
Nuclear Physics B325 (1989) 687-704 
North-Holland, Amsterdam 

W O R M H O L E S  A N D  GLOBAL S Y M M E T R I E S *  

L.F. ABBOTT 

Physics Department, Brandeis University, Waltham, MA 02254, USA 

Mark B. WISE 

California Institute of Technology, Pasadena, CA 91125, USA 

Received 17 March 1989 

We examine the effects that topological fluctuations in the structure of space-time have on 
the global U(1) symmetry of a scalar field theory. When the symmetry is not spontaneously 
broken we find wormhole solutions which break the U(1) symmetry despite the fact that they have 
infinite euclidean action. In the case where the symmetry is spontaneously broken we find 
wormhole solutions of finite action. 

1. Introduction 

It  is possible (although far from clear) that fluctuations which change the 
topo logy  of  space-time have a significant impact  on physics near the Planck scale. 

Can  they also affect physics at experimentally accessible energies? Recent  investiga- 

tions into wormhole  configurations [1-5] suggest that the answer to this question 
m a y  be yes. Wormholes  seem to violate spontaneously broken (i.e. nonlinearly 

realized) global symmetries [1-4], they may be important  for understanding the 
vanishing of  the cosmological constant  [5] and they may determine the values of  
o ther  parameters  as well [5, 6]. In  this paper we will make a detailed study of  the 
existence and effects of wormholes in a theory consisting of a complex scalar field 
with U(1) symmetry  minimally coupled to gravity. 

Let  us write the complex scalar field as 

f io (1.1) 

Then  the U(1) invariant potential  which characterizes our theory is solely a 
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function of f ,  

L.F. Abbott, M.B. Wise / Wormholes 

V = + ½mar 2 _~_1 4 _ ~ X f  + Vo, (1.2) 

where V 0 is a constant added to insure that V vanishes at its minimum when we 
have a negative mass term. This model was considered in refs. [2, 7, 8] with a 
negative mass term so that the U(1) symmetry is spontaneously broken. (ln refs. 
[2, 8] the Goldstone boson field was represented as a three-index antisymmetric 
tensor. In ref. [8] solutions with a non-zero cosmological constant and in dimensions 
other than four were also considered.) However, in this early work a simplifying 
assumption was made which, as we will see, is not always justified. Therefore we will 
reconsider this case. However, our more interesting and novel results arise when the 
mass term is positive. Here we will find wormhole configurations, but they have 
infinite euclidean action. This might suggest that such configurations have no 
physical relevance, but we will show that despite their infinite action, wormholes in 
the unbroken theory produce effects which can be reproduced in a low-energy 
effective field theory by including local U(1) non-invariant terms with non-zero 
coefficients in the effective lagrangian and we will show how these coefficients can 
be calculated. Even in the spontaneously broken case we will see that when the mass 
m is much less than the Planck mass, the full wormhole action is not what controls 
the strength of the explicit U(1) violating terms in the low-energy effective theory. 
Our work will make use of a formalism developed by Coleman and Lee [9] who have 
in parallel with our work looked at wormhole solutions and their implications for 
the low-energy effective field theory. 

As in previous studies of wormholes we assume that topologically non-trivial 
space-time fluctuations can be described using the euclidean path integral for 
gravity, at least in the semiclassical approximation. Thus, we will use the euclidean 
Einstein equations and the scalar field equations to evaluate the gravitational action. 
We are interested in gravitational field configurations consisting of a wormhole in 
an asymptotically flat spacetime. The amplitude for a wormhole to appear and 
produce a baby  universe carrying off U(1) charge can be written as 

1 
Z= f d4y ~ e  ", (1.3) 

where S is the euclidean action of the wormhole solution, D is the determinant 
arising from integration over the non-zero-mode fluctuations about the wormhole 
solution, the integral over y reflects the integration over zero modes with normaliza- 
tion factor N O . In this expression we have ignored an overall phase factor involving 
the phase of the • field since it can be eliminated by a suitable choice of boundary 
conditions and because it will play no role in our discussion. The U(1) symmetry 
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associated with the • field results in the conserved current (O~J ~ = O) 
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J~ =f2O"O (1.4) 

and an associated conserved charge. We wish to consider solutions which transfer n 
units of charge through a wormhole. We assume that the wormhole solution has 
spherical symmetry so we can write the metric as d s 2 = d r 2 + a 2 ( r ) d I 2  2 and 

f = f ( r ) .  Then the field equations which determine f and a are [7] 

