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We discuss Minkowski space interpretations of euclidean solutions which provide semiclassi- 
cal approximations to quantum processes. In particular, we consider wormhole and euclidean 
bounce solutions. We argue that the semiclassical description involves an instantaneous disconti- 
nuity in the Minkowski signature classical evolution and that the euclidean solutions provide final 
and initial value data on either side of this discontinuity. In the case of the de Sitter wormhole 
and bounce solutions, we resolve the problem of having a single maximal surface on the 
euclidean solution which must  provide both past and future data across the Minkowski signature 
discontinuity. 

1. Introduction 

Although as physicists we frequently compute in euclidean space, we live in 
Minkowski space. Solutions of classical euclidean field equations are often assumed 
to represent quantum processes, but when dealing with gravity it is essential to find 
Minkowski signature manifolds which can be correctly linked to the euclidean 
solution before the physical meaning of the tunneling process can be revealed. Our 
purpose here is to investigate the quantum process whose amplitude is being 
approximated by the recently discovered euclidean wormhole solutions of the 
classical equations of gravity coupled to a U(1) invariant scalar field theory [1-4]. 
Our investigation will lead us to reconsider false vacuum decay [5] especially when it 
occurs in a background de Sitter space [6]. We will interpret wormhole and bounce 
solutions by making the appropriate connections between these euclidean solutions 
and the Minkowski signature manifolds in which the physical process 
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Fig. 1. A particle of energy E 0 enters from the left, tunnels through this potential barrier and exits to 
the right. 

actually occurs. Although our results do not modify the semiclassical computations, 
we find that they clarify the issue of what physical process is actually being 
computed. In particular, we resolve a problem in the interpretation of the past 
evolution of de Sitter wormholes and bounce solutions. 

To guide our discussions of the WKB method for field theory and for gravity it 
will be helpful to begin by considering a simple example from one-dimensional, 
non-relativistic quantum mechanics. Consider a particle of mass rn moving in a 
potential V(x) of the form shown in fig. 1. We wish to provide a semiclassical 
description of a particle with energy much less than the potential energy at the top 
of the barrier coming in from the left, hitting the barrier, tunneling through the 
barrier and finally moving off to the right. The wave packet describing the incoming 
particle in the WKB approximation is the superposition 

f dq ( 2m(E-  V(q)) + - - - - E t  (1.1) ~bi,(x, t) = dEf(E)exp -~ (E) 4 h ' 

where a(E) is the left-hand classical turning point, that is the left-hand-most 
point where V(a)= E. We will assume that the weight function f (E) is sharply 
peaked at some value E o much less than the maximum value of V. In the 
semiclassical limit (h small) we can define the location of this wave packet by 
noting that the E integral is dominated by E -= E o and is peaked at values of x and 
t which make the phase of the exponential stationary. The stationary phase 
condition gives 

x Cm-dq 

Ja/(Eo) ~2(E o -  V(q)) = "  (1.2) 

relating the position of the center of the wave packet x to the time. Note that as we 
have defined things, the packet hits the barrier (x = a(Eo)) at time t = 0. 
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There is of course a reflected wave from the barrier but this will not concern us. 
Using the WKB approximation, the outgoing wave on the right side of the barrier 
corresponding to this incoming packet is 

( i f  x 4,oo,(x,t) = f dEf (E)T(E)exp  -~ (E) dq~/2m(E- V(q)) + - - - -  ~Et 
4 

(1.3) 

where T ( E )  is the barrier transmission coefficient and b is the right-hand classical 
turning point. The location of the center of this packet is given similarly by 

:~ ~ d q  
= "  (1.4  

An essential feature of our discussion is that T(E) is real. Note that the packet 
emerges from the barrier (x -- b(Eo) ) at time t = 0, the same time as it entered the 
classically forbidden region. 

We have assumed that the initial and final states are described by narrow wave 
packets with the same peak energy E 0. There exist a set of conditions on f (E )  and 
the potential V which assure that this is the case, but they are stronger than those 
needed to assure the validity of the WKB approximation. 

