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Abstract. Various algorithms for constructing a synaptic coupling matrix which can as- 
sociatively map input patterns onto nearby stored memory patterns are reviewed. Issues 
discussed include performance, capacity, speed, efficiency and biological plausibility. 

1. Introduction 

The term ‘learning’ is applied to a wide range of activities associated with the construc- 
tion of neural networks ranging from single-layer binary classifiers [l] to multilayered 
systems performing relatively sophisticated tasks [ 2 ] .  Any reviewer hoping to cover this 
field in a reasonable amount of time and space must do so with a severely restricted 
viewpoint. Here, I will concentrate on a fairly simple task, associative memory, ac- 
complished by a single-layered iterative network of binary elements [3-51. This area is 
considered because there are now available a large number of precise analytic results 
and a wealth of ideas and approaches have appeared and been analysed in detail. 

Most neural network modelling relies crucially on the assumption that synaptic 
plasticity [6] is a (or perhaps the) key component in the remarkable adaptive behaviour 
of biological networks. The various unrealistic simplifications made in the construction 
of mathematical models are more palatable if viewed in this light. In fact, we might 
say that the fundamental goal of neural network research is to test the importance and 
probe the limitations of neural plasticity as a primary learning mechanism. As a result 
all the attention in these models is focused on the synaptic strengths. The wide variety of 
behaviours exhibited by individual neurons are almost completely ignored, not because 
they are uninteresting or even inessential, but rather because the synaptic plasticity 
hypothesis is thus tested in its most extreme form. In mathematical networks, synaptic 
plasticity is the only non-trivial element available to produce interesting behaviour. If 
model networks can achieve anything approaching the behaviour of their biological 
counterparts then it will be clear that synaptic plasticity is remarkably powerful and 
likely to be of crucial importance. On the other hand, if the mathematical models cannot 
approach biological complexity then other elements such as more accurate descriptions 
of individual cell behaviour will have to be included in the models until we learn 
what minimum set of behaviours is needed to mimic biological systems. Of course 
the advantage of starting with the simplest models (those having synaptic plasticity as 
their only non-trivial element) is that computations can be performed which might be 
impossible in a more complete model. The results of such computations are the subject 
of this review. 
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The model we will concentrate on here [3] takes the synaptic plasticity hypothesis 
to its extreme and models individual neurons trivially. Each neuron is characterised 
by a variable S which takes the value +l if the neuron is firing and -1 if the neuron 
is not firing. Thus, the actual value of the membrane potential, the firing rate and, 
as a result, such features as firing rate adaptation and postburst hyperpolarisation are 
ignored. In the model, time is measured in discrete intervals which may be taken to 
be the refractory period and will be the basic unit of time in our discussion. At time 
t + 1 the neuron labelled by the index i ,  where i = 1,2,3,. . . , N for a system of N cells, 
fires or does not fire based on whether the total signal it is receiving from other cells 
to which it is synaptically connected is positive or negative. Thus, the basic dynamic 
rule is 

where Jij represents the strength of the synapse connecting cell j to cell i. The dynamic 
updating (1.1) may be parallel, sequential or in a random, asynchronous sequence. 
For simplicity we do not include any offset or threshold factors in the dynamic rule 
so all self-couplings are set to zero, Jii = 0. Note that in addition to having an 
extremely simple description of the cell, Si = k l ,  the model imposes an extremely 
simple dynamics on the cell and such features as postinhibitory rebound, delayed 
excitation and plateau or bursting behaviour are not implemented. In addition, the 
synaptic strength is characterised by a single number Jij which means that numerous 
features of real biological synapses are ignored. There is no analogue of a reversal 
potential in the model or more precisely the model assumes that the magnitude of the 
reversal potential is much larger than the magnitude of the cell potential. In addition, 
synaptic delay and accommodation are not modelled. 

Having given up so much one might well ask whether anything interesting can 
come out of the dynamics of this model? One possibility is that the dynamics (1.1) 
can map an initial state of firing and non-firing neurons, Si(0), to a fixed pattern, ti, 
which remains invariant under the transformation (1.1). This is the basis of a network 
associative memory. Various memory patterns (/ for p = 1,2,3,. . . , P which do not 
change under the transformation (1.1) act as fixed-point attractors and initial inputs 
S,(O) are mapped to an associated memory pattern (r if the overlap x ( r S i ( 0 ) / N  is 
close enough to one. How close this overlap must be to one, or equivalently how well 
the initial pattern must match the memory pattern in order to be mapped to it and 
thus associated with it, is determined by the radius of the domain of attraction of the 
fixed point. 