3a  . //2 
/+ --/=a v' ( f )  , (1.5/ 

2 [ //2 ] 
tl 2 =  1 -  3-~pa  [ V ( f )  + 8gr4f2a6 ½f2 , (1.6) 

where a dot denotes a derivative with respect to r. 
In order for the effects we are investigating to be relevant for low-energy physics 

we must have m << me where mp is the Planck mass. In addition, we will assume 
that X is small so that we can do perturbative calculations. However, for much of 
our work we will assume that )~ is large enough so that the effects of the scalar 
self-coupling dominate over the effects of the scalar mass term near the wormhole. 
For  extremely small scalar self-couplings or for very large values of the wormhole 
charge this assumption is not justified. We will consider in a separate section the 
case where the mass term dominates near the wormhole. 

In analyzing the field equations we will divide the euclidean space into three 
regions. First near the wormhole, 0 < r < r n with r,, some measure of the wormhole 
size. In this region gravity plays an important role and both its dynamics and that of 
the scalar field are relevant. However, in this region the effects of the scalar mass 
term are negligible. Next, there is a region rn < r < 1 / m  where gravity plays a 
subdominant  role and can be ignored and also where the mass term in the scalar 
field equation is unimportant. Thus, the dynamics relevant to this region is that of a 
massless scalar field in flat euclidean space. Finally for r > 1 / m  we may ignore 
gravity but now the mass term becomes important. As we will see, it is only the 
contribution to the action of the wormhole solution coming from the region 
0 < r < r n which controls the strength of the explicit U(1) violating interactions in 
the low-energy effective field theory. 

Our strategy is the following. We will construct wormhole solutions by solving the 
appropriate  field equations in the three regions we have discussed. In the case of 
spontaneous symmetry breaking our results will expand on those of refs. [2, 7]. In 
the unbroken theory the infinite action which we find will require us to make a 
detailed comparison between the effects of wormholes in the full theory with 
quantum gravity and the effects of a local U(1) non-invariant term in the effective 
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lagrangian of a low-energy effective field theory without the topological fluctuations 
of quantum gravity. By doing this comparison we will determine the coefficient of 
the local U(1) breaking term in the low-energy effective field theory. Our analysis 
will focus on the exponential factors in this coefficient and we will not explicitly 
compute  functional determinants. 

2. Near the wormhole 

Near  the wormhole we must consider the combined scalar and gravitational field 
equations but  because the scalar field will be large in this region we can ignore the 
scalar mass term. The rescalings 

r = p 3Xml , a = A  3Xrn I and f =  F v 8~r (2 .1) , (2 .2) , (2 .3)  

give the field equations (ignoring the mass term) 

3A' 2Q 
F ' =  F 3 -  - -  (2.4) F" + h F 3 A  6 ' 

I Q ] (At) 2= 1 - A  2 ¼Fa + F2A~ - -~(F') 2 (2.5) 

with a prime denoting a O derivative and 

Q = rt2~t2//8qr 4 . (2.6) 

Note  that as a result of the rescaling the equations only depend on n, and X through 
the combinat ion Q. We have solved these equations numerically. The most interest- 
ing results are those for F(0) and A(0) especially the later since this is related to the 
size of the wormhole neck. At the neck of the wormhole we must have F(0) = A'(0) 
= 0, and in order for our solution to match on to the solution obtained below in the 
far field region we must have in addition F"(O) < 0. These conditions give 

and 

F(O) < (2Q) ' /6 /A(O)  (2.7) 

Q 
¼ F 4 ( 0 ) A 2 ( 0 )  + F 2 ( 0 ) A 4 ( 0 )  - l .  ( 2 . 8 )  

From these we can obtain bounds which for convenience we re-express in terms of 
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Fig. 1. A (0) as a function of Q assuming that the 
scalar self-coupling term dominates over the mass 

term near the wormhole. 