Eqs. (1.2) and (1.4) are the usual classical expressions relating position to time 
through the velocity. Therefore, the above analysis gives the following semiclassical 
picture of barrier penetration. A particle enters from the left and moves according 
to the equations of classical mechanics until at time t = 0 it hits the barrier at the 
left-hand classical turning point. At the same instant it emerges from the right-hand 
turning point and continues along its classical motion. The quantum process 
therefore appears in the semiclassical description as an instantaneous jump in the 
position of the particle. 

Following this example we will assume that in field theory a quantum tunneling 
event, described semiclassically, appears as an instantaneous discontinuity in the 
classical evolution of the relevant set of fields. The discontinuity will be along a 
spacelike surface in the Minkowski space-time. The euclidean solution acts as an 
interpolation across this discontinuity. For a euclidean solution to represent a WKB 
approximation of a tunneling between two classically allowed regions, the euclidean 
manifold must be cut along maximal surfaces. A maximal surface is a generalized 
turning point, a surface on which the normal derivatives of all fields including the 
metric vanish. The three-geometries on either side of the discontinuity in the 
Minkowski manifold must be maximal with respect to the Minkowski timelike 
normal and must match the three-geometries of the euclidean cuts. The maximal 
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condition on all corresponding three-geometries assures that we do not have to 
match non-zero Minkowski and euclidean signature time derivatives. 

Field values along the euclidean cuts provide final value data on the past side and 
initial value data on the future side of the discontinuity in the Minkowski signature 
space. Initial and final value data consist of both the values of fields and their 
derivatives normal  to the surface. Since we have chosen maximal surfaces to provide 
us with initial and final data, the normal derivatives of the fields will be zero and 
the data on either side of the discontinuity in Minkowski space are provided by the 
field values of the euclidean solution along the appropriate maximal cut with zero 

normal  derivatives. In this semiclassical picture, the failure of classical physics to 

account for the discontinuous evolution is completely compensated by the initial 
and final value data across the discontinuity which are provided by the values of the 
euclidean solution along maximal surfaces. 

As a concrete example of the above construction, consider the standard problem 
[5] of the decay of a false vacuum state, q~ = ~f, to a true vacuum state, ~ = ~ t ,  

through the formation of a single bubble appearing at the point x = 0 at time t = 0. 
For  this example we consider a flat Minkowski space-time and gravity is ignored. 
The euclidean bounce solution ~B depends only on the four-dimensional euclidean 
length ~ where 4 2 = IX l  2 --b T 2 and X and T are four cartesian, euclidean coordi- 

nates. As shown in fig. 2, the solution q~B approaches q~r as ~ ~ oc and ~B(0) -- ~kt- 
According to our discussion, evolution of the field ~ in Minkowski space is 
described classically, except for a discontinuity at t = 0. The value of q~ before and 
after this discontinuity (i.e. at times t = - e  and t = +c )  is given by its value along 
maximal cuts of the euclidean bounce solution. The value of the field at the 
Minkowski time t = - E  is given by that on a maximal slice of the euclidean bounce 
at euclidean time T = - oe where ~B = q~f and deoB/dT = 0. Thus, up until the time 
t = 0 the Minkowski space has ea = q~f. The initial-value data at time t = + c which 
lead to a classical description of the positive-time behavior in Minkowski space are 
given by the value of ~B along another maximal surface, that at euclidean time 
T =  0 (see fig. 2). Here q'B takes the value ~f for large IX[ 2 but varies away from 
this value at a distance associated with the size of the bubble and ultimately takes a 
value near q~t for X = 0. These initial value data characterize the bubble at its 
moment  of birth and subsequent classical Minkowski evolution describes its expan- 
sion. Note  that this picture has both a past, that is the description of the field before 
tunneling, and a future, a description of the field after tunneling. 

