
350	 VOLUME 19 | NUMBER 3 | MARCH 2016  nature neuroscience

Most of the networks used by computer scientists and many
of those studied by modelers in neuroscience represent
unit activities as continuous variables. Neurons, however,
communicate primarily through discontinuous spiking.
We review methods for transferring our ability to construct
interesting networks that perform relevant tasks from the
artificial continuous domain to more realistic spiking network
models. These methods raise a number of issues that warrant
further theoretical and experimental study.

The world around us is described by continuous variables—distances,
angles, wavelengths, frequencies—and we respond to it with continu-
ous motions of our bodies. Yet the neurons that represent and process
sensory information and generate motor acts communicate with each
other almost exclusively through discrete action potentials. The use
of spikes to represent, process and interpret continuous quantities
and to generate smooth and precise motor acts is a challenge both
for the nervous system and for those who study it. A related issue
is the wide divergence between the timescales of action potentials
and of perceptions and actions. How do millisecond spikes support
the integration of information and production of responses over
much longer times? Theoretical neuroscientists address these issues
by studying networks of spiking model neurons. Before this can be
done, however, network models with functionality over behaviorally
relevant timescales must be constructed. Here, we review a number
of methods that have been developed for building recurrent network
models of spiking neurons.

Constructing a network requires choosing the models used to
describe its individual neurons and synapses, defining its pattern
of connectivity, and setting its many parameters (Fig. 1a). The net-
works we discuss are based on model neurons and synapses that are,
essentially, as simple as possible. The complexity of these networks
resides in the patterns and strengths of the connections between neu-
rons (although we consider dendritic processing toward the end of
this Perspective article). This should not be interpreted as a denial
of the importance or the complexity of the dynamics of membrane
and synaptic conductances, or of phenomena such as bursting, spike-
rate adaptation, neuromodulation and synaptic plasticity. These are
undoubtedly important, but the simplified models we discuss allow
us to assess how much of the dynamics needed to support temporally

extended behaviors can be explained by network connectivity.
Furthermore, such models provide a foundation upon which more
complex descriptions can be developed.

The problem we are addressing is this: a network receives an input
fin(t), and its task is to generate a specified output fout(t) (Fig. 1a; we
discuss below how this output is computed). Our job is to configure
the network so that it does this task, where by ‘configure’ we mean
set the weights (that is, strengths) of the network synapses to appro-
priate values. For a network of N neurons, these weights are given
by the elements of an N × N matrix, denoted by J, that describes the
modifiable connections between network neurons (although some of
these elements may be constrained to 0, corresponding to nonexist-
ent connections). We note here that we are constructing recurrently
connected networks, which pose unique challenges not faced when
constructing feedforward networks. Given our interest in spanning
the temporal gap between spikes and behavior, tasks of interest often
involve integrating an input over time1–12, responding to particular
temporal input sequences13–15, responding after a delay or with an
activity sequence13,16–24, responding with a temporally complex out-
put7,22–29 or autonomously generating complex dynamics6,10,22–24.
In this Perspective, we focus on general approaches that extend our
ability to construct spiking networks capable of performing a wide
variety of tasks or that make spiking networks perform these tasks
more accurately.

Determining the connection matrix required to make a network
perform a particular task is difficult because it is not obvious what
the individual neurons of the network should do to generate the
desired output while supporting each others’ activities. This is the
classic credit-assignment problem of network learning: what should
each individual neuron do to contribute to the collective cause of
performing the task? The field of machine learning has addressed
credit assignment by developing error gradient–based methods,
such as back-propagation, that have been applied with considerable
success30. This approach has also been used to construct abstract
network models known as rate models in which neurons communi-
cate with each other through continuous variables31,32. Unfortunately,
the application of gradient-based methods to spiking networks28,33–35
is problematic because it has not been clear how to define an appropri-
ate differentiable error measure for spike trains. The methods that we
review here can all be thought of as ways to solve the credit assign-
ment problem without resorting to gradient-based procedures.

Defining the input, output and network connections
Before beginning the general discussion, we need to explain how neu-
rons in the network interact, how they receive an input and how they
produce an output. This, in turn, requires us to define what we call
the normalized synaptic current, s(t), that arises from a spike train
(Fig. 2a, top and middle traces). In the synapse model we use, each

Building functional networks of spiking model neurons
L F Abbott1,2, Brian DePasquale1 & Raoul-Martin Memmesheimer1,3

1Department of Neuroscience, Columbia University College of Physicians and
Surgeons, New York, New York, USA. 2Department of Physiology and Cellular
Biophysics, Columbia University College of Physicians and Surgeons, New York,
New York, USA. 3Department for Neuroinformatics, Donders Institute for Brain
Cognition and Behavior, Radboud University, Nijmegen, the Netherlands.
Correspondence should be addressed to L.F.A. (lfa2103@columbia.edu).