Fig. 2. F(0) as a function of Q assuming that the 
scalar self-coupling term dominates over the mass 

term near the wormhole. 

the original fields a and f,  

~1/6 n 2/3 qrl/6 m P 

a(O) > 21/6qr5/6mp, y ( 0 )  < 2 1 / 6 ( n ~ k ) l / 3  . ( 2 . 9 ) ,  ( 2 . 1 0 )  

Note that for large values of the charge n, a(0) is large and f(0) small in 
comparison with the Planck scale so a semiclassical analysis of quantum gravity 
may be justified. Numerical results for A(0) and F(0) as functions of Q are shown 
in figs. 1 and 2. These results indicate that for large values of Q the above bounds 
are saturated, while for small Q, F(0) approaches a constant value near one, 
independent of Q. This means that for large Q we can take 

)kl/6n 2/3 qT 1/6m p 

a (O) -  21/6,.tr5/6mp , f ( O ) -  2 1 / 6 ( n X ) 1 / 3  ( 2 . 1 1 ) , ( 2 . 1 2 )  

while for small Q we have 

3m 
f ( o )  = 8 , ,  ' 

81/4nl/2 

a(O)= 3 ~ m p "  (2.13), (2.14) 

Note that for small Q, a(0) and f(0) are independent of )t. 
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We can also determine the second derivatives of the fields at r = 0 by  per forming  
a power  series expansion. We find 

1[ 3o 
A"(0)  = A ~  F z ( 0 ) A 4 ( 0 )  

2Q 
F" (0 )  = F3(0)  F3(0)A6(0)  . 

1 ] ,  (2.15) 

(2.16) 

We  note  in passing that  the combined  scalar and gravitat ional  field equat ions 
have a static solution consisting of a " t u b e "  with 

nl/3 

a = a ( O ) ,  f =  (2~rZ)a/3X1/6a(O) (2.17),  (2.18) 

with a(0)  chosen to make ~i zero. However,  since this is not  asymptot ical ly  flat it is 
not  relevant  for  our present  analysis. 

W e  will call the contr ibut ion to the action coming f rom the region near  the 
wormhole  Sw ('). Its definition is somewhat  arbi t rary since it depends  on the precise 
value of r, which we use to separate  the wormhole  region f rom the region we 
consider  next.  However,  we expect to be able to take r, = a(0). The total act ion 
includes contr ibut ions  f rom both  the scalar and gravitat ional  euclidean actions, 

S = S o + S O (2.19) 

with 

n2 ] 
Sq,= 2~r2f0 a3 d r  ½ f 2 +  81r4f 2a-------7 + V ( f )  , (2.20) 

1 [ S d 4 x g / g R + 2 f 0  g ~ ( ~  to0) ] (2.21) S~ 16~rG v d S  - ' 

where g(3) is the de terminant  of the three-metric on the bounda ry  0 V of the volume 
of in tegrat ion and • -  •0 is the difference between the extrinsic curvature  of the 
b o u n d a r y  and  that  of the boundary  surface imbedded  in flat space*. Al though we 

* By considering the region 0 < r < oe we are actually constructing one half of a wormhole solution, 
the second half being an identical reflection of the solution we discuss. As a result we should not 
include the boundary at r = 0 in our calculation of the action, and the action we give is actually one 
half of the complete wormhole action. 
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do not explicitly calculate Sw (") it is of order 

A2(O) 
- w  ~. 

Using the above results for large and small charge we find 

S(w n) ~ ~kl/3r/4/3 

for large Q and 

for small Q. 
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(2.22) 

(2.23) 

Sw (') = n (2.24) 

3. The massless region 

Far  from the wormhole, r > r n, but at distances r < 1/m we can ignore gravity 
and take the euclidean spacetime to be flat a(r)= r and still ignore the effects of 
the scalar mass term. Thus the only equation we need to consider is that for f ,  

3 n 2 

f ' +  r f =  Xf  3 4,n.4f3r 6 . (3.1) 

Since f is still large near r = r  n we look for a decreasing solution in order to 
minimize the action. In fact, an exact solution can be obtained, 

with fl determined by 

f= fi/r, (3.2) 

n 2 

abe= 1. (3.3) 
4 ~ 4 ~  4 

Of course this solution must be matched on to the solution we obtained near the 
wormhole but this can be done by adjusting the value of f(0). To see how this is 
done we note that the above solution is actually unstable against small perturba- 
tions. Writing 

f= •/r + C(r) (3.4) 

and linearizing in C we find that 

C(r)ccrP , (3.5) 
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Fig. 3. A(O) as a function of # for the region near 
the wormhole and the massless region. In this 

figure we have taken Q = 1. 