We would like to interpret the euclidean wormhole solutions in a similar way. The 
flat-space wormhole is shown in fig. 3. The euclidean wormhole should provide 
initial and final value data for a discontinuity in the "large" space-time across 
which charge is not conserved, and in addition provide initial value data for a baby 
universe. (To avoid confusion we will consider throughout the birth of a baby 
universe. Of course the wormhole can just as well be used to describe the death of a 
baby  universe in which case the appropriate euclidean cut would provide final 
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Fig. 2. The flat-space euclidean bounce solution. Lines of constant ~ are shown as solid lines, the thick 
line is the bubble wall, and the dashed lines show maximal cuts used to construct the Minkowski 

interpretation. 

rather than initial value data for the baby universe.) The usual wormhole solution is 
accepted as representing quantum tunneling between spaces with different topology 
because it can be cut along three maximal surfaces which can provide initial and 
final value data for the two sides of the discontinuity in the large space and initial 
value data for the baby universe. Two of these cuts are flat euclidean three-spaces 
and presumably describe the final initial surfaces of an instantaneous discontinuity 
extending across flat Minkowski space. The third euclidean cut is a three-sphere 

past 
- cu t  
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Fig. 3. The flat-space wormhole solution. Dashed lines show the maximal cuts needed to construct a 
Minkowski interpretation. 
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Fig. 4. The de Sitter wormhole solution. The chain of beads continues forever. Maximal cuts are shown 
as dashed lines and surfaces of constant charge density as solid lines. 

which can provide initial-value data for a closed, Minkowski signature, Rober t son-  
Walker universe. 

Since the effect of wormholes on the value of the cosmological constant [7] is of 
great interest, it it essential to consider wormhole solutions with a non-zero 
cosmological constant as well, especially a positive one. The wormhole solution with 
a positive cosmological constant is shown in fig. 4. The addition of even a tiny 
cosmological constant causes the flat regions in fig. 3 to curl up. Because of this a 
novel and disturbing problem arises. The distinction between the past and the future 
is obscured and the de Sitter wormhole has only two, not three, maximal surfaces. 
How then can we interpret the de Sitter wormhole as corresponding to a change of 

topology? 
The de Sitter wormhole has been considered before and an alternate interpreta- 

tion of its role has been given [8]. In this alternate interpretation, the de Sitter 
wormhole corresponds to tunneling between a de Sitter universe and a closed 
Rober t son-Walke r  universe and has nothing to do with topology change. However, 
it is clear that analyses of the effects of wormholes [7] assume that wormholes lead 
to changes of topology whether or not the cosmological constant is zero and, in fact, 
in discussions of the effect of wormholes on the cosmological constant it is always 
assumed that a zero cosmological constant is approached as the limit of a small 
positive value. Therefore our goal here is to reconstruct an interpretation for the 
de Sitter wormhole which clearly shows that it corresponds to a quantum-mechani- 
cally induced change of topology. 

A completely analogous problem exists for vacuum decay in de Sitter space, and 
we will consider this problem first before tackling the wormhole. The topology of 
the euclidean bounce solution (see fig. 5) with a positive cosmological constant is S 4 
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Fig. 5. The de Sitter bounce solution. Lines of constant q~ are shown as solid lines, the thick line is the 
bubble wall, and the dashed lines show the maximal cuts. 

rather than R 4. When we cut the euclidean manifold maximally we produce only a 
single surface. How can this single surface produce both final- and initial-value data 
for the discontinuity in the Minkowski signature description? A resolution of this 
difficulty and subsequent interpretation of the de Sitter bounce and the de Sitter 
wormhole are the main results of this paper. 

2. De Sitter tunneling 

We begin by considering the decay of a false vacuum state in a fixed background 
de Sitter space. In other words, we include the gravitational effects of a non-zero 
cosmological constant, but ignore the effect that the small difference in energy 
density between the false and the true vacuum states has on the space-time 
geometry. We will find it convenient to use the coordinates of a five-dimensional 
imbedding space to describe both euclidean and Minkowski signature manifolds. 
Throughout  we use the convention that capital letters denote euclidean signature 
coordinates and lower case letters Minkowski signature coordinates. 

