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We provide a completely quantum-mechanical  derivation of the spectrum of gravitational 
waves produced in any inflationary cosmology. The gravitational waves result from a sequence of  
Bogoliubov transformations between creation and annihilation operators defined in de Sitter space 
and in radiation- and matter-dominated Robertson-Walker  spacetimes. We discuss how the results 
depend on the initial state at the beginning of the inflationary period. 

The production of gravitational waves in an inflationary cosmology provides an 
important constraint on any model of  inflation [1-4]. The Hubble constant during 
the de Sitter phase must be less than 1015 GeV or else these gravitational waves will 
produce unacceptably large anisotropies in the microwave background radiation 
[1-4]. Similar constraints hold for power law or any other form of inflation [4]. 
The gravitational waves can also affect pulsar timing measurements [5]. 

The calculation of the spectrum of gravitational waves produced by inflation is 
similar to, although simpler than, the calculation for the scalar energy-density 
fluctuations [6] which give rise to large-scale structure in an inflationary universe. 
In both cases, the quantum mechanical two-point function is related to a two-point 
statistical average of an ensemble of  classical fields. The evolution of the fields to 
the present time is then governed by the classical equations of  motion. Since the 
use of  such a mixed quantum mechanical-classical formalism raises some subtle 
issues [7], we present here an alternate derivation of the gravitational wave spectrum 
which is purely quantum mechanical. Our results are not new, agreeing with those 
of  refs. [ 1-4]. However, we believe that our presentation will help clarify the physics 
behind these important results and remove any doubts about their validity. We also 
address the question of  the generality of  the results and of their dependence on the 
initial state of  the Universe at the beginning of the inflationary epoch. 

In our approach,  gravitational waves exist today because the de Sitter vacuum 
established during the inflationary period looks like a multiparticle state when the 
definition of  particles relevant to the present matter-dominated universe is used. In 
our computat ion we will determine the Bogoliubov transformations relating creation 
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and annihilation operators in de Sitter space to those of radiation and matter- 
dominated Robertson-Walker spacetimes. Actually, our calculation could be done 

ignoring the radiation-dominated era entirely. However, the intermediate results 
during the radiation-dominated period are relevant to pulsar timing measurements 

[5] and the three-step calculation we present is more realistic than the two-step 

calculation which ignores the radiation-dominated period. Our final results are 

relevant for calculations of  large-scale anisotropies of the microwave background 
radiation [1-4]. 

We use here a conformal time variable, r, so that the metric during inflationary, 

radiation-dominated and matter-dominated eras can be written in the form 

with 

ds 2= S2(r )[ -dr2+dx"  dx] ,  (1) 

- 1 / X r  during inflation 

= 1 A t  (2) S(r)  during radiation domination 

Bz z during matter domination.  

Here X is the value of  the Hubble constant during the de Sitter phase of the 
inflationary period and A and B are constants. If  we choose to make the scale factor 

S equal to one today and match S and its first derivative at the two transitions, then 

A = 4r l / r~ ,  

B = 1 / %  2 , ( 3 )  

where ro is the present conformal time (To = 3t0) and r, is the conformal time at the 
end of the radiation-dominated era (r~ = 2-~/332/3t~3tg/3 where tm is the proper time 

when the matter-dominated period begins). 
In treating the transitions between different cosmological epochs, we will only 

require that S and its first derivative be continuous. Thus, for example, the curvature 
has unphysical discontinuities at the transitions in this approximation which would 

be avoided in a realistic model. However, this is unimportant as long as we are not 
interested in details during the transitions or in short wavelengths. 