Fig. 4. F(O) as a function of 0 for the region near 
the wormhole and the massless region. In this 

figure we have taken Q = 1. 

where  

p_+= - 1  + (4  + 6~/3 2 . (3.6) 

Thus,  we f ind  a growing mode  p + > 0 and a dying mode  p < 0. Since there is only  

one  uns t ab le  mode  we can use our  f reedom to adjus t  f (0 )  to insure  that  the 

coeff ic ient  of  this growing mode  is precisely zero. This is how the solut ions in the 

near  and  massless  regions are matched.  The result ing solut ions are  shown in figs. 3 

and  4. 

F o r  smal l  Q we have 

whi le  for  large Q 

r2  = n/27r2 (3.7) 

/~6 = n2/4./r4~k. (3.8) 

C o m p a r i n g  this with our  results for a(0)  and  f (0 )  suggests that  we can take 

r, = a (0)  in bo th  the large and small  Q l imits and  we have verif ied numer ica l ly  that  

this  is the case for o ther  Q values. The act ion in this region away f rom the 

w o r m h o l e  is domina t ed  by  the scalar  con t r ibu t ion  

[ , f 2  + _ _  + V ( f )  (3.9) S(l":2:2f.]/mr3dr[~ 8~.412r6 - 

A l t h o u g h  this result  is not  surprising,  the sub-dominance  of the gravi ta t ional  

c o n t r i b u t i o n  to the act ion in this region is not  tr ivial  because  it involves a 



L.F. Abbott, M.B. Wise / Wormholes 695 

cancellation between the volume integral of v ~ R  and the contribution of the 
extrinsic curvature term from the boundaries at r = r, and r = 1/m. We can write 
a(r) = r(1 + h(r)) and far from the wormhole h is small. For small h 

( ) d  
1~_ R = 6r 3 ~j + 3/)  = 6 ~ r  (r3/)),  (3.10) 

g ~  (x - x0) = -3r3/~. (3.11) 

From this we see that the volume term and the surface term in (2.21) cancel and 
gravity can be ignored far from the wormhole. The contribution to the action 
coming f rom this intermediate region is then 

where 

S~ ") = - y  ln(mr , )  + F(")(r,), (3.12) 

y = 2 ¢ r 2 ( / ~ 2 +  43)t/e4 ) (3.13) 

and F(n) is a factor correcting for the approximations we have used in obtaining the 
first logarithmic term. 

4. The far region 

For r > 1/m we can again ignore gravity but not the mass of the scalar field. 
Thus, in this region we must specify whether we are dealing with a positive or 

negative mass. For negative mass the value of f will decrease exponentially to the 
stationary value m / v ~  and there will be a finite contribution to the action from the 
far region. However, the positive mass case is very different. Here f must go to zero, 
obeying the scalar field equation 

3 . //2 
f'+ - - f  = m2f + )tf 3 . (4.1) r 4~4f3r 6 

For  large r the first and last terms on the right side dominate and 

t f =  2~r2mr 3 1 16m2r2 + . - .  . (4.2) 

Since this field goes to zero only as r-3/2 the contribution to the total action from 
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this region diverges.  If  we consider  the act ion coming from a finite region 1 / m  < r 

< rm~ , we f ind  

S{2 ") = nmrm~ , + F (  m , (4.3) 

where  F2 ~") aga in  corrects  for our  various approx imat ions* .  