The issue of domains of attraction associated with a fixed point has never been 
completely resolved. The sum of all synaptic inputs at site i, 

N 

hr = Jij(f 
j=1 

known as the local field, is the signal which tells cell i whether or not to fire when 
Sj = 57 for all j # i. In order for a memory pattern to be a stable fixed point of the 
dynamics (1.1) the local field must have the same sign as (r, or equivalently 

hr( /  > 0. (1.3) 
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We will call the quantities h:(; the aligned local fields. It seems reasonable to assume 
that the larger the aligned local fields are for a given ,D value the stronger the attraction 
of the corresponding fixed point [r and so the larger its domain of attraction. This 
reasoning is almost right, but it leaves out an important feature of the dynamics (1.1). 
Multiplying J,, by any set of constants A ,  has absolutely no effect on (1.1) since the 
dynamics depends only on the sign and not on the magnitude of the quantity CJ,,.S,. 
Since the quantities h:(r change under this multiplication they alone cannot determine 
the size of the basin of attraction. Instead, several investigations [7,8] have found that 
quantities known as stability parameters and given by 

where we define 

provide an important indicator of the size of the basin of attraction associated with the 
fixed point [r. Roughly speaking the larger the values of the y,” the larger the domain 
of attraction of the associated memory pattern. The presence of the normalising term 
lJI, will be an important feature in our discussion of learning algorithms. This is 
because many algorithms are based on increasing the values of the quantities to 
provide stronger local fields attracting inputs to the memory pattern [,”. However, the 
relevant quantity is not h / ( r  but y,” and in studying learning we must explore how this 
quantity is affected by the algorithm. 

In order to construct an associative memory we must find a matrix of synaptic 
strengths J,, which satisfies the condition of stability of the memory fixed points (1.3) 
and has a specified distribution of values for the y r  giving the domain of attraction 
which is desired. Although associative memory is a fairly simple task a great advantage 
of considering this example is now apparent: the problem is now well posed and 
amenable to mathematical analysis. 

2. Capacities and gamma distributions 

The job of a learning algorithm is to find a coupling matrix J ,  which will achieve an 
assigned goal which has been specified in terms of the number of memory patterns 
and the sizes of the domains of attraction required. If the specified task is impossible, 
initiating the learning process would be pointless so it is important to know whether any 
matrix satisfying the preassigned criteria actually exists. Using an approach pioneered 
by Elizabeth Gardner [9] a great deal is known about this matter. The Gardner 
approach searches the space of all coupling matrices for any matrices which achieve 
the learning goals. It does not find these matrices, that being the task of the learning 
algorithm, but rather indicates whether or not they exist by giving the fractional volume 
in the space of all couplings occupied by matrices satisfying the learning criteria. 

To assign a learning task we must first specify what type of distribution of # values 
is desired. We will consider here three classes of models characterised by different such 
distributions. It may seem extremely restrictive to consider only three classes of models 
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but if we are willing to concentrate on associative memories near their saturation point 
(that is, storing almost the maximum number of memory patterns possible) this is not 
the case. It has been shown [l 11 that network models of associative memory fall into 
universality classes which may have markedly different behaviour away from saturation 
but which have the same behaviour as they approach the saturation limit. Although 
in biological systems we may not always be interested in the saturation limit, in cases 
where this limit does apply the universality provides a tremendous benefit. 

Universality is a concept which arose in the study of critical phenomena. When , as 
in the case of critical phenomena and here in the case of networks near saturation, there 
are classes of behaviour shared by many models, it is not essential that the model being 
studied be a very accurate representation of the real system being modelled. Instead, we 
must merely require that the model being computed lies in the same universality class 
as the real system. Then, since all models in the class have the same limiting behaviour, 
a calculation done on one of the simpler members of the class containing the real 
system is guaranteed to give the correct answers even if it seems a gross simplification 
of the real system. The realisation that network behaviour is universal near saturation 
provides the hope that the shortcomings of unrealistic models may not be such a severe 
limitation if models in the appropriate universality class can be found. Also, because 
of universality, it will suffice to find algorithms which construct one member of each 
class if we are interested in studying behaviour near the saturation limit. 

