g/(4~r) 4, which when added to the ordinary two-loop contribu- 
tion gives the two-loop E-function --~-gg4C2A/(4~r) ~. 

We note that if we replace ( - [ ] ) -  " by one, we should reproduce the contribution 
of the graphs fig. 3 I and m in ref. [4]. In (2.7) this amounts to keeping only the 
second term with (-C]) -~ dropped. Indeed, we obtain the same result. Thus, the 
non-local term plays no role here as expected since no infrared divergences are 
present. In the supersymmetric case, however, where the conventional two-loop 
graphs do contain infrared divergences that give a spurious contribution to the 
/3-function the non-local gauge-fixing term is essential to cancel these contributions. 

3. Superspace background field calculation 

We now return to the main objective of our paper, a description of superspace 
techniques using the background-field method with a non-local gauge-fixing term 
to eliminate infrared divergences. As an example, we will compute the two-loop 
contribution to the/3-function for supersymmetric Yang-Mills theory. As in sect. 2 
our starting point is the lagrangian expressed in terms of a background superfield 
and a quantum superfield V. We use the conventions and definitions of ref. [5]. 

After quantum-background splitting, supersymmetric Yang-Mills theory is 
described by the superspace action 

s=- I ~  I 492C A Tr d4x d40 (e-VV ~ eV)~2(e-VV~ e v) , (3.1) 
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where V is the quantum field and the spinor derivatives are background covariant. 
Conventional gauge-fixing adds the terms 

1 1 Tr f d4x d40 ~ 72 V~ 2 S~F + Sgh°st = 2a g2C~- A V 

+Tr  I d4x d40 {?'c-c'?+½(c'+~')[V, c +?]  +. • • +/~b}, (3.2) 

with FP ghosts c, c' and NK ghost b, all background covariantly chiral. The ellipsis 
represents higher-order ghost- V interactions. The gauge-fixing term and NK ghost 
in (3.2) have been introduced by the usual gauge-averaging 

I @f~f ~b ~tS(V2V- f)tS(¢2V-f) 

(, 
xexp  2~ g~C~ 

where the second exponential, with covariantly chirai ghost b, is introduced to 
normalize the averaging. More generally, we could consider instead an averaging 
with exponential factors fM~ ~Mb, where M is any operator. 

In the background-field method the ultraviolet divergences of  the t h e o ~  are 
removed by an overall wave function r eno~a l i za t ion  Zv of the action in (3.1) or 
equivalently coupling constant renormalization (with Z~ = Z)~/~). ~ e  renormaliz- 
ation constant Zv can be obtained by computing the two-point function with external 
background fields. However, if one works with the propagator in the Feynman gauge 
~ = 1, a fu~her  r eno~a l i za t ion  of the gauge parameter ~ ~ ~Z~ is needed to 
maintain this gauge. Z~ is obtained by computing the two-point function with 
external quantum lines. As explained in ref. [4] this r eno~a l i za t ion  introduces 
additional quantum-background r e , i c e s  propo~ional  to Z~ - 1. 

As discussed in the introduction, a renormalization of the gauge parameter is not 
su~cient  to keep the exact ~ propagator in the Feynman gauge and a modification 
of the gauge-fixing term is required. Otherwise, infrared divergences appear beyond 
one loop, which, in dimensional regularization, are di~cul t  to separate from the 
ultraviolet divergences. We describe now the details of the procedure at the two-loop 
level. 

~ e  ~ self-energy has the form of eq. (1.2). For example, at one loop, in the 
Feynman gauge, from the graphs of fig. 1 we obtain a correction 

- ~ d~ 
F ( ~ - ~ T r  ~d~O[V(-p)D"~D~V(p)(p~)  -~ ] (3.4) 

4g ~ C~ ' 

where 

3 (i + 2 e - y e )  g2CA (3.5) 
~: = - ~  (4~r)2--~---7 • 
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Fig. I. One-loop corrections to the quantum propagator. 
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If we write 

D~'~)ZD,~ = pZ + D 2 t ~  ~ + ~2D2, (3.6) 

the last two terms give a contribution that takes us out of the Feynman gauge and 
introduces infrared divergences in higher-loop calculations. 

In order to cancel the harmful piece of the correction we modify the gauge-fixing 
term and the NK ghost term of (3.2) by replacing them with 

l 
Tr f d 'x  d4O V 2 V[1 + ~:(-Vq +)-~]~ZV SGF + S N K  = -- 2g2C-"~A 

+ I d4x d'0/~(1 + ~:(-V] ÷)-':)b, (3.7) 

(cf. our remarks following (3.3)). Here VI÷ is the appropriate d'alembertian when 
acting on covariantly chiral quantities, []÷4, -= ¢2X72~b (see ref. [5], sect. 6.5): 

[]  ÷ = [] - i W a V ~  - ~i(V~ W~), (3.8) 

and W" is the background-field strength. With this modification the one-loop 
corrected propagator will be in the Feynman gauge and the infrared divergences 
will be absent when we perform two-loop calculations. For higher-loop calculations 
(3.7) must be suitably corrected. 