5. Interpretation 

The  tota l  ac t ion  we have ob ta ined  is 

S (") = S~ ") - ~, l n ( m r , )  + Fl~")(r ,)  + S{2 ") . (5.1) 

F o r  the spon taneous ly  b roken  theory this is finite. However ,  when the theory  is 

u n b r o k e n  the result  for $2 {") giving 

S (") = S~ ") - y I n ( m r , )  + Fl~")(r~) + F2 ~") + nmrma x (5.2) 

migh t  suggest  (since rma ~ should go to infini ty)  that  wormhole  conf igura t ions  canno t  

b r e a k  exact  g lobal  symmetries.  This is not  correct  as we will now show. Since the 

w o r m h o l e  removes  n charges it seems reasonable  to assume that  in a low-energy 

effect ive f ield theory  the effects of a wormhole  carrying charge n can be r ep roduced  

by  add ing  the te rm 

g . f  d4y ~ " ( y )  (5.3) 

tO the effective lagrangian.  The  effective field theory is only  valid at d is tances  

grea ter  than  some cutoff  value r > 1 / A  and if we take 1 / A  > r~ matters  s impl i fy  

because  then we can ignore the gravi ta t ional  effects of the wormhole .  In  the 

effect ive f ield theory  we can express the ampl i tude  Z for a wormhole  induced  U(1) 

v io la t ing  process  by  insert ing the above  opera to r  into the usual  funct ional  integral .  

Fo l l owing  Co leman  and Lee [9], we compute  the ampl i tude  be tween states of  

def in i te  charge  by  insert ing a charge projec t ing  6-funct ion into the funct ional  

integral .  Us ing  the hami l ton ian  form of the funct ional  integral  and  inc luding our  

* The zero-mode factor in the wormhole amplitude Z given in sect. 1 includes a factor fd4x (8j, f) 2 
which we note is finite. Only the action factor in the amplitude has an infra-red divergence. It is 
customary to use the identity fd4x (O~f) 2= S valid when f solves the classical field equation to 
write N O in terms of the action S. However, the derivation of this identity involves integration by 
parts and it is only valid if the resulting surface terms vanish. In the unbroken case the slow decrease 
of the field at large r gives a non-vanishing surface term and we cannot write N o solely in terms of 
the action. 
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operator insertion and the charge projecting 6-function we have 
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Z= f[df][dO][dlI.] 8 ( f  d3xl lo-n) -~ ,  f d4Yf"(y)ei"°{Y) 

exp( /d4x [2t(8.f) ~f~H. V(f)ill. . (5.4) 

Performing the 0 integration gives 

Z =  S [ d / ]  [d/-/~] 8 ( S d 3 x H o - n ) U  8(O~H~(x)-nSa(x-y))  

× ~ f d 4 y f " ( y ) e x p  ½( + -ZTy~2H2+ V(f)  . (5.5) 
2f  

Here we have ignored the possible surface term arising from integrating the H.  0.0 
term by parts. This is just the phase factor which we mentioned in sect. 1 which can 
be eliminated by appropriate boundary conditions and which plays no role in our 
analysis. Now we do the H.  integration following Coleman and Lee [9] by writing 

with 

and 

H.  = f2  O.q, + 0¢. . ,  (5.6) 

o.(i'o.+) (5.7) 

f d3xf 20oq5 = n (5.8) 

and integrating over %. = -{.~. The result is 

Z= f[df]fd4ygnf"(Y)2~n ( 2 2 ]) e x p - / d % < [ ~ ( a . l )  + (5.9) 

with q5 given by the above equations. D n is the determinant coming from the H~ 
integration. It is not hard to see that if we do this functional integral by semi-classi- 
cal approximation we are repeating exactly the problem we did before. Here the 
operator insertion has produced a 6-function source reproducing the effects of the 
wormhole. If we assume spherical symmetry and solve for q5 we find 

6 = n/2~r2f 2r3 (5.10) 
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and substituting this into the above expression for Z we obtain the same action (3.9) 
and thus the same scalar field equation that we used before. In the massless and far 
field regions it makes no difference to our computation whether we have a 
&function source or a real wormhole and because of the short-distance cutoff in this 
low-energy effective theory there is no wormhole region to be considered here. The 
results of computing this last functional integral over f can then be taken from our 
previous results remembering the region of integration starts at the cutoff 1 / A  
rather than at the wormhole radius r,,. Including in our effective field theory (with 
short-distance cutoff 1 / A  and long-distance cutoff rmax) a factor D'  for one-loop 
quantum corrections which also includes the factor Dn,  we find 

z =  f d4y gnfn(O~) e - S  (5.11) 

with 

S = - y  l n ( m / A )  + F I ( m ( 1 / A )  + F2 ("~ + nmrma ~ . (5.12) 