The definition of conformal time used above has the property that it jumps 
discontinuously at the transitions between different epochs. For instance, if the 
inflationary era ends at time r 2 (which by eq. (2) must be negative) then by requiring 

S and its first derivative to be continuous at the transition, we find that the 
radiation-dominated era starts at time - r2 .  Likewise, if the radiation-dominated 

period ends at time r, then the matter-dominated period begins at time 2rl. It is 
important to take these discontinuities into account when computing the relevant 
Bogoliubov coefficients. Finally, we note that the time r2 when inflation ends is 
determined by matching S and its first derivative from eq. (2) giving 

~'2 = - r o /  2~-X-~l  . (4) 
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We work in a transverse, traceless gauge and write the metric variations about the 

background spacetime in terms of  graviton creation and annihilation operators as 

h ° = ~  I dak (27r)3/2-~ '7)x/~ [ ax ( k )F.ij( k , )t ) e'k'x~:(kr) 

+ a~(k)e*(k,  A) e- 'kx~*(kz)] ,  (5) 

where h runs over the two polarizations and co(k, A) are polarization tensors. The 
function ~:(k~') is given by 

~(k~') = e- 'k '(1 - i/k~') (6) 

during the inflationary- and matter-dominated eras and by 

~:(kr) = e -'k" (7) 

during the radiation-dominated period. 
The graviton creation and annihilation operators during the radiation-dominated 

era are related to those of  the inflationary epoch by the Bogoliubov transformations 

ar~aa( k ) = cq ( k )aiA"f( k ) + fl*( k )( aixnr(-k ) ) * . (8) 

Likewise, the creation and annihilation operators in the matter-dominated era are 
given by 

a•at(k) = o t 2 ( k ) a ? d ( k )  + , r a d  t fl2(k)(aA ( - k ) )  , (9) 

or equivalently 

an~at(k)=(ot lo t2+f l l f l*2)a i~nf (k)+( f l* lOt2+a*l f l*2)(a i~nf ( -k) )  t . (10) 

Before proceeding to the calculation of the Bogoliubov coefficients a~, /3~, o~ 2 
and f12 we will discuss the significance of such transformations in general. Early in 
the inflationary period we will characterize the state of  the universe It/,) in terms of 
numbers of  gravitons defined by the creation and annihilation operators a~nf(k) * 
and a~nf(k). This may seem a bit arbitrary, but recall that the wavelengths we are 
interested in are of  the order of  the size of  the observed universe, that is kTo ~ 1. 
Early in the inflationary epoch I krl was much greater than one for these waves since 
inflation had not yet red shifted them to long wavelengths. Note that I krl is just the 
ratio of  the horizon size to the physical wavelength S/k.  Thus I k~-I ~- 1 tells us that 
originally the waves were well inside the horizon, while k% = 1 tells us that these 
waves are presently entering the horizon. For Ik-c I ~- 1 the modes of  eq. (6) reduce 
to plane waves and thus we are just using the ordinary Minkowski definition of 
particles to characterize the state 10). For the long-wavelength waves we are discuss- 
ing, the transitions between different cosmological epochs are effectively sudden 
and therefore the universe will remain in the state I~). However, the graviton creation 
and annihilation operators will change. Consider the gravitational field h 0 defined 
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by eq. (5) during some epoch with the creation and annihilation operators a*~(k) 
and a~(k) related to those of  inflation by 

ax (k) = a (k)ai~"f(k) + fl*(k)(ai~nf(-k)) * . (11) 

A convenient quantity with which we can characterize fluctuations in hij at time 7. is 

Ah2(k) =- (2--~) 3 d3x e'k'X(@lho(x , 7.)hq(o, 7.)l~b ) (12) 

with a sum on i and j. The factor of  1 serves to average over polarizations. I f  7. 
occurs during the epoch in which the operators of  eq. (11) are relevant then from 

(11) and (5) 

k2 1 E ( N x ( k ) + N x ( _ k ) + I  ) 
AhE(k) = 8~rG (27r)32S2(7.) 2 x 

×[(Io~(k)12+l~(k)12)l~(kT.)12+2Re{a(k)fl*(k)~2(kT.)}]. (13) 

