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news and views

Pointing the way toward
target selection

L. E Abbott

Hahnloser and colleagues propose a computational model in
which top-down inputs, such as attention, act by modulating
the strength of recurrent connectivity in a neuronal circuit.

Reaching for an object or shifting our eyes
in a new direction requires the selection
of a single target from what is typically a
complex visual scene. To select a target,
we must combine our knowledge of the
visual scene with information about our
interests and intentions. A paper by
Hahnloser, Douglas, Mahowald and Hepp
in this issue! addresses how this might be
done by a neural circuit. The authors use
a computational model to
explore the idea that attention-
al inputs exert their influence
by modifying the way that neu-
rons in a target-selection net-
work are interconnected. The
idea that attention and other
forms of top-down control
might modulate the effective
connectivity of a neural circuit
is a powerful one that is likely
to have a number of applica-
tions in the study of cognitive
processing.

The fibers and synapses
that interconnect different
regions along a sensory path-
way can be divided into three
broad classes: feedforward,

teristics of neurons in primary visual cor-
tex>”. Modifying the nature of the recur-
rent connectivity in a neural circuit can
have a dramatic effect on response selec-
tivity and thus provides a powerful mech-
anism for controlling and modulating
network function.

Hahnloser and colleagues! propose a
way in which top-down inputs can mod-
ulate the recurrent connectivity of a neur-
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Fig. 1. The pointer circuit architecture. Feedforward connections carry
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modulated, the recurrent connectivity of
the network will change.

The authors apply the idea of pointer
neurons to a network that selects a target
from the feedforward visual input it
receives. The neurons in the target-selec-
tion network are arranged in a spatial map.
A selected target is represented within this
map by a ‘hill’ of activity in a localized
population of neurons (Fig. 2a and b). The
cluster of active neurons can be centered
at different places on the map to represent
different target locations. The selection of
a unique desired target requires this net-
work to generate a single hill of activity
even if the input is complex (as in Fig. 2c),
and this hill must correspond to a region
of the visual field that is of interest.

As was known previously, the selection
of a single target from a complex input can
be accomplished through the appropriate
choice of recurrent connectivity within the
target-selection network. This makes use of
a characteristic property of
recurrent networks—their abil-
ity to support only particular
stereotyped patterns of activi-
ty>39. If the recurrent interac-
tions within a network map are
of the appropriate form, the net-
work will only support a single
hill of activity even if its feedfor-
ward input is complex®?. This
captures the basic ‘winner-take-
all’ nature of the target selection
process and is in agreement with
experimental findings, for
example, concerning the sparse
representation of salient visual
features in the parietal cortical
area LIP!°. The selection of a
single target requires that inhi-

recurrent and top-down’. inputs to the network. Recurrent connections between network neurons bition of the network is strong
Feedforward connections carry  are funneled through pointer neurons that receive top-down input reflect- enough to suppress responses to
input to a given region from ing the locus of attention. Global inhibition that is present in the model of extraneous input, and that exci-
areas that lie earlier along the Hahnloser and colleagues' is not indicated in this figure.

pathway. Recurrent synapses

tation is localized so that it can
overcome inhibition within the

interconnect neurons within a

given region, and top-down

connections carry information back from
higher cognitive areas. Recurrent connec-
tions in a network can strongly affect how
neurons respond to the feedforward input
they receive. For example, a number of
modeling studies have explored the idea
that recurrent connections have a domi-
nant role in shaping the response charac-
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al circuit. The basic idea is that the
recurrent feedback in the network is chan-
neled through a relatively small number
of neurons called pointer neurons (Fig.
1). As long as the pointer neurons are
active, they provide a feedback pathway
between the neurons of the network. This
produces effective recurrent couplings
with strengths given by the matrix prod-
uct of the strengths of the connections
from the network to the pointer neurons
and from the pointer neurons back to the
network. If, however, the pointer neurons
are silenced by inhibition or otherwise

hill of activity representing the

selected target. In a recurrent
network without top-down control, the sin-
gle hill of activity in the target-selection net-
work will typically be centered at the
location of the strongest input (Fig. 2a).
This would correspond to inevitably choos-
ing the brightest image in a visual scene as a
target.