Comparing this with our previous result obtained in the full theory we find 

g.  f . ( O ) v ~ N  2 e x p ( -  [Sw (") + F(" ) ( r . )  - F ( " ) ( 1 / A )  - y ln ( r .A) ] )  (5.13) 

which is finite as rma ~ ~ ~ ,  indicating that U(1) violating processes take place even 
though the wormhole action is infinite. Since our low-energy effective theory has a 
cutoff when we write f(0)  we really mean f averaged over a sphere around zero of 
radius 1 / A .  As a result, " f (0)"  is of order flA. For small Q the factor fn(0) cancels 
the logarithm of A in the last term of eq. (5.13). If we take the cutoff to be 1 / A  ~ r, 

then the ratio of determinants will be a function of r, only (locality of the effective 
field theory below the wormhole scale implies that any dependence of quantum 
corrections on long-distance physics associated with length scales greater than rn 
should cancel in eq. (5.13)) and dimensional analysis suggests that 

g,  ~ r8m4 . (5.14) 

We have shown that the effect of a single wormhole of charge n is equivalent in a 
low-energy effective field theory to an insertion of the operator 

g.f d4y~"(y). (5.15) 

To consider the effects of multiple wormhole configurations of various charges we 
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follow Coleman [3] and introduce creation and annihilation operators for baby 
universes of charge n, at" and a n. Then, we use for our basis of states, eigenstates 

( a t . + a  n ) l a . ) = a . l a . ) .  (5.16) 

The effects of wormholes can then be included in the low-energy effective theory by 
adding a term 

ang, f d4x,n(x)+h.c. (5.17) 
n=l 

to the lagrangian. 

6. Wormhole correlations 

We have seen how wormholes break the U(1) symmetry of a scalar field theory by 
transferring charge between a charged state in our universe and a baby universe. We 
now consider the effect of wormholes on the vacuum state. Charge conservation 
requires that in the vacuum state wormholes appear as _+ n charged pairs. Such pairs 
of wormholes will contribute to the vacuum energy density and thus modify the 
value of the cosmological constant. 

To analyze the effect of wormhole pairs which are separated by distances greater 
than r n we can use the effective low-energy theory rather than the full theory. For 
example we can represent the contribution of a charge n wormhole-ant iwormhole 
pair to the vacuum-to-vacuum transition by 

<0r f d4x otngn*n( X ) f 847 o~*gn( **(  y ) )hi0) .  (6.1) 

To compute  this we connect the two insertions by n scalar propagators D v ( r  ) and 
obtain 

f f0 c~ 3 -n ]a,12gZn! dax27r z d r r  ( D F ( r ) )  . (6.2) 

If we sum this over multiple but uncorrelated pairs it exponentiates and summing 
over n we find that pairs of wormholes (to lowest order in ?t) shift the bare 
cosmological constant A 0 to 

= - d r r  ( D F ( r ) )  . (6.3) 
n=l  

At large distances DF(r  ) - - e x p [ - - m r ]  so the above integrals are dominated by 
distances r , , < r < l / m .  For r < l / m  we have D v ( r  ) - r  2 so r 3 D ~ - r  3 2,,. If we 
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use this to approximate the above integral and use our estimate for g,  we conclude 
that 

2e  2s~!) 2 e -  ZS~2,1n( mr2 ) 
A = A  0 -  1o~112 - 1 - l a z }  2 2 0 2  8 14 r~4 8 12 m lJ mprl p rnpr~ 

n! ( 2 n -  4)e 2s~"~ 
- ~ I,~,,I 2 (6.4) r. 2n 8 12 

n = 3  [J mpr£ 

Note  that the n = 1 term dominates for small m. This is because of a 
Kosterl i tz-Thouless [10] phase transition in the vacuum distribution of wormhole 
pairs. Because wormholes interact by exchanging n scalar particles the quantity 
- n  In D F ( r )  plays the role of an interaction potential between a wormhole and an 
antiwormhole. At long distance the exponential behavior of D F produces a linear 
potential  which prevents wormhole pairs from separating. At shorter distances, 
when D F goes like an inverse power of the distance, this potential becomes 
logarithmic which introduces the possibility of a Kosterli tz-Thouless [10] transition. 
For  most operators the logarithmic potential confines the wormhole paris to a 
separation of order r,. However, for the charge one wormhole pairs the entropy 
f a c t o r  r 3 in the above integrals overpowers the weak logarithmic potential and 
n = 1 pairs can unbind and separate out to distances of order 1 / m .  