Received 25 November 2015; accepted 11 January 2016; published online
23 February 2016; doi:10.1038/nn.4241

350	 VOLUME 19 | NUMBER 3 | MARCH 2016  nature neuroscience

F o c u s o n N e u r a l C o m p u tat i o n a n d T h e o r yp e r s p e c t i v e
np

g
©

 2
01
6

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://dx.doi.org/10.1038/nn.4241
http://www.nature.com/natureneuroscience/

nature neuroscience  VOLUME 19 | NUMBER 3 | MARCH 2016	 351

p e r s p e c t i v e

presynaptic spike causes the normalized synaptic current to increase
instantaneously by 1, s → s + 1. Between spikes, s decays exponen-
tially toward 0 with a time constant τ, which is set to 100 ms in the
examples we show. There is one normalized synaptic current for each
network neuron, so s is an N-component vector. The normalized syn-
aptic current is used to construct both the output of the network and
the inputs that each neuron receives through the synapses described
by the matrix J (Fig. 1a). The synaptic current generated in a post-
synaptic neuron by a particular presynaptic neuron is given by the
appropriate synaptic weight multiplied by the normalized synaptic
current for that presynaptic neuron. The synaptic currents for all the
network neurons are given collectively by Js.

All of the models we present have, in addition to the connections
described by J, a second set of synapses with time constants consider-
ably faster than τ, described by Jfast. We consider two arrangements
for these fast synapses: random or set to specific values (see below).
In either case, the fast synapses are not modified as part of the
adjustments made to J to get the network to perform a particular
task. It is tempting to equate the fast (Jfast) and slower (J) synapses in
these models to fast AMPA and slower NMDA excitatory synapses
or to fast GABAA and slower GABAB inhibitory synapses. Although
this is correct as far as timescales are concerned, there are issues
with this interpretation due to the different ways these two classes of
synapses are treated and modified in the models. These remain to
be resolved.

The input to the network, fin(t), takes the form of a current injected
into each neuron. This current is fin(t) multiplied by a neuron-dependent
weight. The vector formed by all N of these weights is denoted by
u (Fig. 1a; we could also extend these networks to include multiple
inputs fin but, for conciseness, we restrict our examples to single-
input cases).

The network output is a weighted sum of the normalized synaptic
currents generated by all the neurons in the network (Fig. 2a, bottom
trace; we consider a single output here, but extend this to multiple
outputs later). Each network neuron has its own output weight in
this sum and, collectively, these weights form an N-component row
vector, w (Fig. 1a). Output weights are adjusted to minimize the aver-
age squared difference between the actual output ws and the desired
output fout.

In all of the examples we show, the firing rates of all the network
neurons are constrained to realistic values. Another important ele-
ment in producing realistic-looking spike trains is trial-to-trial
variability. Irregular spiking can be generated internally through the
random fast synapses we include36,37 or by injecting a noise current
into each network neuron. We do both here.

The spiking networks we discuss come in two varieties that we
call rate coding and spike coding. At various points we also discuss
what are called rate networks, more abstract models in which network

units communicate through continuous variables, not spikes. It is
important to keep in mind that the rate-coding case we discuss refers
to spiking, not rate, networks.

Driven networks
In any construction project, it is useful to have a working example.
As circular as it sounds, one way to construct a network that per-
forms a particular task is by copying another network that does the
task. This approach avoids circularity because the example network
involves a cheat: it is driven by an input fD(t) that forces it to produce
the desired output (Fig. 1b). We call the original network—the one
we are constructing (Fig. 1a)—the autonomous network (even though
it receives the external input fin) and call the example network the
driven network (Fig. 1b). If there is a single driving input, it is injected
into the network neurons through weights described by a vector uD.
Later we will discuss situations in which P > 1 driving inputs are used.
In this case, uD is an N × P matrix. Although the driven network does
not receive the original input fin directly, the driving input fD typically
depends on fin, as discussed below. The autonomous and the driven
networks contain the same set of fast synapses, but the slower syn-
apses described by the matrix J are absent in the driven network.

The role of the driven network is to provide targets for the
autonomous network. In other words, we will construct the auton-
omous network so that the synaptic inputs to its neurons match
those in the driven network. In machine-learning a related scheme
is known as target propagation38,39, and interesting neural models
have been built by extracting targets from random networks40 or from
experimental data41,42.

Obviously, a critical issue here is how to determine the driving
input that forces the driven network to perform a task properly.
We address this below but, for now, will just assume that we know
what the driving input should be. Then, the driven network solves
the credit assignment problem for us; we just need to examine what
the neurons in the driven network are doing to determine what the
neurons in the autonomous network should do. Even better, the driven
network tells us how to accomplish this: we just need to arrange the
additional connections described by J so that, along with the term ufin,
they produce an input in each neuron of the autonomous network
equal to what it receives from the external drive in the driven net-
work. However, there are significant challenges in seeing this program
through to completion. (1) We have to figure out what fD is—in other
words, determine how to drive the driven network so that it performs
the task. (2) We must assure that this input can be self-generated
by the autonomous network with a reasonable degree of accuracy.
(3) We must determine the recurrent connection weights J that

ws ≈ fout

a

b

fin

fD

u w

w

s

Jfast J

∑

uD

Jfast

s

∑

ws ≈ fout

Figure 1  Structure of autonomous and driven networks. (a) The
autonomous network. In this diagram, black lines and dots denote fixed
connections, and red lines and dots are connections that are adjusted
to make the network function properly. A defined input fin is provided to
the network through connections characterized by weights u. Neurons
in the network are connected by two types of synapses, parameterized
by Jfast (in black) and J (in red). The problem is to choose the strengths
of the synapses defined by J, and the weights w, so that the output of
the network, ws, approximates a given target output fout. (b) The driven
network. In this case, the network is driven by input fD, through weights
uD, that forces it to produce the desired output. Only the fixed synapses
denoted by Jfast are included. Output weights are adjusted as in the
autonomous network.

