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Most of the networks used by computer scientists and many 
of those studied by modelers in neuroscience represent 
unit activities as continuous variables. Neurons, however, 
communicate primarily through discontinuous spiking. 
We review methods for transferring our ability to construct 
interesting networks that perform relevant tasks from the 
artificial continuous domain to more realistic spiking network 
models. These methods raise a number of issues that warrant 
further theoretical and experimental study.

The world around us is described by continuous variables—distances, 
angles, wavelengths, frequencies—and we respond to it with continu-
ous motions of our bodies. Yet the neurons that represent and process 
sensory information and generate motor acts communicate with each 
other almost exclusively through discrete action potentials. The use 
of spikes to represent, process and interpret continuous quantities 
and to generate smooth and precise motor acts is a challenge both 
for the nervous system and for those who study it. A related issue 
is the wide divergence between the timescales of action potentials 
and of perceptions and actions. How do millisecond spikes support 
the integration of information and production of responses over 
much longer times? Theoretical neuroscientists address these issues 
by studying networks of spiking model neurons. Before this can be 
done, however, network models with functionality over behaviorally 
relevant timescales must be constructed. Here, we review a number 
of methods that have been developed for building recurrent network 
models of spiking neurons.

Constructing a network requires choosing the models used to 
describe its individual neurons and synapses, defining its pattern 
of connectivity, and setting its many parameters (Fig. 1a). The net-
works we discuss are based on model neurons and synapses that are, 
essentially, as simple as possible. The complexity of these networks 
resides in the patterns and strengths of the connections between neu-
rons (although we consider dendritic processing toward the end of 
this Perspective article). This should not be interpreted as a denial 
of the importance or the complexity of the dynamics of membrane 
and synaptic conductances, or of phenomena such as bursting, spike-
rate adaptation, neuromodulation and synaptic plasticity. These are 
undoubtedly important, but the simplified models we discuss allow 
us to assess how much of the dynamics needed to support temporally  

extended behaviors can be explained by network connectivity. 
Furthermore, such models provide a foundation upon which more 
complex descriptions can be developed.

The problem we are addressing is this: a network receives an input 
fin(t), and its task is to generate a specified output fout(t) (Fig. 1a; we 
discuss below how this output is computed). Our job is to configure 
the network so that it does this task, where by ‘configure’ we mean 
set the weights (that is, strengths) of the network synapses to appro-
priate values. For a network of N neurons, these weights are given 
by the elements of an N × N matrix, denoted by J, that describes the 
modifiable connections between network neurons (although some of 
these elements may be constrained to 0, corresponding to nonexist-
ent connections). We note here that we are constructing recurrently 
connected networks, which pose unique challenges not faced when 
constructing feedforward networks. Given our interest in spanning 
the temporal gap between spikes and behavior, tasks of interest often 
involve integrating an input over time1–12, responding to particular 
temporal input sequences13–15, responding after a delay or with an 
activity sequence13,16–24, responding with a temporally complex out-
put7,22–29 or autonomously generating complex dynamics6,10,22–24. 
In this Perspective, we focus on general approaches that extend our 
ability to construct spiking networks capable of performing a wide 
variety of tasks or that make spiking networks perform these tasks 
more accurately.

Determining the connection matrix required to make a network 
perform a particular task is difficult because it is not obvious what 
the individual neurons of the network should do to generate the 
desired output while supporting each others’ activities. This is the 
classic credit-assignment problem of network learning: what should 
each individual neuron do to contribute to the collective cause of 
performing the task? The field of machine learning has addressed 
credit assignment by developing error gradient–based methods, 
such as back-propagation, that have been applied with considerable  
success30. This approach has also been used to construct abstract  
network models known as rate models in which neurons communi-
cate with each other through continuous variables31,32. Unfortunately, 
the application of gradient-based methods to spiking networks28,33–35 
is problematic because it has not been clear how to define an appropri-
ate differentiable error measure for spike trains. The methods that we 
review here can all be thought of as ways to solve the credit assign-
ment problem without resorting to gradient-based procedures.