In principle we should do two-loop calculations by using corrected self-energy 
insertions which are infrared finite. In practice it is simpler to work with uncorrected 
two-loop graphs which will be individually infrared divergent and separately com- 
pute contributions that are proportional to the parameter s c. When added together, 
the result will be free of infrared divergences. 

As an illustration of the procedure we describe now the calculation of the 
r-funct ion at the two-loop level. We determine it from the background-field renor- 
malization factor which in turn is determined from the background-field two-point 
function. 

The Feynman rules are obtained by expanding the exponential in (3.1) and 
expressing the background covariant derivative in (3.1), (3.7) in terms of ordinary 
derivatives and connections: 

V A = D A - i F  A . (3.9) 

In addition we must express the covariantly chiral ghosts in terms of ordinary chiral 
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/ - -  

~ 1 .~abc,rar~alrb~2r'~ w~c 
~lJ V l J  V l J  l J a Y  

x_,o 

~ c  

¢ 

½if~bcVa[iF ~. 0 + iWb~D~ + i l ~ ' ~ D ~ ]  V c 

½if°~ffa~[ - V ~ D  ~ V~ ff)~ O~ V ~ r  a~ 

_ V~D'~VbD~ v~r~, d + V " D 2 D ' ~ V b V T ~  d ] 

b 

f 
J Q 

/ 
< 

~ ¢ 

if~bc[ ?. 'a Ub C ~ + c '~ U ~  ~ + ~ U ~b ~] 

/ 
/ ~ 

b . /  

~ ~ 
.~ 

W ~ ( e '  +c ' )°v~(c+~)  ~ 

c b   jJ- _¼fo~V~[ e,o~vou~ _ ~,o ~ v , u  ~] 

_~(f,~kfd~ + f,~dk.ff~k)[~,Oc~WV ~ _ C , ~ W V d ]  

Fig. 2. Feynman rules for background field supergraph calculation in supersymmetdc Yang-Mills theory. 

fields by 

c--) eU/2c e -u /2  , (3.10) 

where  U is the background  gauge field in vector  representat ion with f~ = 1~ = ½U 
[5]. The vertices needed  for low-order  ca lculat ions  are given in fig. 2. Addi t ional  
vertices arise from the terms in (3.7) proport ional  to ¢, but we  will treat the 
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Q 
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~ J  
÷ ~ , , i  f f  ~ 

~ J  

d 

~ ~o,O.~1~ ~- 

e 

f 

Fig. 3. Two-loop corrections to the background propagator. 

corresponding contributions differently. The relevant two-loop supergraphs are 
shown in fig. 3. Other two-loop graphs are trivially zero. They are evaluated using 
conventional D-algebra (one can use instead covariant D-algebra [6] which leads 
to considerable simplifications of the calculation). 

The divergent ghost contributions corresponding to figs. 3a, b, c (with a factor 

I d~k d~q d4 0 l 
2g2CA ~ k2qE(k +q)2(k +p)2(q_p)2 (3.1 l) 

removed from each term) are 

(a) Tr [-½U(-p)D'~ED~U(p)q ~ +¼kE(q-p)2U(-p) U(p)] ,  

(b) Tr[~k2(q-p)2U(-p)U(p)], 

(c) Tr [½U(-p)D'~ED,,U(p)q2-½k2(q-p)2U(-p)U(p)]. (3.12) 

We make the interesting observation that the total two-loop ghost contribution vanishes. 
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The remaining graphs in fig. 3 give the following divergent contributions (with a 

~ Tr [F"'~(-p)F,~(p)~'~], 
• 

1 ~ I" ^ ~ P ~ P ~  - 2 p ¢ ) ]  (e) ~3 ~_3Tr[F. (_p)F~(p)]L2~.a~(1 +~e-2pe)  ~ ( l p ~  +5e , 

-~ +r[ W~(-P) ~a(P)]~ 

factor 2g2CA/(4~r)" S dnP d'0/(2rr) n) 

(d) 

3 
(f) 2e ~ (1 +5e -2pc)  Tr (F~(-p) W~(p) +P6(-p) ~'d(p)), (3.13) 

where p = YE - In  4rr +In p2/1~2. 
We are using regularization by dimensional reduction and / ~ , ~  represents a 

~onecker-delta in n < 4 dimensions. ~ e  sum of these contributions gives 
. 