The pointer architecture proposed by
Hahnloser and colleagues! allows top-
down influences of attention to overcome
the tendency of the target-selection net-
work to choose the strongest input. Atten-
tion enters the target-selection process
and affects the responses of the network
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Fig. 2. Target selection by a network
map. The lower panel (c) indicates the
level of input as a function of location for
a simulated visual scene. Each bump rep-
resents a different object. The upper
panels (a, b) show the level of neuronal
activity in a target-selection network as
a function of the position of the neurons
within the map. Hills of activity repre-
sent selected target locations. In (a) the
hill of activity corresponds to the loca-
tion of the strongest input. Attentional
affects implemented in the model of
Hahnloser and colleagues allow the hill
of activity to select and represent one of
the weaker inputs, as in (b). This figure is
a schematic and not the result of a net-
work simulation.

neurons through top-down input to the
pointer neurons (Fig. 1). This can bias the
network so that weaker inputs located in
regions where attention is focused can
determine the location represented by the
hill of activity, even if stronger inputs are
present elsewhere (Fig. 2b). This corre-
sponds to choosing a general region of
interest and then allowing the visual sys-
tem to select a target within this region.

Recurrent networks can perform a
number of other computations of rele-
vance to sensory processing. For exam-
ple, if the recurrent connections are
strong enough, a particular hill of activ-
ity can be maintained even after the
structured visual input is removed>®. This
provides a potential mechanism for
short-term memory of the selected target
location!!. Hahnloser and colleagues!
show that top-down inputs to the point-
er neurons can bias or shift this remem-
bered location, so that attention can affect
sustained activity even when the feedfor-
ward input that originally produced it is
no longer present.

Obviously, the critical question raised
by this work is whether anything analo-
gous to a pointer neuron actually exists.
If the model is taken literally, these neu-
rons may be very rare and thus would be
difficult to find. However, the small num-
ber of pointer neurons in the model may
not be a general feature of the pointer
architecture. Pointer neurons might be
distinguished in recordings because they
are significantly less selective than the net-
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work neurons they interconnect, a result
of receiving convergent input from neu-
rons with a broad range of selectivities.
The massive convergence and divergence
of recurrent connections at a pointer neu-
ron should also provide a distinctive
anatomical signature.

If real neurons analogous to the point-
er neurons do exist, they would be potent
sites for all sorts of neuromodulation.
Modulation of pointer neurons would be
an effective way of changing the func-
tional properties of a network because the
pointer architecture allows the modula-
tion of a small number of neurons to
mimic the effect of modifying a large
number of recurrent synapses. Hahnlos-
er and colleagues only studied excitation
or inhibition of the pointer neurons, and
in the inhibitory case alone did the non-
linear features of the model come into
play. Excitation of a pointer neuron sim-
ply enhances activity within a certain
region of the network map. When a
pointer neuron is inhibited from respond-
ing, an entire block of recurrent connec-
tions is removed from the circuit, which
can have a more dramatic effect on neu-
ronal selectivity. It would be interesting to
explore a wider variety of pointer-neuron
modulations. For example attention can
modify the gain of a neuron'>'4, and gain
modulation of pointer neurons would
provide a graded way of changing net-
work connectivity.

If attention and intention are to influ-
ence our perceptions, top-down connec-
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tions must exert considerable control over
sensory processing pathways. The hypoth-
esis that they do this through their effects
on recurrent interactions is a powerful
one that deserves further exploration
using both theoretical and experimental
approaches.

1. Hahnloser, R., Douglas, R. J., Mahowald, M. &
Hepp, K. Nat. Neurosci. 2, 746-752 (1999).

2. White, E. L. Cortical Circuits: Synaptic
Organization of the Cerebral Cortex (Birkauser,
Boston, 1989).

3. Ben-Yishai, R,, Bar-Or, L. & Sompolinsky, H.
Proc. Natl. Acad. Sci. USA 92, 3844-3848
(1995).

4. Somers, D. C., Nelson, S. B. & Sur, M. J.
Neurosci. 15, 5448-5465 (1995).

5. Douglas, R. J., Koch, C., Mahowald, M.,
Martin, K. A. & Suarez, H. H. Science 269,
981-985 (1995).

6. Maex, R. & Orban, G. A. J. Neurophysiol. 75,
1515-1545 (1996).

7. Chance, E S., Nelson, S. B. & Abbott, L. E. Nat.
Neurosci. 2,277-282 (1999).

8. Salinas, E. & Abbott, L. F. Proc. Natl. Acad. Sci.
USA 93, 11956-11961 (1996).

9. Pouget, A., Zhang, K., Deneve, S. & Latham, P.
Neural Comput. 10, 373-401 (1990).

10. Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E.
Nature 391, 481-484 (1998).

. Camperi, M. & Wang, X.-J. J. Comput.
Neurosci. 5, 383—405 (1998).

12. Connor, C. E., Gallant, J. L., Preddie, D. C. &
Van Essen, D. C. J. Neurophysiol. 75,
1306-1308 (1996).

13. Connor, C. E., Preddie, D. C., Gallant, J. L. & Van
Essen, D. C. J. Neurosci. 17, 3201-3214 (1997).

14. McAdams, C. J. & Maunsell, J. H. J. Neurosci.
19, 431-441 (1999).

1

—

689