Defining the input, output and network connections
Before beginning the general discussion, we need to explain how neu-
rons in the network interact, how they receive an input and how they 
produce an output. This, in turn, requires us to define what we call 
the normalized synaptic current, s(t), that arises from a spike train 
(Fig. 2a, top and middle traces). In the synapse model we use, each 
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presynaptic spike causes the normalized synaptic current to increase 
instantaneously by 1, s → s + 1. Between spikes, s decays exponen-
tially toward 0 with a time constant τ, which is set to 100 ms in the 
examples we show. There is one normalized synaptic current for each 
network neuron, so s is an N-component vector. The normalized syn-
aptic current is used to construct both the output of the network and 
the inputs that each neuron receives through the synapses described 
by the matrix J (Fig. 1a). The synaptic current generated in a post-
synaptic neuron by a particular presynaptic neuron is given by the 
appropriate synaptic weight multiplied by the normalized synaptic 
current for that presynaptic neuron. The synaptic currents for all the 
network neurons are given collectively by Js.

All of the models we present have, in addition to the connections 
described by J, a second set of synapses with time constants consider-
ably faster than τ, described by Jfast. We consider two arrangements 
for these fast synapses: random or set to specific values (see below).  
In either case, the fast synapses are not modified as part of the  
adjustments made to J to get the network to perform a particular  
task. It is tempting to equate the fast (Jfast) and slower (J) synapses in 
these models to fast AMPA and slower NMDA excitatory synapses 
or to fast GABAA and slower GABAB inhibitory synapses. Although 
this is correct as far as timescales are concerned, there are issues 
with this interpretation due to the different ways these two classes of  
synapses are treated and modified in the models. These remain to 
be resolved.

The input to the network, fin(t), takes the form of a current injected 
into each neuron. This current is  fin(t) multiplied by a neuron-dependent  
weight. The vector formed by all N of these weights is denoted by 
u (Fig. 1a; we could also extend these networks to include multiple 
inputs fin but, for conciseness, we restrict our examples to single-
input cases).

The network output is a weighted sum of the normalized synaptic 
currents generated by all the neurons in the network (Fig. 2a, bottom 
trace; we consider a single output here, but extend this to multiple 
outputs later). Each network neuron has its own output weight in 
this sum and, collectively, these weights form an N-component row 
vector, w (Fig. 1a). Output weights are adjusted to minimize the aver-
age squared difference between the actual output ws and the desired 
output fout.

In all of the examples we show, the firing rates of all the network 
neurons are constrained to realistic values. Another important ele-
ment in producing realistic-looking spike trains is trial-to-trial 
variability. Irregular spiking can be generated internally through the 
random fast synapses we include36,37 or by injecting a noise current 
into each network neuron. We do both here.

The spiking networks we discuss come in two varieties that we 
call rate coding and spike coding. At various points we also discuss 
what are called rate networks, more abstract models in which network 

units communicate through continuous variables, not spikes. It is 
important to keep in mind that the rate-coding case we discuss refers 
to spiking, not rate, networks.

Driven networks
In any construction project, it is useful to have a working example.  
As circular as it sounds, one way to construct a network that per-
forms a particular task is by copying another network that does the 
task. This approach avoids circularity because the example network 
involves a cheat: it is driven by an input fD(t) that forces it to produce 
the desired output (Fig. 1b). We call the original network—the one 
we are constructing (Fig. 1a)—the autonomous network (even though 
it receives the external input fin) and call the example network the 
driven network (Fig. 1b). If there is a single driving input, it is injected 
into the network neurons through weights described by a vector uD. 
Later we will discuss situations in which P > 1 driving inputs are used.  
In this case, uD is an N × P matrix. Although the driven network does 
not receive the original input fin directly, the driving input  fD typically 
depends on fin, as discussed below. The autonomous and the driven 
networks contain the same set of fast synapses, but the slower syn-
apses described by the matrix J are absent in the driven network.