For  fixed positive cosmological constant A (defined as 8~rG/3 times the vacuum 
energy density) the euclidean bounce solution is defined on a sphere of radius L 
where L 2 =  1/A. We will use the coordinates of a five-dimensional flat euclidean 
space (X, Y, Z )  in which this sphere is defined by X 2 + y2 + Z 2 = L 2. The eu- 

clidean solution ~B, shown in fig. 5, depends only on the coordinate Y. The solution 
~B varies from a value near but not equal to q,f at Y = - L  to a value near but not 
equal to q~t at Y = + L. The value of Y where q~R changes most rapidly ultimately 
determines the radius of the nucleated bubble. To define a suitable maximal surface, 
this spherical bounce solution is cut along the plane Z = 0. This leaves a three-sphere 
of radius L over which depJdZ = 0. Field values on this surface can be used to 
define discontinuity data for the Minkowski signature space. However, as men- 
tioned in sect. 1 this cut provides just a single surface from which we must define 
both initial and final data on either side of the Minkowski discontinuity. 
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The space-time in which the actual physics is taking place is, of course, Minkowski 
signature de Sitter space. We can define this as the surface - z  2 + y 2 +  [x l2= L 2 

imbedded in a five-dimensional flat Minkowski space with metric ds 2=  - d z 2 +  
d y 2 +  [dxl 2. We will choose to describe a bubble which forms at " t ime"  z = 0 

centered at the point y = + L. Bubbles forming at other times and other points can 
be incorporated by appropriate de Sitter transformations. In the usual static 
coordinates, 

r = Ixl, y = ~ r 2 cosh(t /L) ,  z = V / ~ -  r 2 sinh(t /L) (2.1) 

for which 

d s 2 = - [ 1 - ( r / L ) 2 ] d t 2 + [ 1 - ( r / L ) 2 ] - l d r 2 + r 2 d ~ ,  (2.2) 

the bubble appears at time t = 0 centered at the point r = 0. 
For  our discussions it is important to understand the casual structure of de Sitter 

space which can best be illustrated using Gibbons-Hawking  coordinates u and v in 
place of r and t where 

ds 2 = ( L  + r ) 2 ( - d v  2 + du 2) + r2d~2~, (2.3) 

Z - r  
- -  = u 2 - v 2 , ( 2 . 4 )  

L + r  

and surfaces of constant t are given by u equals a constant times o. The de Sitter 
manifold is shown using these coordinates in fig. 6 (for the moment  ignore the 
discontinuity shown in fig. 6). Light rays travel along straight lines with slope plus 
or minus one in this figure so we can see that the regions labeled I and I I I  are 
completely causally disconnected. This double casual structure leads us to the 
following interpretation of the de Sitter bounce solution. 

As before, the tunneling event appears in the Minkowski signature de Sitter space 
as an instantaneous discontinuity. However, the cut corresponding to this disconti- 
nuity does not extend across the full de Sitter space but rather only across one 
causally connected half. In terms of the u and v coordinates the discontinuity 
occurs along v = 0 but only extends from u = 0 out to positive u values. Expressed 
using the embedding coordinates (fig. 7), the discontinuity is at z = 0 and extends 
f rom y = 0  to y =  + L .  We can now use the value of ~B along the maximal 
euclidean surface Z = 0 (shown in fig. 5) as both initial and final data for this half 
cut in the Minkowski signature space. The value of q5 for z = - e  along the surface 
0 ~<y~< L is given by that on the euclidean manifold at Z = 0  in the range 
- L ~ Y ~< 0. In this range q5 B is near its false vacuum value d& and we match the 
euclidean point  Y = - L  with the Minkowski point y = + L  and similarly Y = 0 
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nuity 

Fig. 6. De Sitter space in Gibbons-Hawking coordinates. In this diagram light travels along straight 
lines with slope ± 1. Regions I and III are causally disconnected but share past and future regions IV and 

II. The discontinuity corresponding to a wormhole or bubble at r = 0 is shown as a wiggly line. 

with y = 0. Thus the euclidean point Y = - L  gives the field value on the past side 
of the Minkowski discontinuity at the location where the center of the bubble is 

about to appear. The initial value for future Minkowski evolution defined along the 

surface z = +e and 0~<y~< L is given by the value of q'a along the rest of the 

maximal euclidean surface at Z = 0 extending over the range 0 ~< Y~< L. For 
example, on the future side of the discontinuity the field value at the center of the 

bubble is given by that at Y = + L on the maximal cut of the euclidean solution. 

