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Using a covariant formalism we derive the conditions for there to exist integral constraints on 
energy-momentum perturbations in an arbitrary background spacetime. 

A conserved quantity corresponding to an asymptotic symmetry of an otherwise 
arbitrary spacetime manifold can be constructed in general relativity provided that a 
number of conditions are met. If we write the spacetime metric in the form 
&,~ = g~. + h~,, where h~,~ vanishes (sufficiently rapidly) at infinity but is otherwise 
arbitrary, then the background asymptotic metric g~,~ must satisfy the Einstein 
equations with no energy-momentum source term, 

R ~  - ½~"R = 0,  (1) 

where R~" and R are the Ricci tensor and scalar curvature corresponding to ~,.. In 
addition, ~,~ must allow a Killing vector ~s. If these conditions are met, the 
procedure for constructing a conserved quantity is well-known [1]. Terms in the 
Einstein equation linear in h . .  are separated from all terms containing higher 
powers of h~,., 

R~: - _tr.~.~, = 2~ "'L (_g)-i/2~g~,. (2) 
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The sum of all non-linear terms, ~q~g~, is the complete, general relativistic energy- 
momentum tensor density. It is covariantly conserved with respect to the back- 
ground metric (that is D~ss ~" = 0 where D r is the covariant derivative with respect 
to g~v). If the background metric allows a Killing vector ~ then Ygg~ is a 
conserved current and the quantity 

f d3x (3) 
is conserved. 

The quantity expressed in (3) as a volume integral can also be written as a flux 
integral over a two-dimensional surface at spatial infinity. More generally we can 
write 

fod3X3-°~=~ood2StB i (4) 

for any finite volume G with boundary 3 G. Eq. (4) is a general-relativistic analogue 
of Gauss' law. This sort of relation between a quantity defined by a volume integral 
and a two-dimensional flux-type integral is what we refer to as an integral 
constraint. 

In most of the cases of interest to cosmology the above formalism is not directly 
applicable because we want to look at perturbations in background spacetimes 
which do not satisfy the necessary conditions. First, they are not solutions of the 
source-free Einstein equations but rather, since there is a background distribution of 
energy and momentum density T+'~ the metric g~ is a solution of the equation 

(5) 

Second, there may not be any appropriate Killing vectors for the background metric 
g~. If we follow the procedure outlined above and write the full metric, including 
the deviation from the background, as g~---g~ + h~ and the full matter energy- 
momentum tensor with perturbation 8T ~ as T ~ =  T~'~+ 8T ~'~ we can again 
separate the Einstein equation into linear and non-linear parts (in h~), 

R ~  v - l g l ~ r R  L -I- l h g r R  = ( - g ) - l / 2 ~ g  gr -1- ~T/~r --- ( - g ) - l / 2 ~  ~'/~r . (6)  

However, in this case the resulting complete energy-momentum tensor density 3 ""~ 
is not covariantly conserved with respect to the background metric, that'ls D+,..q'"~ ~ 0. 
Thus, it is not in general possible to construct conserved quantities and conserved 
currents in the usual manner. However, as we will demonstrate, it is still sometimes 
possible (even in the absence of a Killing vector) to construct an integral constraint 
equation of the form (4). The purpose of this paper is to show when and how this 
can be done. 
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Integral constraints in general relativity were first discussed in ref. [2] and they 
were used to constrain models of galaxy formation in ref. [3]. The original derivation 
used the non-covariant A D M  [4] formalism. We present here an alternative co- 
variant approach. 

We construct integral constraints by relaxing the condition that there exists a 
conserved current while still demanding that eq. (4) be satisfied. In this case, the 
vector ~, is not necessarily a Killing vector but rather an integral constraint vector 
satisfying a more general condition which we will derive. Although an integral 
constraint vector does not have to be a Killing vector, a Killing vector may or may 
not be an integral constraint vector. The integral relation (4) becomes interesting for 
compact spatial surfaces or when we combine it with constraints coming from 
causality. Then, we see that the value of the quantity appearing on the 1.h.s. of eq. 
(4) cannot change until a disturbance arising inside the integration volume G has 
had time to propagate to the surface 0G. In this sense, the spatial integral on the 
left side of [4] behaves much like a conserved quantity even though it does not 
necessarily correspond to a spacetime symmetry and does not have a related 
conserved current. This is especially important in cosmology because Robertson- 
Walker spacetimes have ten integral constraint vectors but  only six Killing vectors 
none of which has a component in the time direction. 