The role of the driven network is to provide targets for the  
autonomous network. In other words, we will construct the auton-
omous network so that the synaptic inputs to its neurons match 
those in the driven network. In machine-learning a related scheme 
is known as target propagation38,39, and interesting neural models 
have been built by extracting targets from random networks40 or from  
experimental data41,42.

Obviously, a critical issue here is how to determine the driving 
input that forces the driven network to perform a task properly.  
We address this below but, for now, will just assume that we know 
what the driving input should be. Then, the driven network solves 
the credit assignment problem for us; we just need to examine what 
the neurons in the driven network are doing to determine what the 
neurons in the autonomous network should do. Even better, the driven 
network tells us how to accomplish this: we just need to arrange the 
additional connections described by J so that, along with the term ufin, 
they produce an input in each neuron of the autonomous network 
equal to what it receives from the external drive in the driven net-
work. However, there are significant challenges in seeing this program 
through to completion. (1) We have to figure out what fD is—in other 
words, determine how to drive the driven network so that it performs 
the task. (2) We must assure that this input can be self-generated  
by the autonomous network with a reasonable degree of accuracy. 
(3) We must determine the recurrent connection weights J that  

ws ≈ fout
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Figure 1  Structure of autonomous and driven networks. (a) The 
autonomous network. In this diagram, black lines and dots denote fixed 
connections, and red lines and dots are connections that are adjusted 
to make the network function properly. A defined input fin is provided to 
the network through connections characterized by weights u. Neurons 
in the network are connected by two types of synapses, parameterized 
by Jfast (in black) and J (in red). The problem is to choose the strengths 
of the synapses defined by J, and the weights w, so that the output of 
the network, ws, approximates a given target output fout. (b) The driven 
network. In this case, the network is driven by input fD, through weights 
uD, that forces it to produce the desired output. Only the fixed synapses 
denoted by Jfast are included. Output weights are adjusted as in the 
autonomous network.
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accomplish this task. (4) We must assure that the solution we obtain 
is stable with respect to the dynamics of the autonomous network.  
This Perspective covers significant progress that has been made in 
all four of these areas.

The driven network consists of nonlinear, spiking model neurons 
connected by either randomly chosen or specifically set (as discussed 
below) fast synapses (Fig. 1b), and the spikes produced by these units 
are filtered (Fig. 2a) and summed (Fig. 1) to provide the output.  
The transformation from the input fD to the output fout might seem to 
be quite complex, but it turns out that the effects of nonlinearities and 
fast network connections can largely be compensated by appropriate 
choice of the output weights w. In light of this, a first guess for the 
driving input might be to set fD = fout—that is, to treat the network as if 
it simply passes a signal from the input to a properly extracted output. 
This approach can generate good results in rate-based networks43–47, 
and it has been tried in spiking networks7, but in these it only works 
in limited cases and, in general, poorly (Fig. 2b).

A significant advance6,48 was the realization that the element of the 
network input-output transformation that cannot be compensated 
by the choice of output weights is the synaptic filtering at the output, 
characterized by the time constant τ. Correcting for this synaptic 
low-pass filtering and its phase delay is easy: we simply define the 
driving input as a high-pass-filtered, phase-advanced version of the  
desired output, 

f f
df
dtD out
out= + t

Using this driving input to produce fout works quite well (Fig. 2c). 
Equation (1), which provides an answer to challenge 1, forms the 
basis for the work we discuss. Of course, this gives us only a driven 
version of the network we actually want. In the following sections, we 
show how to make the transition from the driven network (Fig. 1b) 
to the autonomous network (Fig. 1a). Before doing this, however, we 
introduce an approach that allows the desired output to be produced 
with greatly enhanced accuracy.