Here we have used the effective field theory to compute the contribution of 
wormhole pairs to the vacuum energy density. We could as well have done the 
computat ion using two-wormhole solutions in the full theory (see [11]). In fact, 
using our single wormhole solutions cutoff at a distance equal to the pair separation 
as a crude approximation of a two-wormhole solution, we can deduce that at long 
distances there is a linear interaction potential and that at intermediate distances the 
interaction potential is logarithmic. 

7. Small coupling or large charge 

Up to now we have assumed that the coupling constant ?t was large enough and 
the mass m small enough so that we could ignore the mass term in the region near 
the wormhole. In order for this assumption to be correct we must have 

),f2(O) > m 2 . (7.1) 

If we take f(O) to be of the order of our upper bound, then this requirement is 
equivalent to 

X > (7.2) 
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which seems reasonable except at very large values of n. In this case, or if X is very 
small we must include the mass term in our analysis, but can ignore the self-coupling 
term. First [eqs. (7.6)-(7.14)] we will consider the unbroken case with positive mass 

term. With the rescaling 

r = p / m ,  a = A / m  and f =  F 3 f 3 ~ / 8 ~ r  (7.3),(7.4),  (7.5) 

the field equations for the positive mass case become 

and 

where 

3A' 2Q 
r "  + A F '  = F -  F3A----- Z (7.6) 

[ Q ] ( A ' ) Z = I - A  2 ~F2 + F2A 6 ½( F ' )  2 , (7.7) 

Q = 8nZrn4/9~r2m 4 . (7.8) 

Once again all parameter dependence can be absorbed into the effective charge Q. 
Proceeding as before we can derive the bounds 

33/2~1/2m 3 

a(O) > 4 n m / 3 7 r m  2 f ( 0 )  < (7.9), (7.10) 
, 27/2nm2 

Numerical results for A(0) and F(0) as functions of Q are shown in figs. 5 and 6. 
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Fig. 5. A(0) as a function of Q assuming that the 
mass term is dominant in the region near the 

wormhole. 
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Fig. 6. F(0) as a function of Q assuming that the 
mass term is dominant in the region near the 

wormhole. 
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For  large values of Q the above bounds are saturated so 

a (0) = 4mn/3~rm 2 , f (O)  = 33/2rr1/2m3/27/2nm 2 , (7.11), (7.12) 

while for small Q we find 

f(O) = 3 ~ - p / 8 ~  , a(O) = 81/4rll/2/3VC~mp. (7.13), (7.14) 

Note  that the results for small Q are not only independent of mass, but identical to 
those we obtained previously with an f4  interaction and no mass. For small values 
of the charge the scalar potential plays no role in determining the size of the 
wormhole and the value of the scalar field near the wormhole. 

Now we turn our attention to the spontaneously broken theory with negative 
mass term. In previous analyses of this case, f was held fixed at its vacuum 
expectation value f = a = m/Vr~  for all values of r. This is indeed the case for very 
large values of the charge n. However, for smaller values of the charge the solutions 
depicted in figs. 1 -4  apply. To see where the dividing line between these two 
behaviors is we note that the field f will only remain at its vacuum expectation 
value if the term n2/8~r4f3a 6 can be ignored in the scalar field equation relative to 
the mass and ~ f  3 terms. For f = o 

a2(O) = ~ " (7.15) 

In order that we may ignore the term n2/4~r4f3a 6 in the scalar field equations near 

the wormhole we must then have 

m 2 >> m3p/no. (7.16) 

Using the relation o = m/Vr~  we see that this condition is essentially the inverse of 
eq. (7.2). I t  is clear that the assumption of a non-varying f field is only valid for 
extremely large values of the charge. Otherwise our solutions with a dynamic f field 
must be used. In particular it has been noted that for the solution with non-dynamic 
f the wormhole size diverges as o ~ 0. However, for any fixed n this limit always 
violates the above bound, so the divergent behavior is an artifact of the non-dynamic 
approximation.  Instead when the above inequality is violated we have A (0) given by 
fig. 1. 