We will now derive differential equations for ~ which must be satisfied if an 
integral constraint of the form (4) is to hold. Since we are dealing with vector and 
tensor densities eq. (4) is equivalent to 

3 " ° ~  = OiB i. (7) 

Before starting we must explain some of the conventions used in eq. (6) and below. 
The expressions R~ ~ and R L refer to all terms in the complete R ~ and R which 
are linear in hi, ~ including those coming from raising, lowering and contracting 
indices. There are no terms in eq. (6) of zeroth order in hi, ~ because gt,~ satisfies the 
background field equation, (5). In what follows all indices are raised, lowered and 
contracted by  the background metric g~, alone. In particular, the integral constraint 
vector ~ is originally defined with an upper index which is then lowered using the 
background metric. 

From eq. (6) if we expand the curvature to first order in ht, ~ we find 

where 

( - g )  -1/2,.q'F'~ = D.DI~K~"~ + X I'~ + yJ'", 

X~" = ½[D,, D ' ] H  t' '  , 

(8) 

(9) 

(lo) 
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and 

with 

y ~  = ½h~,~ _ h~ ,~ :  _ h ~  + !~l,~-/~t. 2/5 *~" ~afl (11) 

-~,h- (12) H~,, = h~,~ _ i g  ..~. 

If we multiply 3 -~'~ by ~ and use the fact that K ~"~a is antisymmetric in its first 
two and last two indices and symmetric with respect to interchange of the first two 
indices with the last two we find 

where 

with 

: r %  = e , { ( ~  [ ( ~ o r o , . %  _ x ~.o,.,w 1~ + Ao 
2 *~ " ' j v j  ) , 

A o ! ~ o i ~  Iv - II-D l(oipa'~7 = 2 ̀ = - ~ " i ~  ~ - ~ - =  + _ . i + x O ~ +  y O , ~ ,  

(13) 

(14) 

and 

a , .=  - ~ (# , . z~ -  z,j) 

s,+ = - ¼ { 3+~0_  g,+3kwo + ~+z o _  g,~kzo~ 

+ 2(  Jd~ikZkj + ~j jkZki  ) -- 3 z k , ~ u -  g,U,)g'klZkl 

,~o4 . 1K+~o" + _ . , ) z o  } + 

(20) 

(21) 

where 

Z. .  -- D~,~. + D.~.,  (15) 

~, = ~ A , -  D&.  (16) 

Our problem is thus reduced to finding the conditions imposed on ~. by requiring 
that A ° can be written as a total spatial derivative. 

We must now choose a coordinate system which, among other things, defines the 
integration three-surface for eq. (4). We will choose the gauge conditions 

g0o = - 1 ,  (17) 

hoo = hoi -- goi = 0 .  (18)  

In this gauge it is convenient to introduce the extrinsic curvature ~ / j  = - F/° = - Fdj. 
Then, A ° can be written as 

A°=¼Oi{ f -~ (Z~H° '+  Z°Hq)} +hqAq+hqBij, (19) 
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The constraint (4) will hold for arbitrary h~, provided that A~j and B~j vanish. This 
gives the conditions required for ~ to be an integral constraint vector 

D;~j + Dfl ,= 0 (22) 

and 

{(via;  + - 2¢i,D,D* + - * , )  } 

- -Or -  - -Or -  +RitZy 2 R j  °. = Ru~ , + (23) 

If a solution can be found to eqs. (22) and (23) then an identity of the form (4) 
exists with B~ given by 

"" x { T i l - l ° " + Z ° H i J ) ] .  (24) Bi= ~ ~ [ (  D]jK°iV~)~u- 1g°JP'Wju dl- "4\--v-- 