Spike coding to improve accuracy
The network output shown in Figure 2c (red line, top panel) matches 
the target output ( fout, black line, top panel) quite well, but deviations 
can be detected, for example, at the time of the second peak of fout. 
Some deviations are inevitable because we are trying to reproduce a 
smooth function with signals s(t) that jump discontinuously every 
time there is a spike (Fig. 2a). In addition, deviations may arise from 
irregularities in the patterns of spikes produced by the network. The 
driven network in Figure 2c approximates the desired output function  

(1)(1)

because its neurons fire at rates that rise and fall in relation to changes 
in the function fout. For this reason, we refer to networks of this form 
as rate coding. Deviations between the actual and desired outputs 
occur in these networks when a few more or a few fewer spikes  
are generated than the precise number needed to match the target 
output. The spike-coding networks that we now introduce9,10,12 
work on the same basic principle of raising and lowering the firing 
rate, but they avoid generating excessive or insufficient numbers of 
spikes by including strong fast interactions between neurons. These 
interactions replace the random fast connections used in the network 
of Figure 2b,c with specifically designed and considerably stronger 
connections (see the Perspective by Denève and Machens49 in this 
issue for further discussion of these connections). In general, both 
excitatory and inhibitory strong fast synapses are required. These 
synapses cause the neurons to spike in a collectively coherent manner 
and assure near-optimal performance. For a rate-coding network of N 
neurons, the deviations between the actual and desired output are of 
order 1/ N . In spike-coding networks, these deviations are of order 
1/N, a very significant improvement (as can be seen by comparing the 
outputs in Fig. 2c,d). The values of the fast strong connections needed 
for spike coding were derived as part of a general analysis of how to 
generate a desired output from a spiking network optimally9,10. The 
use of integrate-and-fire neurons, equation (1) for the optimal input, a 
determination of the optimal output weights w, and the idea and form 
of the fast connections are all results of this interesting analysis.

The strength of the fast synapses used in the spike-coding scheme is 
reflected in the way they scale as a function of the number of synapses 
that the network neurons receive. Denoting this number by K, one 
way of assuring a fixed level of input onto a neuron as K increases 
is to make synaptic strengths proportional to 1/K. The inability of 
this scheme to account for neuronal response variability50 led to the 
study of networks36,37 in which the synaptic strengths scale as 1/ K .  
Maintaining reasonable firing rates in such networks requires a  
balance between excitation and inhibition. The fast synapses in  
spiking-coding networks have strengths that are independent of K, 
imposing an even tighter spike-by-spike balance between excitation 
and inhibition to keep firing levels under control.

Spike-coding networks implement the concept of encoding  
information through precise spiking in a far more interesting way 
than previous proposals. The spike trains of individual neurons in 
spike-coding networks can be highly variable (through the injec-
tion of noise into the neurons, for example) without destroying the 
remarkable precision of their collective output. This is because if a 
spike is missed, or a superfluous one is generated by one neuron, other 
neurons rapidly adjust their spiking to correct the error.

Time (s)

a b c d

Time (s) Time (s) Time (s)
0 1.00.2 0.4 0.6 0.8 0 1.00.2 0.4 0.6 0.8 0 1.00.2 0.4 0.6 0.8 0 1.00.2 0.4 0.6 0.8
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Figure 2  Driven networks approximating a  
continuous target output. (a) Spike train  
from a single model neuron (top), the  
normalized synaptic current s(t) that it  
generates (middle) and the output ws  
computed from a weighted sum of the  
normalized synaptic currents from this neuron  
and 99 others (bottom). (b–d) Results from  
driven networks with optimally tuned readout  
weights. In each, the upper plot shows the  
actual output ws in red and the target output  
fout in black, and the lower plot shows  
representative membrane potential traces  
for 8 of the 1,000 integrate-and-fire model  
neurons in each network. Neurons in the driven network are connected by fast synapses with random weights for b and c and with weights adjusted 
according to the spike-coding scheme for d. The three panels show the outputs in response to a driving input fD = fout (b), a driving input fD = fout + 
τdfout/dt in a rate-coding network (c) and a driving input fD = fout + τdfout/dt in a spike-coding network (d).
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In the following sections, we discuss both spike-coding and rate-
coding variants of networks solving various tasks. All of the networks 
contain fast synapses, but for the rate-coding networks these are 
random and relatively weak, and their role is to introduce irregular 
spiking, whereas for the spike-coding networks they take specifi-
cally assigned values, are strong and produce precise spiking at the 
population level. Another important difference is that the elements 
of the input vector u and recurrent synaptic weights given by J are 
considerably larger in magnitude for spike-coding than for rate- 
coding networks.