~ J 

3 + ~  (1 +5~ - ~  ~r [ r~(-~  ~ . ( ~  + ~ ( - p l  ~ ( ~ ]  

3 P~a 
--e Tr [ W~(-p) ~ ( p ) ]  ~ ,  (3.14) 

which is manifestly transverse. In vector representation for the background fields, 
we have 

W~= iD2D~U, F~ =~iD~U, 
F~d = -~[ O~, D~]U = ( O ~O~ -~iO~) V. (3.15) 

From the first term in (3.14) after integration by parts we obtain 

I F~(-P)F~(P)[ 2~°~ p ~  -]p~I 
• 

= (3-2e) y D~U~D.U, 

where we have used the dimensional reduction ~les  

g~"~ ~ = ~n~ ~ ~ , P ~ P  = ~ Z p ~ ,  

(3.16) 

(3.17) 

(see eq. (6.6.2) in ref. [5]). 
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The total divergent contribution from the graphs in fig. 3 to the effective action 

is therefore 

g~ CA,/  3 + 3 ~ f d,xd,OO,U~)~D~U" (3.18) 

However this is not the correct ultraviolet divergence of the two-loop self-energy, 
for two reasons: as in component Yang-Mills the renormalization of  the gauge- 
parameter leads to additional one-loop graphs, containing one quantum-background 
vertex from ~V 2 v ~ E v  [4]. In addition, the graph in fig. 3e contains the uncorrected 
one-loop self-energy leading to an infrared divergence which gives a spurious 1/e 
contribution to (3.18). If we use a conventional gauge-fixing term this divergence 
must be separated out and discarded. However, we have chosen a gauge-fixing term 
which produces the necessary correction to remove the infrared divergence, and we 
must now include its contribution. At O(g4), the addition to (3.18) can be obtained 
from a calculation of a one-loop insertion of scV2V(-[]÷)- '~:V, with two external 
background field lines. We describe now an operator approach to this calculation. 

The quadratic action that follows from (3.1) and (3.7) leads to the one-loop 
effective action 

F = -½ Tr In [~] + ~:(V2(-[] ÷ ) - ~  +~(- I - l_) -~V~)]  

+Tr  In [[]_ + ~V2(-l~ , ) - ' ~ 2 ] ,  (3.19) 

corresponding to contributions from V and the covariantly chiral NK ghost b. Here 

~ = [] - iW~VQ - iW~V ~, 

~]_ = [] - i l ~ , ~  -½i(~ ~ W,~), (3.20) 

where []_ is defined as V2~2~ = []_d~. Expanding to first order in ~ we find 

/ 1 ._~_l \ V2 - ~ 2  r'~ : ½~ Tr [~__-i~ ) (-1~.) +h.c. 

I 
= ~( Tr ~ (-iW~V~ +½i(~ ~ I~ ) )  ~__ V~(-[q +)-'~2 + b.c. (3.21) 

The term -iW~'V~ gives zero, since it is acting on an antichiral quantity. 
The evaluation of  this expression is a simple exercise in covariant D-algebra [6]. 

We describe the steps in appendix B. To second order in the background fields we 
obtain a contribution 

F~=- ~-f-( l---~2(l-e-ye)Tr f d4xd4OD~U~)ZD~U. (3.22) 
8e \ 4 ~ ' ]  

Substituting the value of  ~: from (3.5) and adding this result to (3.18), we obtain 
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the final result for the ultraviolet divergence of  the two-loop effective action 

l I F~ - 4 (4~')4E g2CA Tr d4x d'*O D~'UO~D,U, (3.23) 

giving the familiar value/3~.~oop = - g  6g~C~/(4~r) ~. 

We wish to thank M. Roi~ek and W. Siegel for very helpful suggestions and 
comments. D.Z. thanks the Physics Departments of  Brandeis and Harvard University 
for their hospitality and INFN for financial support. 

Appendix A 

We evaluate here the commutator [(- i- l)  - ' -2 ,  D~] that appears in (2.9). Using 
proper time representation we write first 

Io (--1~)-~-2 = (i)~+2['(e +2) d r r  T M  e -'<~ . (A.I) 

Defining D~(r)= e-~'~D, e ~''~ we obtain in standard fashion 

/)~ = - i  e-~'~[U], D,]  e ~ , (A.2) 

so that 

or 

D~(r) = D~ - i d r '  e-i<:[Fq, D~] e " ~  , 

Therefore 

[ ( - I - I )  - ' -z ,  D,,] = 

[e - ' ~ ,  D~] = - i  I f  d r '  e-~'~[[3, D~] e -i('-'')t~ . 

(A.3) 

(A.4) 

(i)'+~F(e +2) d r  dr '  r T M  e-~'tn[[], D~] e -'<~-~')~ 

1 
= (i)~÷~F(e+2) dr '  dr(r+r ' )~÷~e- '~rm[I-I ,D~]e -i~ca . 

(A.5) 

Writing • = pa, r '= p ( l -  a) and going to momentum space leads to the last term 

in (2.10). 
Eq. (A.1) may also be used for a pe~urbative evaluation of  ( - ~ ) - ~  with ~ = 

~0 + ~ To first order in Y we have 

l f ~  ~ e_ i~  ° ( - ~ o -  ~ ) - *  - ~ ( ~  d~r~-  

l l ; i o  -. i~_~F(e ) dr d~' r ~-~ e -~ ' - " )~°Y e ,-~o. (A.6) 
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