np
g

©
 2

01
6

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

352	 VOLUME 19 | NUMBER 3 | MARCH 2016  nature neuroscience

p e r s p e c t i v e

accomplish this task. (4) We must assure that the solution we obtain
is stable with respect to the dynamics of the autonomous network.
This Perspective covers significant progress that has been made in
all four of these areas.

The driven network consists of nonlinear, spiking model neurons
connected by either randomly chosen or specifically set (as discussed
below) fast synapses (Fig. 1b), and the spikes produced by these units
are filtered (Fig. 2a) and summed (Fig. 1) to provide the output.
The transformation from the input fD to the output fout might seem to
be quite complex, but it turns out that the effects of nonlinearities and
fast network connections can largely be compensated by appropriate
choice of the output weights w. In light of this, a first guess for the
driving input might be to set fD = fout—that is, to treat the network as if
it simply passes a signal from the input to a properly extracted output.
This approach can generate good results in rate-based networks43–47,
and it has been tried in spiking networks7, but in these it only works
in limited cases and, in general, poorly (Fig. 2b).

A significant advance6,48 was the realization that the element of the
network input-output transformation that cannot be compensated
by the choice of output weights is the synaptic filtering at the output,
characterized by the time constant τ. Correcting for this synaptic
low-pass filtering and its phase delay is easy: we simply define the
driving input as a high-pass-filtered, phase-advanced version of the
desired output,

f f
df
dtD out
out= + t

Using this driving input to produce fout works quite well (Fig. 2c).
Equation (1), which provides an answer to challenge 1, forms the
basis for the work we discuss. Of course, this gives us only a driven
version of the network we actually want. In the following sections, we
show how to make the transition from the driven network (Fig. 1b)
to the autonomous network (Fig. 1a). Before doing this, however, we
introduce an approach that allows the desired output to be produced
with greatly enhanced accuracy.

Spike coding to improve accuracy
The network output shown in Figure 2c (red line, top panel) matches
the target output ( fout, black line, top panel) quite well, but deviations
can be detected, for example, at the time of the second peak of fout.
Some deviations are inevitable because we are trying to reproduce a
smooth function with signals s(t) that jump discontinuously every
time there is a spike (Fig. 2a). In addition, deviations may arise from
irregularities in the patterns of spikes produced by the network. The
driven network in Figure 2c approximates the desired output function

(1)(1)

because its neurons fire at rates that rise and fall in relation to changes
in the function fout. For this reason, we refer to networks of this form
as rate coding. Deviations between the actual and desired outputs
occur in these networks when a few more or a few fewer spikes
are generated than the precise number needed to match the target
output. The spike-coding networks that we now introduce9,10,12
work on the same basic principle of raising and lowering the firing
rate, but they avoid generating excessive or insufficient numbers of
spikes by including strong fast interactions between neurons. These
interactions replace the random fast connections used in the network
of Figure 2b,c with specifically designed and considerably stronger
connections (see the Perspective by Denève and Machens49 in this
issue for further discussion of these connections). In general, both
excitatory and inhibitory strong fast synapses are required. These
synapses cause the neurons to spike in a collectively coherent manner
and assure near-optimal performance. For a rate-coding network of N
neurons, the deviations between the actual and desired output are of
order 1/ N . In spike-coding networks, these deviations are of order
1/N, a very significant improvement (as can be seen by comparing the
outputs in Fig. 2c,d). The values of the fast strong connections needed
for spike coding were derived as part of a general analysis of how to
generate a desired output from a spiking network optimally9,10. The
use of integrate-and-fire neurons, equation (1) for the optimal input, a
determination of the optimal output weights w, and the idea and form
of the fast connections are all results of this interesting analysis.

The strength of the fast synapses used in the spike-coding scheme is
reflected in the way they scale as a function of the number of synapses
that the network neurons receive. Denoting this number by K, one
way of assuring a fixed level of input onto a neuron as K increases
is to make synaptic strengths proportional to 1/K. The inability of
this scheme to account for neuronal response variability50 led to the
study of networks36,37 in which the synaptic strengths scale as 1/ K .
Maintaining reasonable firing rates in such networks requires a
balance between excitation and inhibition. The fast synapses in
spiking-coding networks have strengths that are independent of K,
imposing an even tighter spike-by-spike balance between excitation
and inhibition to keep firing levels under control.

