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We prove that the ultimate fate of a bubble of negative energy density which forms in a 
metastable universe of zero energy density is gravitational collapse. We improve on previous 
treatments in that we allow for departures from O(3,1) symmetry in the initial state, so long as 
they are not too great. 

I t  is an in t r igu ing  poss ib i l i ty  that  the universe is cur ren t ly  in a metas tab le  phase,  a 

false v a c u u m  which will eventual ly  decay into  a phase  of  lower energy densi ty.  In  the 

semic lass ica l  app rox ima t ion ,  such decays  occur  through the fo rmat ion  and  growth  of 

b u b b l e s  of  the  new phase  inside the old phase  [1]. The  fo rmat ion  of the bubb les  is a 

q u a n t u m  tunne l ing  effect, but  their  subsequent  growth  is governed by  the classical  

equa t ions  of  mot ion .  If  the current  vacuum has zero-energy densi ty ,  the bubb le  

in te r io rs  will  have  negat ive energy density;  their  geometr ies  will resemble  that  of 

an t i -de  Si t ter  space.  Some years  ago, F r a n k  de Luccia  and one of  us argued that  

g rav i t a t i ona l  effects rendered  these bubb le  in ter iors  themselves unstable ,  that  the 

u l t i m a t e  fa te  of  a zero-energy metas tab le  vacuum was not  merely  a t rans i t ion  to a 

new phase  b u t  also a ca tas t rophic  gravi ta t ional  col lapse  [2]. 

O u r  a r g u m e n t s  were highly suggestive, bu t  not  conclusive. Qui te  apa r t  f rom 

def ic iencies  in r igor,  they rested upon  the exact  0 ( 3 , 1 )  invar iance of the solut ion to 

the  c lass ical  f ield equat ions  descr ibing the evolut ion of  the bubb le  after its forma-  

t ion.  I t  r e m a i n e d  a possibi l i ty  that  the slightest depa r tu re  f rom this symmet ry  would  

be  suff ic ient  to avoid  gravi ta t ional  collapse,  that  the pe r tu rba t ion  in t roduced  by  the 

p resence  o f  a pa r amec ium would  be enough to save the universe. [This is not  an 

e x t r a o r d i n a r y  possibi l i ty .  A fami l ia r  example  is a par t ic le  moving  in an inverse-square  
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force in three dimensions. If we choose initial conditions invariant under rotation 
about  some axis, the particle will inevitably encounter the central singularity at some 
finite (positive or negative) time. However, arbitrarily small asymmetry (nonzero 
angular momentum)  is sufficient to avoid the singularity for all time.] 

In this note, we use a theorem of Penrose [3] to eliminate this possibility. We 
consider the initial conditions (values of the fields and their time derivatives) 
describing the state of the universe at the moment  of bubble formation. We show 
that for all initial conditions sufficiently close to the 0(3,1)  symmetric ones, either 
(i) t ime evolution leads to a curvature singularity, or (ii) the initial-value surface is 
not Cauchy, that is to say, the initial conditions are not sufficient to determine the 
future evolution of the universe. 

Although we are not able to ehminate rigorously the second alternative, we favor 
the first. Firstly, it is what happens in the case of 0(3,1)  symmetry. Secondly, 
al though anti-de Sitter space itself notoriously has no Cauchy surface, the geometry 
just  after bubble  formation is not that of a time slice of anti-de Sitter space but that 
of a piece of anti-de Sitter space (the bubble interior) surrounded by infinite flat 
space; this should constitute a Cauchy surface. (It would be very amusing though, if 
we were wrong in this guess. This would mean that an inhabitant of an unstable 
zero-energy vacuum would face a future genuinely uncertain, not just one subject to 
quantum coherence.) 

The remainder of this note gives our detailed arguments. 
We begin by briefly reviewing the relevant parts of the analysis of ref. [2]. We 

consider the theory of a single scalar field with nonderivative self-couplings, mini- 
mally coupled to einsteinian gravity: 

R 1 
~ -  16~rG +20~epa"o- U(eO). (1) 

Here U is a function with two local minima (" vacua"), a false vacuum at ~ = q~+ 
with U(q,+) = 0, and a true vacuum at ~ = q~, with U(q~ ) - U < 0. Vacuum decay 
is especially easy to describe if U is close to zero. (This is the so-called thin-wall 
approximation.)  In the leading thin-wall approximation, the world after the materi- 
alization of the bubble of true vacuum is the union of two regions. One is the bubble 
exterior, that part  of Minkowski space obeying 

] X l 2 - - t 2 > / p  2 , (2) 

where ~ is a length determined by the exact form of U. (We have chosen our 
coordinates such that the bubble materializes at t = 0, with its center at the origin of 

coordinates.) In the bubble exterior, q, is ~+. The other region is the bubble interior, 
where q, = ,~ . The geometry of the bubble interior is that of a portion of anti- 
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de Sitter space. If  we describe anti-de Sitter space as the hyperboloid 

3 
_ _ _  d 2 W 2 qt- t 2 Ix]2 = 8rrGU_ = ' (3) 

in a f ive-dimensional space with metric 

d s  2 = d w  2 + d t  2 - I d x l  2 , (4) 

then the bubble  interior consists of  that port ion of  the space with 

w ~  - ~ A ~ q - p  2 . (5) 

The interior and the exterior are joined together by identifying points on their 

respective boundar ies  with the same values of  x and t. The 0(3 ,1)  symmetry  is the 
usual Lorentz  group acting on x and t, in both  the interior and the exterior. 