Autonomous networks
It is now time to build the autonomous network and, to do this, we 
must face challenges 2–4: how can we arrange the network connec-
tions so that the external signal fD that allows the driven network 
(Fig. 1b) to function properly can be produced internally and stably 
by the autonomous network (Fig. 1a)? One way to assure that the 
autonomous network can generate the driving input needed to pro-
duce fout is to place restrictions on fD. Because fD = fout + τdfout/dt, 
this also restricts fout and thus limits the complexity of the tasks that 
the network can perform. We discuss these restrictions and ways to 
get around them in the following sections.

Because the autonomous network receives the input fin and, if it 
works properly, produces a good approximation of the desired output 
fout, one sensible restriction on fD is to require it to be a linear combi-
nation of fin and fout. This imposes the requirement that 

f
df
dt

Bf u fout
out

out R in+ = +t
 

where B and uR are constants. Because ws ≈ fout, we can write the 
current that each neuron in the driven network receives from the 
driving input, using equation (2), as uDfD ≈ uDBws + uDuRfin. For 
the autonomous network to work properly, these currents must be 
reproduced in the absence of the driving input by the combination 
of recurrent and input currents Js + ufin. Equating the driving and 
autonomous currents, we see that the autonomous network can be 
constructed by setting u = uDuR and J = uDBw. This solves challenge 
3 (refs. 6,9,10,48).

If B = 1, the two terms involving fout in equation (2) cancel, and 
fout is then proportional to the time integral of fin. The construc-
tion we have outlined thus produces, in this case, a spiking network 
that integrates its input, fairly accurately in the rate-coding case 
(Fig. 3a) and very accurately for the spike-coding version (Fig. 3b). 
Integrating networks had been constructed before the development 
of the approaches we are presenting1–5,7,8; the key advances are that 
the same methods can be used for more complex tasks and that, in 
the case of spike coding, accuracy is greatly improved.

For a single function fout, equation (2) can only describe a low-pass 
filter or an integrator, but a somewhat broader class of functions can 
be included by extending fout from a single function to a vector of P 
different functions, while maintaining the restriction that fD depends 
linearly on fout. In this extension, B in equation (2) is a P × P matrix, 

(2)(2)

uR is a P-component vector, uD is an N × P matrix and w is a P × N 
matrix. The same approach discussed above, but extended to P > 1, 
allows us to build networks that generate a set of P free-running, 
damped and/or driven oscillations6,10,48.

Even with the extension to oscillations, the networks we have dis-
cussed thus far are highly limited. This is due to the restriction we 
placed on fD by requiring it to be linear in fout. To expand functional-
ity, we must loosen this restriction while continuing to ensure that the 
autonomous network can generate the signals comprising fD. Suppose 
we allow fD, instead, to be a nonlinear function of fout. In this case, 
equation (2) is replaced by 

f
df
dt

BH f u fout
out

out R in+ = +t ( )
 

where H is a nonlinear function (tanh for example). As in the linear 
case, we know that fout ≈ ws, so the driving current into each neuron 
of the driven network in the nonlinear case is uDfD ≈ uDBH(ws) + 
uDuRfin. Equating this to the analogous current in the autonomous 
network, Js + ufin, we find that the input weights of the autonomous 
network are again given by u = uDuR, but the recurrent circuitry of 
the network must reproduce the currents given by uDBH(ws), which, 
unlike the expression Js, are not linear in s. There are two approaches 
for dealing with this problem.