Spike-coding networks implement the concept of encoding
information through precise spiking in a far more interesting way
than previous proposals. The spike trains of individual neurons in
spike-coding networks can be highly variable (through the injec-
tion of noise into the neurons, for example) without destroying the
remarkable precision of their collective output. This is because if a
spike is missed, or a superfluous one is generated by one neuron, other
neurons rapidly adjust their spiking to correct the error.

Time (s)

a b c d

Time (s) Time (s) Time (s)
0 1.00.2 0.4 0.6 0.8 0 1.00.2 0.4 0.6 0.8 0 1.00.2 0.4 0.6 0.8 0 1.00.2 0.4 0.6 0.8

0

1

2

3

wswsws

ws

s

Figure 2  Driven networks approximating a
continuous target output. (a) Spike train
from a single model neuron (top), the
normalized synaptic current s(t) that it
generates (middle) and the output ws
computed from a weighted sum of the
normalized synaptic currents from this neuron
and 99 others (bottom). (b–d) Results from
driven networks with optimally tuned readout
weights. In each, the upper plot shows the
actual output ws in red and the target output
fout in black, and the lower plot shows
representative membrane potential traces
for 8 of the 1,000 integrate-and-fire model
neurons in each network. Neurons in the driven network are connected by fast synapses with random weights for b and c and with weights adjusted
according to the spike-coding scheme for d. The three panels show the outputs in response to a driving input fD = fout (b), a driving input fD = fout +
τdfout/dt in a rate-coding network (c) and a driving input fD = fout + τdfout/dt in a spike-coding network (d).

np
g

©
 2

01
6

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature neuroscience  VOLUME 19 | NUMBER 3 | MARCH 2016	 353

p e r s p e c t i v e

In the following sections, we discuss both spike-coding and rate-
coding variants of networks solving various tasks. All of the networks
contain fast synapses, but for the rate-coding networks these are
random and relatively weak, and their role is to introduce irregular
spiking, whereas for the spike-coding networks they take specifi-
cally assigned values, are strong and produce precise spiking at the
population level. Another important difference is that the elements
of the input vector u and recurrent synaptic weights given by J are
considerably larger in magnitude for spike-coding than for rate-
coding networks.

Autonomous networks
It is now time to build the autonomous network and, to do this, we
must face challenges 2–4: how can we arrange the network connec-
tions so that the external signal fD that allows the driven network
(Fig. 1b) to function properly can be produced internally and stably
by the autonomous network (Fig. 1a)? One way to assure that the
autonomous network can generate the driving input needed to pro-
duce fout is to place restrictions on fD. Because fD = fout + τdfout/dt,
this also restricts fout and thus limits the complexity of the tasks that
the network can perform. We discuss these restrictions and ways to
get around them in the following sections.

Because the autonomous network receives the input fin and, if it
works properly, produces a good approximation of the desired output
fout, one sensible restriction on fD is to require it to be a linear combi-
nation of fin and fout. This imposes the requirement that

f
df
dt

Bf u fout
out

out R in+ = +t

where B and uR are constants. Because ws ≈ fout, we can write the
current that each neuron in the driven network receives from the
driving input, using equation (2), as uDfD ≈ uDBws + uDuRfin. For
the autonomous network to work properly, these currents must be
reproduced in the absence of the driving input by the combination
of recurrent and input currents Js + ufin. Equating the driving and
autonomous currents, we see that the autonomous network can be
constructed by setting u = uDuR and J = uDBw. This solves challenge
3 (refs. 6,9,10,48).

If B = 1, the two terms involving fout in equation (2) cancel, and
fout is then proportional to the time integral of fin. The construc-
tion we have outlined thus produces, in this case, a spiking network
that integrates its input, fairly accurately in the rate-coding case
(Fig. 3a) and very accurately for the spike-coding version (Fig. 3b).
Integrating networks had been constructed before the development
of the approaches we are presenting1–5,7,8; the key advances are that
the same methods can be used for more complex tasks and that, in
the case of spike coding, accuracy is greatly improved.

For a single function fout, equation (2) can only describe a low-pass
filter or an integrator, but a somewhat broader class of functions can
be included by extending fout from a single function to a vector of P
different functions, while maintaining the restriction that fD depends
linearly on fout. In this extension, B in equation (2) is a P × P matrix,

(2)(2)

uR is a P-component vector, uD is an N × P matrix and w is a P × N
matrix. The same approach discussed above, but extended to P > 1,
allows us to build networks that generate a set of P free-running,
damped and/or driven oscillations6,10,48.

Even with the extension to oscillations, the networks we have dis-
cussed thus far are highly limited. This is due to the restriction we
placed on fD by requiring it to be linear in fout. To expand functional-
ity, we must loosen this restriction while continuing to ensure that the
autonomous network can generate the signals comprising fD. Suppose
we allow fD, instead, to be a nonlinear function of fout. In this case,
equation (2) is replaced by

f
df
dt

BH f u fout
out

out R in+ = +t ()

where H is a nonlinear function (tanh for example). As in the linear
case, we know that fout ≈ ws, so the driving current into each neuron
of the driven network in the nonlinear case is uDfD ≈ uDBH(ws) +
uDuRfin. Equating this to the analogous current in the autonomous
network, Js + ufin, we find that the input weights of the autonomous
network are again given by u = uDuR, but the recurrent circuitry of
the network must reproduce the currents given by uDBH(ws), which,
unlike the expression Js, are not linear in s. There are two approaches
for dealing with this problem.