8. Conclusions 

We have examined wormhole solutions in a scalar field theory with a global U(1) 
symmetry.  We find that wormhole solutions exist both in the case where the U(1) 
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symmetry is spontaneously broken and when it is unbroken. The complex scalar 
field we considered has self-interactions of the form X l~l 4 in the lagrangian 
density. For  most of the paper we considered the scalar mass to be much smaller 
than the Planck mass, m p. In the limit of large charge (more precisely large n ~) we 
find that at the location of the wormhole, f = v~-Fqbl is much smaller than m p and 
that the wormhole "size" is much greater the 1 / m p .  It follows that for large nX 
terms in the lagrangian density which we have not considered (e.g. Iqil2R, R2, i q~16, 
etc.) are of negligible importance and that quantum corrections can be neglected. 

We have seen that integrating out wormholes introduces into the effective field 
theory below the wormhole scale interactions 

L t = ~ a , g , ~ "  + h.c. (8.1) 
n = l  

which explicitly violate the global U(1) symmetry. Here the a ,  are complex 
parameters which characterize the vacuum state of the theory. The coupling con- 
stants gn, for large n)~ are of order 

. . n - S  (n)  lr,,I e w 
g. (8.2! 

where rn is approximately the wormhole size 

r n =- ) t l / 6 n 2 / 3 / m p ,  t~ = n l / 3 / ~  1/6 , Sw ~") = mpr£2 2. (8.3), (8.4), (8.5) 

In the case where the U(1) symmetry of the underlying field theory is not 
spontaneously broken, the action of the wormhole solutions is infinite. Physically 
this " infrared divergence" arises because charge must flow in from r = oo if a 
wormhole located at r -- 0 carries charge. The infinite action arises because in the 
unbroken theory all the charge carrying particles are massive. However, in the 
effective field theory (below the wormhole scale) the operator q~n acts as a point 
source of charge n and because the infrared divergence is reproduced exactly in the 
appropriate matrix element of ~n it does not enter into the coupling constant gn. 
To compute g, we regulate the infrared divergence by introducing a long-distance 
cutoff rm~ , and compare the transition amplitude between states of definite charge 
in the effective theory with the one-wormhole amplitude in the full theory. The 
value of g~ is then determined by short-distance physics on the scale of the 
wormhole and is independent of the infrared regulator. In fact the use of an infrared 
regulator could be avoided by introducing another insertion (~*(y ) ) "  since in this 
case the charge does not have to flow in from infinity but can be created by this 
insertion which acts as a source at space-time location y. In this case the effective 
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field theory calculation would be compared to a wormhole-antiwormhole amplitude 
in the full theory. 

Wormhole solutions have been found previously [2, 7, 8] in the case of a sponta- 
neously broken U(1) symmetry. Our analysis of this case extends previous work by 
allowing for spatial variation in the field f = v~-I~l and in particular we find the 
the behavior for small values of the U(1) breaking vacuum expectation value is 
different than in previous treatments. 

Our results show that the existence of a global U(1) symmetry in the low-energy 
effective field theory requires that the various vacuum parameters a n vanish so that 
no symmetry violating operators arise. This makes most global symmetries seem 
quite unnatural. However, there are exceptions. For example in the minimal 
standard model baryon and lepton number violating terms of dimension four or less 
are forbidden by gauged symmetries [12]. Since these gauged symmetries are 
protected from wormhole violations we would only expect baryon and lepton 
number violating interactions of higher dimension to be induced by wormholes. As 
long as the wormholes are not much bigger than the Planck size these would be 
suppressed by powers of mp and hence would be acceptably small. Presumably for 
larger wormholes there is an even stronger exponential suppression (however, see 
ref. [13]). 

We wish to thank S. Coleman, K. Lee, H.D. Politzer and J. Preskill for valuable 
comments and assistance. 
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