The first approach is to modify the spiking neuron model used 
in the network to include dendritic nonlinearities, meaning that the 
recurrent input to the neurons of the autonomous network is given by 
a more complex expression than Js. We implement this by considering 
the different pieces from which the current uDBH(ws) is constructed. 
The term ws can be interpreted as N inputs weighted by the compo-
nents of w summed on P nonlinear dendritic processes. The func-
tion H is then interpreted as a dendritic nonlinearity associated with 
these processes, and the remaining factor, uDB, describes how the P 
dendrites are summed to generate the total recurrent synaptic input 
into the soma of each network neuron. Modifying the neuron model 
in this way and using a spike-coding scheme, this approach has been 
developed as a general way to build spiking network models that can 
be modified easily to perform a wide variety of tasks22.

The second approach sticks with the original neuron model, uses a 
rate-coding approach and solves the condition Js ≈ uDBH(fout) by a least-
squares procedure2,6,23. This can work in the nonlinear case because, 
although the expression Js is linear in s, the normalized synaptic current 
is generated by a nonlinear spike-generation process. In particular, this 
process involves a threshold, which supports piecewise approximations 
to nonlinear functions2. To avoid stability problems that may prevent 
such a solution from producing a properly functioning network, the 
least-squares procedure used to construct J should be recursive and 
run while the network is performing the task, using an RLS or FORCE 

(3)(3)

Time (s) Time (s)

ba
fin

ws

0 0.5 1.0 2.01.5 0 0.5 1.0 2.01.5

Figure 3  Two autonomous networks of spiking neurons constructed to 
integrate the input fin (top, black traces). (a) A rate-coding network.  
(b) A spike-coding network. For each network, the results from two trials 
are shown. The upper red and blue traces marked ws show the output of 
the networks on these two trials (they overlap almost perfectly in b and 
are therefore difficult to distinguish), and the bottom blue and red traces 
show the membrane potentials of three neurons in the networks on the  
two trials. Note the trial-to-trial variability in the spiking patterns.  
Each network consists of 1,000 model neurons.
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algorithm23,44,45. Although stability is not guaranteed51, this approach 
works well in practice, effectively resolving challenge 4.

Figure 4 shows examples of a rate-coding network with linear 
integrate-and-fire neurons (Fig. 4a) and a spike-coding network that 
includes dendritic nonlinearities (Fig. 4b) built according to the proce-
dures discussed in this section and performing a temporal XOR task.

The connection to more general tasks
At this point, the reader may well be wondering what equation (3) has 
to do with the tasks normally studied in neuroscience experiments. 
Tasks are typically defined by relationships between inputs and outputs 
(given this input, produce that output), not by differential equations. 
How can we use this formalism to construct spiking networks that 
perform tasks described in a more conventional way? The answer lies 
in noting that equation (3) defines a P-unit rate model, that is, a model 
in which P nonlinear units interact by transmitting continuous sig-
nals (not spikes) through a connection matrix B. Continuous-variable 
(rate) networks can perform a variety of tasks defined conventionally 
in terms of input-output maps if P is large enough43–47. This observa-
tion provides a general method for constructing spiking networks that 
perform a wide range of tasks of interest to neuroscientists22,23. In this 
construction, the continuous-variable (rate) network plays the role 
of a translator, translating the conventional description of a task in 
terms of an input-output map into the differential equation descrip-
tion (equation (3)) needed to construct a spiking network23. For the 
spike-coding network with nonlinear dendrites22, the continuous vari-
able (rate) model is built into the spiking network, and this allows the 
network to be quickly and easily readjusted to perform a variety of 
tasks. The rate-coding networks with linear integrate-and-fire neurons 
do not require precise dendritic targeting or dendritic nonlinearities, 
but their recurrent connectivity requires more radical readjustment to 
allow the networks to perform a new task23. In both cases, the power 
of recurrent continuous variable (rate) networks is used to enhance 
the functionality of a spiking network.