The first approach is to modify the spiking neuron model used
in the network to include dendritic nonlinearities, meaning that the
recurrent input to the neurons of the autonomous network is given by
a more complex expression than Js. We implement this by considering
the different pieces from which the current uDBH(ws) is constructed.
The term ws can be interpreted as N inputs weighted by the compo-
nents of w summed on P nonlinear dendritic processes. The func-
tion H is then interpreted as a dendritic nonlinearity associated with
these processes, and the remaining factor, uDB, describes how the P
dendrites are summed to generate the total recurrent synaptic input
into the soma of each network neuron. Modifying the neuron model
in this way and using a spike-coding scheme, this approach has been
developed as a general way to build spiking network models that can
be modified easily to perform a wide variety of tasks22.

The second approach sticks with the original neuron model, uses a
rate-coding approach and solves the condition Js ≈ uDBH(fout) by a least-
squares procedure2,6,23. This can work in the nonlinear case because,
although the expression Js is linear in s, the normalized synaptic current
is generated by a nonlinear spike-generation process. In particular, this
process involves a threshold, which supports piecewise approximations
to nonlinear functions2. To avoid stability problems that may prevent
such a solution from producing a properly functioning network, the
least-squares procedure used to construct J should be recursive and
run while the network is performing the task, using an RLS or FORCE

(3)(3)

Time (s) Time (s)

ba
fin

ws

0 0.5 1.0 2.01.5 0 0.5 1.0 2.01.5

Figure 3  Two autonomous networks of spiking neurons constructed to
integrate the input fin (top, black traces). (a) A rate-coding network.
(b) A spike-coding network. For each network, the results from two trials
are shown. The upper red and blue traces marked ws show the output of
the networks on these two trials (they overlap almost perfectly in b and
are therefore difficult to distinguish), and the bottom blue and red traces
show the membrane potentials of three neurons in the networks on the
two trials. Note the trial-to-trial variability in the spiking patterns.
Each network consists of 1,000 model neurons.

np
g

©
 2

01
6

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

354	 VOLUME 19 | NUMBER 3 | MARCH 2016  nature neuroscience

p e r s p e c t i v e

algorithm23,44,45. Although stability is not guaranteed51, this approach
works well in practice, effectively resolving challenge 4.

Figure 4 shows examples of a rate-coding network with linear
integrate-and-fire neurons (Fig. 4a) and a spike-coding network that
includes dendritic nonlinearities (Fig. 4b) built according to the proce-
dures discussed in this section and performing a temporal XOR task.

The connection to more general tasks
At this point, the reader may well be wondering what equation (3) has
to do with the tasks normally studied in neuroscience experiments.
Tasks are typically defined by relationships between inputs and outputs
(given this input, produce that output), not by differential equations.
How can we use this formalism to construct spiking networks that
perform tasks described in a more conventional way? The answer lies
in noting that equation (3) defines a P-unit rate model, that is, a model
in which P nonlinear units interact by transmitting continuous sig-
nals (not spikes) through a connection matrix B. Continuous-variable
(rate) networks can perform a variety of tasks defined conventionally
in terms of input-output maps if P is large enough43–47. This observa-
tion provides a general method for constructing spiking networks that
perform a wide range of tasks of interest to neuroscientists22,23. In this
construction, the continuous-variable (rate) network plays the role
of a translator, translating the conventional description of a task in
terms of an input-output map into the differential equation descrip-
tion (equation (3)) needed to construct a spiking network23. For the
spike-coding network with nonlinear dendrites22, the continuous vari-
able (rate) model is built into the spiking network, and this allows the
network to be quickly and easily readjusted to perform a variety of
tasks. The rate-coding networks with linear integrate-and-fire neurons
do not require precise dendritic targeting or dendritic nonlinearities,
but their recurrent connectivity requires more radical readjustment to
allow the networks to perform a new task23. In both cases, the power
of recurrent continuous variable (rate) networks is used to enhance
the functionality of a spiking network.

Discussion
We have reviewed powerful methods for constructing network
models of spiking neurons that perform interesting tasks6,10,22,23.
These models allow us to study how spiking networks operate despite
high degrees of spike-train variability and, in conjunction with experi-
mental data, they should help us identify the underlying signals that
make networks function.