Explicitly we take ~ as a function of y and z in the range 0 ~< y ~< L on either side 

of the discontinuity at z = 0 to be 

= + , )  = (2.5) 

z 

Fig. 7. De Sitter space shown as a hyperboloid. The discontinuity corresponding to a wormhole or 
bubble at r = 0 is shown as a wiggly line. 
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In this way the complete Minkowski signature discontinuity is specified using the 
single maximal euclidean surface. Note that as we approach the end of 
the Minkowski discontinuity at y = 0, the change in the value of the field across the 
discontinuity, ~ B ( Y ) -  ~B(-Y),  goes smoothly to zero. 

The tunneling process we have described only has an impact on regions I, II and 
IV of the de Sitter space (see fig. 6). We believe this is just as it should be. Since 
region III is causally disconnected from region I where the tunneling-induced 
discontinuity takes place, nothing that happens in region III should have any impact 
on or any relevance to the tunneling process. However, in spite of this our 
description is complete. Given initial-value data, for example along a surface of 
constant negative o, we can use the classical equations of motion to predict all 
future behavior of the field ~. In region III the evolution is purely classical, while in 
region I we must augment the classical equations with information about the 
discontinuity across the cut which is just what knowledge of the euclidean bounce 
solution provides. Note that the behaviors in regions II and IV are partially 
correlated with the tunneling process since these regions are in causal contact with 
both regions I and III. 

A novel feature of our interpretation is that it involves precisely specified final 
value data along the past side of the discontinuity as well as specifying initial value 
along the future side. We interpret this as implying that the quantum amplitude for 
the tunneling process to occur contains in addition to the exponential suppression 
factor given by the euclidean action, a prefactor proportional to the amplitude for 
the initial state wave function to yield field values corresponding to this final value 
data. Because the euclidean bounce solution de Sitter space never connects to the 
point ~ -- ~f, we view the presence of such a factor as unavoidable. 

We can also construct a similar interpretation for the euclidean bounce in the case 
when we allow for appreciable variation in the vacuum energy density. For example, 
if the false vacuum state is characterized by a positive vacuum energy density, but 
the true vacuum has zero cosmological constant, then the construction of the 
discontinuity and matching of initial and final value data proceeds as before, except 
that inside the bubble we match a section of flat euclidean space onto a section of 
flat Minkowski space along the future side of the Minkowski signature discon- 
tinuity. 

As L ~ ~ the description we have given for the de Sitter bounce goes smoothly 
over to that given earlier for the flat-space bounce if we consider a region of finite 
size surrounding the bubble. As L ~ ~ the value of ~B at Y-- - L  approaches ~f 
and the value of the field along the maximal cut in a finite region near Y = - L ,  
which will provide final value data on the past side of the Minkowski discontinuity 
in the vicinity of the bubble, matches that along the cut at T = - ~  for the 
flat-space bounce. Likewise, the value of ~B near Y = + L along the maximal cut, 
which will provide initial-value data for the future side of the discontinuity near the 
bubble, approaches ~B along the cut at T = 0 for the flat-space bounce, 



L.F. Abbott, E. Farhi / Wormholes 273 

3. The de Sitter wormhole 

Euclidean wormhole solutions have been found in theories of gravity with 
constraints [1] and gravity coupled to a three-index antisymmetric tensor field [2] 
and to a U(1) invariant scalar field theory with [3] or without [4] spontaneous 
symmetry breaking. The simplest solution is that of a scalar field with sponta- 
neously broken U(1) symmetry and a potential constructed to insure that the 
magnitude of the scalar field remains constant despite all the gravitational perturba- 
tions which occur near the wormhole. Thus, we take I~[ = f  where f is a constant. 
Since the scalar field theory has, by construction, a U(1) symmetry, there exists a 
charge which is conserved despite the spontaneous symmetry breaking. Solutions 
which have been constructed for this and other cases are spherically symmetric, so 
the euclidean signature metric is written in the form 

dS 2= d~ 2+A2(~)dI232, (3.1) 

where d~2 3 is the line element on a unit three-sphere. These solutions have a 
distribution of U(1) charge with charge density depending only on ~. The total 
charge on any three-sphere is conserved and is set equal to some value n. 