The  bubble  interior can also be described as an expanding-and-contract ing open 

Rober t son-Walker  universe. That  is to say, there exist coordinates for the interior 

such that  

ds  2 = dT 2 -  p 2 ( T ) d o  2, (6) 

where do  2 is the metric for a three space of unit negative curvature, 

and 

do  2 = d r  2 + sinh2r (dO 2 + sin20 d~p2), (7) 

p = A sin( ~r/A ) .  (8) 

In  these coordinates,  the 0(3 ,1)  group is the isometry group of  the universe at fixed 
• . These coordinates  are not  without  their deficiencies. For  one thing, they do not  

cover  the entire bubble interior; we must  continue to imaginary • to reach the 
boundary .  For  another, the apparent  singularities at • = n~rA, where the radius of 
the universe, p, vanishes are mere coordinate artifacts. Nevertheless, these coordi- 
nates will be very useful for our purposes. 

Gravi ta t ional  collapse emerges when we consider the corrections to the leading 
thin-wall approximat ion.  The exact bubble solution is 0 (3 ,1)  invariant, just  like the 
approx imate  one, but q~ in the interior of the bubble differs by a small but  nonzero 
a m o u n t  f rom its equilibrium value, ~_. During most  of  the evolution described by 
eq. (6), this has only a tiny effect, q~ oscillates about  q~ , but, as the universe 
expands,  the magni tude  of  the oscillation diminishes. When the expansion becomes 
contract ion,  at ~" = ½~rA, the oscillations begin to grow, but for a long while they 
remain  small. However,  it was shown in ref. [2] that  as T approaches ~rA, the 
oscillations become very large, the energy density in the scalar field grows without  
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bound, and gravitational collapse ensues, turning the coordinate singularity in eq. (8) 
into a genuine curvature singularity. 

This analysis rests heavily on exact O(3,1) invariance. If we imagine some 
departure from 0(3,1)  invariance in the initial state of the universe, no matter how 
small it is to begin with, it will eventually grow large as gravitational collapse 
approaches. A linear approximation will then no longer be adequate; we must 
consider the full nonlinear coupling of the symmetric and asymmetric modes. It is by 
no means clear whether this coupling will hasten or abort collapse. 

Fortunately,  we do not have to analyze this formidable problem, for a theorem of 
Penrose [3] can be used to resolve the question. Penrose's theorem states that a 
spacetime can not be null geodesically complete if 

(A) R , ~ K ~ K  ~ > 0 for all null vectors K ~, 
(B) it has a noncompact Cauchy surface, and 
(C) it has a closed trapped surface. 
Null geodesic incompleteness means that it is impossible to indefinitely prolong a 

null geodesic; it is a sufficient condition for the existence of a singularity. 
For  our theory, Einstein's equations imply that for null K ~, 

2 
R~,~K~K ~= 87rG(K O~,q~) . (9) 

Thus, condition A is satisfied. [There are stronger successors to Penrose's theorem 
[3], which an informed reader might be tempted to apply to this problem. Unfor- 
tunately, they involve stronger restrictions on the Ricci tensor, which do not apply in 
our case. (We do not even have positivity of the energy density.)] 

We have explained in the introductory portion of this note why we believe the 
initial state of the universe at the moment of bubble formation satisfies condition B. 

Condition C requires a little more work. A closed trapped surface is a closed 
two-dimensional surface from which light can not escape. More precisely, it is a 
surface for which both the inward-pointing and outward-pointing normal null 
geodesics are convergent. This can be expressed analytically by the statement that 
certain geometric objects (the null second fundamental forms) are negative on the 
surface. Thus, given a spacetime with a closed trapped surface, any spacetime with 
metric sufficiently close to that of the given one in the region of the surface will also 
have a closed trapped surface. 

We shall now show that the exact 0(3,1) invariant solution has a closed trapped 
surface, for some time earlier than the moment of collapse. Since we can always 
choose initial-value perturbations sufficiently small so that they remain small at this 
time (although they may grow large later), this implies that gravitational collapse 
occurs even in the presence of these perturbations. 

The exact metric still obeys eqs. (6) and (7). However eq. (8) is replaced by the 
solution to the differential equation 

h 2 = 1 + ~¢rGp2(½~ 2 + U ) ,  (10) 
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where the dot  indicates differentiation with respect to ~-. The quanti ty in parentheses 
is the energy density of the scalar field. As we have said, in the exact solution this 
grows wi thout  bound  as we approach collapse. This will be impor tant  to us shortly. 

N o w  let us consider the emission of light f rom a sphere of radius r at time r. The 
area of  this sphere is 

A = 4Tr02sinh2r. (11) 

After  a time d ~" light emitted f rom this sphere will reach radii 

d ' r  
r+=r+_ - - ,  (12) 

P 

and define two new spheres with areas 

A+=A 1 +  V ( ~ _ + c o t h r ) d ~ -  . (13) 

The initial sphere is a closed t rapped surface if both these areas are less than A. 
F r o m  eq. (10), when the scalar-field energy density becomes positive, on its way to 
infinity, t~ becomes  less than minus one. At this time, for sufficiently large r, the 

initial sphere is a closed trapped surface. This completes the argument.  
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