We have outlined several steps that may be used in the construc-
tion of functioning spiking networks, and it is interesting to speculate
whether these have analogs in the development of real neural circuits
for performing skilled tasks. One step was to express the rules and
goals of the task in terms of the dynamics of a set of interacting units
described by continuous variables. In other words, the rules of the task
are re-expressed in terms of a system of first-order differential equations
(equation (3)). It is interesting to ask whether task rules are represented
in real neural circuits in the language of dynamics; finding such a repre-
sentation in experimental data would provide a striking confirmation of
the principles of network construction we have discussed. Continuous-
variable (rate) networks not only play a key role in the construction

of these spiking networks but also describe the fundamental dynamic
signals by which the spiking networks operate. This makes them well
suited for describing how neural circuits operate, not mechanistically
(spiking networks are closer to this) but at a basic functional level.

Our discussion also introduced a driven network that could be
used to guide the construction of an autonomous network, and it is
interesting to ask whether this step has any biological counterpart.
A possible parallel between the driven and autonomous networks we
have discussed is the transition from labored and methodical initial
performance of a task to automatic and virtually effortless mastery.
In the spiking network models, this transformation occurs when an
external driving input is reproduced by an internally generated signal.
After this transformation takes place, the external signal can be either
removed or ignored. Plasticity mechanisms acting within neural
circuits may, in general, act to assure that irrelevant signals are ignored
and predictable signals are reproduced internally52–56. The nature
and mode of action of such mechanisms should help us replace the
least-squares adjustment of synaptic weights we have discussed
with more biophysically realistic forms of plasticity. An alternative
might be provided by reward-based learning rules such as reward-
modulated synaptic plasticity57–60.

The spike-coding variants that we have discussed10,22 are unlikely
to operate over a brain-wide scale. Instead, such networks may exist as
smaller special-purpose circuits operating with high accuracy. Their
predicted experimental signature is strong and dense interconnec-
tivity. The challenge will be to identify the set of neurons that are
part of such a circuit. Finally, the nonlinear version of spike-coding
networks that we discussed22 involves both functional clustering of
synapses and dendritic nonlinearities. Synaptic clustering has been
reported61–63, but it remains to be seen whether this has the precision
needed to support the required dendritic computations. Dendritic
nonlinearities of various sorts abound64,65 and, in this regard, it is
important to note that a wide variety of nonlinear functions H can
support the computations we have discussed.

The ability to construct spiking networks that perform interesting
tasks opens up many avenues for further study. These range from
developing better methods for analyzing spiking data to studying how
large neuronal circuits operate and how different brain regions com-
municate and cooperate. We hope that future reviewers will be able
to cover exciting developments in these areas.

0
Time (s)

1.7 0
Time (s)

1.70
Time (s)

1.70
Time (s)

1.7

a b
fin

ws

fin

ws

Figure 4  Autonomous networks solving a temporal XOR task. (a) A
rate-coding network with linear neuronal input integration. (b) A spike-
coding network with nonlinear neuronal input integration. In both cases,
the network output (red traces) is a delayed positive deflection if two
successive input pulses have different signs and is a negative deflection if
the signs are the same. Blue traces show the membrane potentials of four
neurons in the networks.

np
g

©
 2

01
6

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature neuroscience  VOLUME 19 | NUMBER 3 | MARCH 2016	 355

p e r s p e c t i v e

Acknowledgments
We thank C. Machens, M. Churchland and D. Thalmeier for helpful discussions.
Our research in this area was supported by US National Institutes of Health grant
MH093338, the Gatsby Charitable Foundation through the Gatsby Initiative
in Brain Circuitry at Columbia University, the Simons Foundation, the Swartz
Foundation, the Harold and Leila Y. Mathers Foundation, the Kavli Institute for
Brain Science at Columbia University, the Max Kade Foundation and the German
Federal Ministry of Education and Research BMBF through the Bernstein Network
(Bernstein Award 2014).

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1.	 Hansel, D. & Sompolinsky, H. Modeling feature selectivity in local cortical circuits.
in Methods in Neuronal Modeling 2nd edn. (eds. Koch, C. & Segev, I.) 499–566
(MIT Press, Cambridge, Massachusetts, USA, 1998).

2.	 Seung, H.S., Lee, D.D., Reis, B.Y. & Tank, D.W. Stability of the memory of eye
position in a recurrent network of conductance-based model neurons. Neuron 26,
259–271 (2000).

3.	 Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits.
Neuron 36, 955–968 (2002).

4.	 Renart, A., Song, P. & Wang, X.-J. Robust spatial working memory through homeostatic
synaptic scaling in heterogeneous cortical networks. Neuron 38, 473–485 (2003).

5.	 Song, P. & Wang, X.-J. Angular path integration by moving “hill of activity”: a
spiking neuron model without recurrent excitation of the head-direction system.
J. Neurosci. 25, 1002–1014 (2005).

6.	 Eliasmith, C. A unified approach to building and controlling spiking attractor
networks. Neural Comput. 17, 1276–1314 (2005).

7.	 Maass, W., Joshi, P. & Sontag, E.D. Computational aspects of feedback in neural
circuits. PLoS Comput. Biol. 3, e165 (2007).

8.	 Burak, Y. & Fiete, I.R. Accurate path integration in continuous attractor network
models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).