The equation governing the radial factor A(~) is [3] 

q 
•2 = l - A- ~ - A A  2, (3.2) 

where a dot denotes a ~-derivative and we have introduced the parameter 

n 2 

q -  3~r3m~,f 2 , (3.3) 

with mp the Planck mass. A is the cosmological constant which we will take to be 
positive but which may be arbitrarily small. A solution of the equation for A has 
been given [3] but will not be needed for our purposes. The equation for A, (3.2), is 
equivalent to that of a particle with total energy 1 moving in a potential V ( A ) =  

q / A  4 + A A  2, where A is the particle's position and ( plays the role of time. 
Provided that 

3 ( A v ~ / 2 ) 2 / 3 < 1 ,  (3.4) 

there exists a solution where A oscillates indefinitely between the two points at 
which V ( A )  = 1. The corresponding euclidean manifold is shown in fig. 4. It looks 
like an infinite chain of beads linked together by narrow tubes. Each bead is 
approximately a euclidean de Sitter space for four-sphere while the tubes are the 
wormholes. In this figure we have once again used five-dimensional euclidean 
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imbedding coordinates (X, Y, Z)  in which the wormhole solution is given by the 
surface 

IXI2+ YZ=AZ(~(Z)), (3.5) 

where ~(Z)  is determined from 

Z =  f . (3.6) 

In fig. 4 we have also drawn contours of constant charge density. The density of 
charge, like the metric scale factor A, depends only on the coordinate Z. 

In order for us to interpret the physical meaning of this euclidean manifold we 
must cut it along maximal surfaces to provide data for a suitable discontinuity or 
initial-value surface in a Minkowski signature manifold. A maximal surface is one 
on which both A and the charge density are stationary with respect to translations 
of the surface in a direction normal to the surface. If we take a surface of constant 
A then, since the charge density is proportional to A -  3, there is only one condition, 
that A be stationary on the surface. Only two such surfaces are apparent, those of 
minimum and maximum A. One is the surface where the wormhole neck reaches its 
minimum radius. The other is the equator of the approximate de Sitter sphere where 
A takes on its maximum value as shown in fig. 4. On both of these surfaces 
d = d A / d Z  = 0 and the charge density is stationary. We will assume that the 
cutting which gives the dominant contribution to the wormhole amplitude is just 
that between the equator of an approximate de Sitter sphere and its own wormhole 
neck. Both maximal cuts are three-spheres, one large and one small, with uniform 
charge density. 

To interpret the wormhole solution we must find initial and final surfaces with 
matching geometries in the appropriate Minkowski signature manifolds. The rele- 
vant Minkowski-signature manifolds are solutions of the Einstein equations for a 
universe filled uniformly with U(1) charge in the presence of a cosmological 
constant. We look for solutions of the form 

d s 2 =  - d t 2  + a2( t )d~2~.  (3.7) 

The equation determining a is, not surprisingly, the analytic continuation of 
eq. (3.2), 

d z = - 1  + q / a  4+ A a  z. (3.8) 