In evaluating expression (12) one encounters an infrared divergence which we 
remove by cutting off wavelengths which are much larger than the present observed 

universe and hence which are unobservable. 
In eq. (13), NA (k) is the expectation value of  the de Sitter particle number  operator 
inf  t inf  (aA (k)) ax (k). Notice that the dependence of  the result (13) on the state I~b) is 

exclusively through the phase space densities NA(k) and Na(-k).  I f  Nx(k) and 
Na ( - k )  are much less than one, the result becomes essentially independent of  the 
state I~b). Since we have chosen to characterize I~b) by values of  NA (k) early during 
the inflationary epoch when the physical wavelength is much shorter than the horizon 

size 1/X, it seems extremely reasonable to assume that Nx (k) and N~ ( - k )  are much 
smaller than one. A phase space density of  order one would represent an enormous 
energy density in what are at this time high frequency modes. In conclusion, if 
NA(k) and NA(-k) are much less than one for the values of k relevant for our 
calculation, the result (13) becomes independent of  the state I~b) which can therefore 

be taken to be the de Sitter invariant vacuum with N~,(k)= Na( -k )= O. 
In order to compute the Bogoliubov coefficients defined in eqs. (8) and (9) we 

match the field h 0 and its first 7.-derivative at the moment  of  the transition from 
inflation to radiation domination for (8) and from radiation domination to matter 
domination for (9). In doing this, we must take into account the discontinuities in 

r during these transitions. The result for a~ and/31 is 

-2,k,2[ 1 i ] 
t ~ = e  1 2(k7.2)2 (k~'2) ' 

1 

fll - 2(k7.2)2 • 
(14) 

Recall that 7"l is the conformal time when inflation ends and that the quantity k7.2 
is minus the ratio of  the horizon size to the physical wavelength at the end of the 
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inflationary era. By time z2 the modes in question are well outside the horizon, 
Ikr21 ~- 1 and, using the value of r2 given in eq. (4), the result (14) reduces to 

27~X 
f l , - -~-a,  (kro)2. (15) 

I f  we evaluate Ah 2 from eq. (13) at some time r during the radiation-dominated 

era we find, using (15) 

k 2 
Ah2(k) = 8rrG(2~)3S2(r)lf l ,(k)12[l~(kr)[2- Re {~:2(kr)}]. (16) 

Evaluating (16) using eqs. (2), (3) and (7) we obtain 

zlh 2( k ) = GxE [ sin k'r] 2 
27r -----~ L - - ~ T  _l " (17) 

For modes which enter the horizon during the radiation-dominated period this 
is essentially the end of the story. These modes are unaffected by the subsequent 
Bogoliubov transformation into the matter-dominated era because for them this 
transition is adiabatic rather than sudden. However, the wavelengths which affect 
the microwave anisotropy are still well outside the horizon at the end of the 
radiation-dominated era and we must include the effects of  this second Bogoliubov 
transformation. Matching the field hq and its r-derivative at the end of the radiation- 

dominated period we find, with r~ equal to the conformal time at the end of the 
radiation-dominated epoch, 

Of 2 = eik~t [ 1 
1 

8(kT1)2 ~- 

fl2 = --e-3ik~'t 1 
8(kr,) 2 . (18) 

The coefficients we need are those relating the creation and annihilation operators 
of  the matter-dominated era to those of  the inflationary period, a~a2+fl~fl* and 
~ a 2 + a l  f12 of eq. (10). For waves which are well outside the horizon at the end 
of the radiation-dominated epoch, krl a- 1 and we find from (15) and (18) 

-30(  
oqot2 + fllfl* ~" fl~a* + a~fl2 ~ 2k3~.2 • (19) 

We can now take this result and evaluate Ah 2 of eq. (13) using the ~ of eq. (6), 

Ah2(k) 9x2G[jl(k 'ro)]  2 
= 2Tr------- 5- [ _ ~ ]  , (20) 

where j~ is a spherical Bessel function. In eq. (20) we have evaluated ah  2 at the 
present time ~" = ~o. 
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The results of  eq. (19) or (15) and  the fact that I~b) can be taken to be the de 

Sitter vacuum can be used to compute  the expectat ion value of any desired funct ion  

of  h~j. Our  results in eqs. (17) and  (20) agree with those of refs. [1-4] but  have been 

obta ined  in a purely q u a n t u m - m e c h a n i c a l  formal ism and  shown to be i nde pe nde n t  

of  state over a wide range of initial  states in the inf lat ionary period. 

We wish to thank  Mark Wise for extremely helpful  discussions dur ing  the initial  

stages of this work. 
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