9.	 Boerlin, M. & Denève, S. Spike-based population coding and working memory. PLoS
Comput. Biol. 7, e1001080 (2011).

10.	Boerlin, M., Machens, C.K. & Denève, S. Predictive coding of dynamical variables
in balanced spiking networks. PLoS Comput. Biol. 9, e1003258 (2013).

11.	Lim, S. & Goldman, M.S. Balanced cortical microcircuitry for maintaining
information in working memory. Nat. Neurosci. 16, 1306–1314 (2013).

12.	Schwemmer, M.A., Fairhall, A.L., Denève, S. & Shea-Brown, E.T. Constructing
precisely computing networks with biophysical spiking neurons. J. Neurosci. 35,
10112–10134 (2015).

13.	Buonomano, D.V. & Merzenich, M.M. Temporal information transformed into a spatial
code by a neural network with realistic properties. Science 267, 1028–1030 (1995).

14.	Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike timing-based
decisions. Nat. Neurosci. 9, 420–428 (2006).

15.	Pfister, J.-P., Toyoizumi, T., Barber, D. & Gerstner, W. Optimal spike-timing-
dependent plasticity for precise action potential firing in supervised learning. Neural
Comput. 18, 1318–1348 (2006).

16.	Diesmann, M., Gewaltig, M.-O. & Aertsen, A. Stable propagation of synchronous
spiking in cortical neural networks. Nature 402, 529–533 (1999).

17.	Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14, 2531–2560 (2002).

18.	Reutimann, J., Yakovlev, V., Fusi, S. & Senn, W. Climbing neuronal activity as an
event-based cortical representation of time. J. Neurosci. 24, 3295–3303 (2004).

19.	Vogels, T.P. & Abbott, L.F. Signal propagation and logic gating in networks of
integrate-and-fire neurons. J. Neurosci. 25, 10786–10795 (2005).

20.	Liu, J.K. & Buonomano, D.V. Embedding multiple trajectories in simulated recurrent
neural networks in a self-organizing manner. J. Neurosci. 29, 13172–13181
(2009).

21.	Jahnke, S., Timme, M. & Memmesheimer, R.-M. Guiding synchrony through random
networks. Phys. Rev. X 2, 041016 (2012).

22.	Thalmeier, D., Uhlmann, M., Kappen, H.J. & Memmesheimer, R.-M. Learning universal
computations with spikes. Preprint at http://arxiv.org/abs/1505.07866 (2015).

23.	DePasquale, B., Churchland, M. & Abbott, L.F. Using firing-rate dynamics to
train recurrent networks of spiking model neurons. Preprint at http://arxiv.org/
abs/1601.07620 (2016).

24.	Memmesheimer, R.-M., Rubin, R., Ölveczky, B.P. & Sompolinsky, H. Learning
precisely timed spikes. Neuron 82, 925–938 (2014).

25.	Eliasmith, C. et al. A large-scale model of the functioning brain. Science 338,
1202–1205 (2012).

26.	Hennequin, G., Vogels, T.P. & Gerstner, W. Optimal control of transient dynamics
in balanced networks supports generation of complex movements. Neuron 82,
1394–1406 (2014).

27.	Ponulak, F. & Kasiński, A. Supervised learning in spiking neural networks with
ReSuMe: sequence learning, classification, and spike shifting. Neural Comput. 22,
467–510 (2010).

28.	Florian, R.V. The chronotron: a neuron that learns to fire temporally precise spike
patterns. PLoS One 7, e40233 (2012).

29.	Brea, J., Senn, W. & Pfister, J.-P. Matching recall and storage in sequence learning
with spiking neural networks. J. Neurosci. 33, 9565–9575 (2013).

30.	LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
31.	Mante, V., Sussillo, D., Shenoy, K.V. & Newsome, W.T. Context-dependent computation

by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).
32.	Sussillo, D., Churchland, M.M., Kaufman, M.T. & Shenoy, K.V. A neural network

that finds a naturalistic solution for the production of muscle activity. Nat. Neurosci.
18, 1025–1033 (2015).

33.	Bohte, S.M., Kok, J.N. & Poutré, H.L. Error-backpropagation in temporally encoded
networks of spiking neurons. Neurocomputing 48, 17–37 (2002).

34.	Tino, P. & Mills, A.J.S. Learning beyond finite memory in recurrent networks of
spiking neurons. Neural Comput. 18, 591–613 (2006).

35.	Sporea, I. & Grüning, A. Supervised learning in multilayer spiking neural networks.
Neural Comput. 25, 473–509 (2013).

36.	van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

37.	Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000).

38.	LeCun, Y. Learning processes in an asymmetric threshold network. in Disordered
Systems and Biological Organization (eds. Bienenstock, E., Fogelman, F. &
Weisbuch, G.) 233–240 (Springer, Berlin, 1986).

39.	Bengio, Y. How auto-encoders could provide credit assignment in deep networks
via target propagation. Preprint at http://arxiv.org/abs/1407.7906 (2014).

40.	Laje, R. & Buonomano, D.V. Robust timing and motor patterns by taming chaos in
recurrent neural networks. Nat. Neurosci. 16, 925–933 (2013).