This is equivalent to the equation of motion for a particle with total energy - 1  
moving in a potential V ( a ) =  - q / a  4 -  A a  2. When condition (3.4) is satisfied the 
allowed classical motions divide into two distinct regions. The first describes a 
space-time in which a is infinite at t = - ~ ,  comes in to a minimum value and then 
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grows infinitely large again at t = + oe. This is very similar to ordinary de Sitter 

space. For this space the effect of the charge is small, merely perturbing the exact 
shape of the de Sitter space but not affecting its overall structure. There is a second 
solution of eq. (3.8) for which the charge density plays a dominant role and the 
cosmological constant is subdominant. Here the motion starts at a = 0, progresses 
out to a maximum value of a and then collapses back to a = 0 again. This is just an 
ordinary expanding and collapsing Rober tson-Walker  universe with a small cosmo- 
logical constant. The unconventional form of the energy density, proportional to 
a -6, is due to the unusual equation of state 0 = P  associated with the state of 

uniform U(1) charge distribution in spontaneously broken theory. In the unbroken 
theory [4] the energy density would be the usual one for either massless or massive 
particles. In either case, the points a = 0 are space-time singularities. 

Both of these solutions can be embedded in five-dimensional Minkowski space 
(x, y, z) with 

ds 2 = - d z  2 + Idx[ 2 + dy  2, (3.9) 

and can be expressed as the surface 

ixl2 + y2 = a( t( z) )2, (3.10) 
where t ( z )  is determined from 

z -  f d t ~ / 1  + d z ( t ) .  (3.11) 

The de Sitter like solution is very similar to the exact space shown in fig. 7. 
We will call the minimum radius of the constant z three-spheres L. It  obeys 
A L 6 - L 4 + q = 0 with the root chosen so that L -- A 1/2 when q = 0. The Robert- 

son -Walke r  solution is shown in fig. 8. Here the maximum radius of the three- 
6 4 + = 0 with q l / 4  if A 0. spheres is given by A a r o n -  area x q area x = = 

The large S 3 surface of the euclidean solution provides initial and final data along 
a cut in the approximately de Sitter, Minkowski signature manifold exactly as it did 
in the case of the de Sitter bounce solution. As before, the maximal euclidean 
surface Z = 0 provides both initial and final data for a half cut in the Minkowski 
signature space. The field value for z = - c  along the surface 0 ~< y ~< L is given by 
that on the euclidean manifold at Z = 0 in the range - L  ~< y ~< 0. For this surface 
the total charge is n/2  because the charge is uniformly distributed over the maximal 
cut surface and we have taken half of this surface. The initial-value data for future 
Minkowski signature evolution defined along the surface z = + ~ and 0 ~ y ~< L are 

given by field values along the rest of the maximal surface at Z = 0 extending over 
the range 0 ~< Y ~< L. Here the total charge has magnitude n/2  because we are again 
considering half of the total maximal cut but its sign has changed to - n / 2  because 
the direction of time is now taken to be the outward normal rather than the inward 
normal  to the euclidean hemisphere. In our interpretation the violation of charge 
observed in the Minkowski signature manifold is due to the rotation of the sense of 
time across the discontinuity as we rotate around the euclidean sphere. 
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Fig. 8. A Minkowski signature Robertson-Walker universe half of which will be the baby universe. 

The  w o r m h o l e  neck cut  provides  ini t ia l -value da ta  for the b i r th  of a c losed 

R o b e r t s o n - W a l k e r  universe at  the m o m e n t  of its m a x i m u m  expansion.  The  

R o b e r t s o n - W a l k e r  universe is cut  a long the z = 0 p lane  and the space- t ime of the 

b a b y  universe  is one half  of the man i fo ld  p ic tured  in fig. 8. 

The  tunne l ing  process  we have descr ibed  looks like an ins tan taneous  v io la t ion  of 

charge  conserva t ion  by  n units with a un i fo rm charge d i s t r ibu t ion  in region I of a 

de  Si t ter  space  suddenly  changing to a un i fo rm d is t r ibu t ion  with  the oppos i te  sign. 

In  region  I I I  o rd ina ry  classical evolut ion takes place  and no charge v io la t ion  is 

observed .  The  charge which has vanished f rom the large space- t ime appears  in a 

d i sconnec ted ,  c losed R o b e r t s o n - W a l k e r  space- t ime which u l t imate ly  col lapses  to a 

s ingular i ty .  

W e  wish to thank  S. Coleman,  A. Guth ,  K. Lee, J. Preskill ,  A. S t rominger  and M. 

Wise  for  va luab le  discussions.  
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