Discussion
We have reviewed powerful methods for constructing network  
models of spiking neurons that perform interesting tasks6,10,22,23. 
These models allow us to study how spiking networks operate despite 
high degrees of spike-train variability and, in conjunction with experi-
mental data, they should help us identify the underlying signals that 
make networks function.

We have outlined several steps that may be used in the construc-
tion of functioning spiking networks, and it is interesting to speculate 
whether these have analogs in the development of real neural circuits 
for performing skilled tasks. One step was to express the rules and 
goals of the task in terms of the dynamics of a set of interacting units 
described by continuous variables. In other words, the rules of the task 
are re-expressed in terms of a system of first-order differential equations 
(equation (3)). It is interesting to ask whether task rules are represented 
in real neural circuits in the language of dynamics; finding such a repre-
sentation in experimental data would provide a striking confirmation of 
the principles of network construction we have discussed. Continuous-
variable (rate) networks not only play a key role in the construction 

of these spiking networks but also describe the fundamental dynamic 
signals by which the spiking networks operate. This makes them well 
suited for describing how neural circuits operate, not mechanistically 
(spiking networks are closer to this) but at a basic functional level.

Our discussion also introduced a driven network that could be 
used to guide the construction of an autonomous network, and it is 
interesting to ask whether this step has any biological counterpart.  
A possible parallel between the driven and autonomous networks we 
have discussed is the transition from labored and methodical initial 
performance of a task to automatic and virtually effortless mastery. 
In the spiking network models, this transformation occurs when an 
external driving input is reproduced by an internally generated signal. 
After this transformation takes place, the external signal can be either 
removed or ignored. Plasticity mechanisms acting within neural  
circuits may, in general, act to assure that irrelevant signals are ignored 
and predictable signals are reproduced internally52–56. The nature 
and mode of action of such mechanisms should help us replace the  
least-squares adjustment of synaptic weights we have discussed 
with more biophysically realistic forms of plasticity. An alternative 
might be provided by reward-based learning rules such as reward- 
modulated synaptic plasticity57–60.

The spike-coding variants that we have discussed10,22 are unlikely 
to operate over a brain-wide scale. Instead, such networks may exist as 
smaller special-purpose circuits operating with high accuracy. Their 
predicted experimental signature is strong and dense interconnec-
tivity. The challenge will be to identify the set of neurons that are 
part of such a circuit. Finally, the nonlinear version of spike-coding 
networks that we discussed22 involves both functional clustering of 
synapses and dendritic nonlinearities. Synaptic clustering has been 
reported61–63, but it remains to be seen whether this has the precision 
needed to support the required dendritic computations. Dendritic 
nonlinearities of various sorts abound64,65 and, in this regard, it is 
important to note that a wide variety of nonlinear functions H can 
support the computations we have discussed.

The ability to construct spiking networks that perform interesting 
tasks opens up many avenues for further study. These range from 
developing better methods for analyzing spiking data to studying how 
large neuronal circuits operate and how different brain regions com-
municate and cooperate. We hope that future reviewers will be able 
to cover exciting developments in these areas.
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Figure 4  Autonomous networks solving a temporal XOR task. (a) A 
rate-coding network with linear neuronal input integration. (b) A spike-
coding network with nonlinear neuronal input integration. In both cases, 
the network output (red traces) is a delayed positive deflection if two 
successive input pulses have different signs and is a negative deflection if 
the signs are the same. Blue traces show the membrane potentials of four 
neurons in the networks.
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