41.	Fisher, D., Olasagasti, I., Tank, D.W., Aksay, E.R.F. & Goldman, M.S. A modeling
framework for deriving the structural and functional architecture of a short-term
memory microcircuit. Neuron 79, 987–1000 (2013).

42.	Rajan, K., Harvey, C. & Tank, D. Recurrent network models of sequence generation
and memory. Neuron (in the press).

43.	Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless communication. Science 304, 78–80 (2004).

44.	Sussillo, D. & Abbott, L.F. Generating coherent patterns of activity from chaotic
neural networks. Neuron 63, 544–557 (2009).

45.	Sussillo, D. & Abbott, L.F. Transferring learning from external to internal weights
in echo-state networks with sparse connectivity. PLoS One 7, e37372 (2012).

46.	Lukoševičius, M., Jaeger, H. & Schrauwen, B. Reservoir computing trends. Künstl.
Intell. 26, 365–371 (2012).

47.	Sussillo, D. Neural circuits as computational dynamical systems. Curr. Opin.
Neurobiol. 25, 156–163 (2014).

48.	Eliasmith, C. & Anderson, C. Neural Engineering: Computation, Representation
and Dynamics in Neurobiological Systems (MIT Press, Cambridge, Massachusetts,
USA, 2003).

49.	Denève, S. & Machens, C. Efficient codes and balanced networks. Nat. Neurosci.
19, 375–382 (2016).

50.	Softky, W.R. & Koch, C. The highly irregular firing of cortical cells is inconsistent
with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).

51.	Rivkind, A. & Barak, O. Local dynamics in trained recurrent neural networks.
Preprint at http://arxiv.org/abs/1511.05222 (2015).

52.	Hosoya, T., Baccus, S.A. & Meister, M. Dynamic predictive coding by the retina.
Nature 436, 71–77 (2005).

53.	Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity
balances excitation and inhibition in sensory pathways and memory networks.
Science 334, 1569–1573 (2011).

54.	Bourdoukan, R., Barrett, D.G.T., Machens, C.K. & Denève, S. Learning optimal
spike-based representations. Adv. Neural Inf. Process. Syst. 25, 2294–2302
(2012).

55.	Kennedy, A. et al. A temporal basis for predicting the sensory consequences of
motor commands in an electric fish. Nat. Neurosci. 17, 416–422 (2014).

56.	Bourdoukan, R. & Denève, S. Enforcing balance allows local supervised learning
in spiking recurrent networks. Adv. Neural Inf. Process. Syst. 28, 982–990
(2015).

57.	Potjans, W., Morrison, A. & Diesmann, M. A spiking neural network model of an
actor-critic learning agent. Neural Comput. 21, 301–339 (2009).

58.	Hoerzer, G.M., Legenstein, R. & Maass, W. Emergence of complex computational
structures from chaotic neural networks through reward-modulated Hebbian learning.
Cereb. Cortex 24, 677–690 (2014).

59.	Vasilaki, E., Frémaux, N., Urbanczik, R., Senn, W. & Gerstner, W. Spike-based
reinforcement learning in continuous state and action space: when policy gradient
methods fail. PLoS Comput. Biol. 5, e1000586 (2009).

60.	Friedrich, J. & Senn, W. Spike-based decision learning of Nash equilibria in two-
player games. PLoS Comput. Biol. 8, e1002691 (2012).

61.	Kleindienst, T., Winnubst, J., Roth-Alpermann, C., Bonhoeffer, T. & Lohmann, C.
Activity-dependent clustering of functional synaptic inputs on developing
hippocampal dendrites. Neuron 72, 1012–1024 (2011).

62.	Branco, T. & Häusser, M. Synaptic integration gradients in single cortical pyramidal
cell dendrites. Neuron 69, 885–892 (2011).

63.	Druckmann, S. et al. Structured synaptic connectivity between hippocampal regions.
Neuron 81, 629–640 (2014).

64.	London, M. & Häusser, M. Dendritic computation. Annu. Rev. Neurosci. 28,
503–532 (2005).

65.	Major, G., Larkum, M.E. & Schiller, J. Active properties of neocortical pyramidal
neuron dendrites. Annu. Rev. Neurosci. 36, 1–24 (2013).

np
g

©
 2

01
6

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html
http://arxiv.org/abs/1505.07866
http://arxiv.org/abs/1601.07620
http://arxiv.org/abs/1601.07620
http://arxiv.org/abs/1407.7906
http://arxiv.org/abs/1511.05222

	Building functional networks of spiking model neurons
	Defining the input, output and network connections
	Driven networks
	Spike coding to improve accuracy
	Autonomous networks
	The connection to more general tasks
	Discussion
	Acknowledgments
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Structure of autonomous and driven networks.
	Figure 2 Driven networks approximating a
continuous target output.
	Figure 3 Two autonomous networks of spiking neurons constructed to integrate the input fin (top, black traces).
	Figure 4 Autonomous networks solving a temporal XOR task.

	Button 3:
	Page 1: Off