Eqs. (22)-(24) are our final results. Note that although eq. (22) is just the spatial 
part of the equation for a Killing vector, eq. (23) is something different. If ~ is a 
Killing vector then eq. (23) reduces to an algebraic condition 

£jR~v + R i #  = 0. (25) 

If eq. (25) is not satisfied then the Killing vector will not give rise to an integral 
constraint on energy-momentum perturbations. Of course, if the background metric 
is a solution of the source-free Einstein equations, (25) becomes trivial and eqs. (4) 
and (24) reproduce the usual results for this case [1]. In the more general case of 
non-vacuum background spacetimes, results (22), (23) and (24) allow us to construct 
integral constraints even in the absence of any corresponding Killing vector. The 
results given above agree with those of refs. [2] and [5]. 

One of the reasons that integral constraint vectors are interesting is that the 
Robertson-Walker spacetimes of importance to cosmology have four constraint 
vectors which are not Killing vectors. The six Killing vectors of the Robertson-Walker 
spacetimes are also constraint vectors but since they are tangent to the standard 
spatial sections they give us no information about density perturbations. 

As an example of how integral constraints can be used, consider an energy- 
momentum tensor perturbation in a dosed, open or flat Robertson-Walker universe 
which vanishes outside some finite-sized region. Then, the boundary term in (4) 
vanishes for large enough integration volumes. If the perturbation velocities are 
small, then in a dosed Robertson-Walker universe with metric 

ds2=  - d t  2 + a2( t ) (dx  2 + sin2 X dr22), (26) 
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the integral constraints reduce to 
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f dVcos X 8P = O, (27) 

f dVsin X Ylm(I2)SP = O. (28) 

In the case of an open universe the factors cos X and sin X are replaced by cosh X 
and sinh X, and for a spatially flat Robertson-Walker spacetime the constraints 
reduce to the usual special relativistic conditions [6] 

f d3x Bp = 0, (29) 

f d3x//px = 0. (30) 

There exists a simple example of a family of exact solutions to the Einstein 
equations illustrating integral constraints in a Robertson-Walker spacetime. Con- 
sider a distribution of dust with energy density p(x, X) describing an overdense 
sphere surrounded by an empty shell lying in a dosed Robertson-Walker universe. 
The parameter X provides a measure of the difference between the densities inside 
the overdense sphere and in the surrounding spacetime and also of the thickness of 
the empty shell. In the limit h ---, 0, the two densities become equal and the width of 
the empty shell goes to zero leaving an ordinary, dosed, Robertson-Walker universe. 
The solution to the Einstein equations for this situation is a closed Robertson-Walker 
metric inside the overdense sphere, a Schwarzchild solution describing the empty 
region and finally a closed Robertson-Walker metric for the surrounding spacetime. 
Of course, all of these solutions must be matched at the boundaries. From these 
matching conditions one finds the constraint 

f dVcos x(p(r, X) - ( , ,  0)) = 0 (31) 

This result is a statement about two exact solutions to the Einstein equations one 
with nonzero X and the other with ~--0. The derivative of this equation with 
respect to ~ is identical to the integral constraint we have been discussing if we 
consider the overdense and vacuum regions for nonzero ~ to be a perturbation on 
the Robertson-Walker spacetime corresponding to ~ = 0. 

Finally, we note that it is possible to find the conditions on an integral constraint 
vector density of weight w which can be used to construct an integral constraint on 
the quantity (-g)w/28T~" plus gravitational contributions. The derivation is essen- 
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tially identical to that outline above except that everything gets multiplied by factors 
of (_~),~/2. If we write the weight w constraint vector as (_ f f ) -w /2~  then the 
result is that eq. (22) is unchanged while eq. (23) has an additional term 

1-0 - -  - (32) 

on its fight-hand side. There are no solutions to this equation with w ~ 0 in 
Robertson-Walker spacetimes but nonzero weight constraints may be of some 
interest in other spacetimes. 
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