We will write the number of memory patterns being stored as 

P = X N  (2.1) 

and the maximum storage capacity of a model with a given y distribution as 

Let p(7)dy be the fraction of 7:  values lying between y and ;' + dy. The three classes 
we will discuss are based on three forms for the distribution of 7 values. The first has 
a distribution given by a Gaussian 

and a maximum capacity 

(2.4) 

Models of this type will be termed of the Hopfield class because the well known 
Hopfield model [4] 

P 

(2 .5)  

corresponds to the above formulae with cr = 1 and 1, = l /&  provided that a < 0.14 
[12]. The value 0.14 is known as a, and gives the maximum storage capacity for a 
coupling matrix of the form (2.5). This is different from amax which gives the maximum 
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storage capacity for any model having a specified Gaussian y distribution (2.3). Note 
that models in this class make errors; that is, the memory patterns <: are not exactly 
fixed points. This is because the Gaussian y distribution has support for negative y so 
some of the elements of (!' are unstable. The fraction of unstable sites is given by 

F t ;  < 0)  = Dz 

where we use the notation 

For example, the Hopfield model at saturation, when ct = 0.14, has an error rate of 
about 1.5% [12]. The above analysis shows [ l l ] ,  however, that a matrix should exist 
with a narrower Gaussian y distribution (cr = 0.12 is optimal) which makes no more 
errors than the Hopfield model at saturation but which has U = 1.14. It would be 
interesting to have a construction for such a matrix. 

The second class of models assumes that all the y r  are set to a specific value yo so 
that 

For models of this type the maximum storage capacity is given by [11,13] 

1 

I will refer to the class of models with this limiting behaviour as the pseudo-inverse 
class since this is the best known example. For the pseudo-inverse model [13] 

where 

(2.10) 

(2.1 1) 

the j ,  distribution is given by a 6 function with 

y o  = [(l  - r)/a] '? (2.12) 

A critical capacity P, = r,N is also defined for the pseudo-inverse model. It is the 
value of xmaX when y o  = 0 and thus rc = 1. 

The final class of models to be consider has a clipped y distribution 

y y  2 K (2.13) 
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for all i and p ,  By choosing the value of ti the size of the basins of attraction associated 
with the memory patterns can be controlled. For such models near the saturation point 
[91 

(2.14) 

which satisfies x,,, < 2 [lo], the ;J distribution is given by [8] 

(2.15) 

Alternatively, we can invert the relation for xmax in terms of ti to get a maximum value 
K,,,,, corresponding to a given value of x 

This will be useful in what follows. For x = 2 ,  ii,,,,, = 0 and ti,n,, increases mono- 
tonically with decreasing x going through ti,,, = 0.5 at x = 1, ti,,, = 1 at  x % 0.5 
and K ~ , ; ~ ~  = 2 at x 5 0.2. This class of models will be called the Gardner class. It 
is important to realise that within all these classes there are many models with very 
different behaviours away rrom saturation but all members of a given class converge 
to the above results near saturation. 

3. Learning algorithms 

Thc above results for the three classes of models determine whether or not a specific 
learning task can be achieved. From now on we assume that the specified learning 
task is possible (for example, x < xmLi, for given i i  or i i  < K,,, for given x) so at  least 
one matrix Ji, capable of doing the job exists. The learning task is to find this matrix 
or one equally good at  accomplishing the learning goal. A typical task might be to 
learn a set of P memory patterns and assure large values of 7:  giving large basins 
of attraction. All of the learning algorithms discussed here are based on a learning 
mode of operation known as supervised learning in which the network is presented 
with the patterns to be learned and synapses are adjusted in a way which depends on 
the firing patterns of the pre- and postsynaptic cells and perhaps on the local field at 
the postsynaptic cell !I: ,  the stability parameter y f ,  the normalisation of the synapses 
terminating at cell i? IJI, and,'or the synaptic strength itself Ji,. For our discussion of 
learning algorithms it is important to keep track of the relevant quantities used for the 
modification of the synaptic strength J,, namely: the state of cell i when the pattern 
to be learned is presented, cy,  similarly the state of cell j ,  S;,  the aligned local field 
hi'?' I - 1  = z J i , < r < r ,  the stability parameter ;'/ = h f < f / l J l l  and the normalisation factor 
IJI, where IJIf = CJ,;. 

The learning process begins with a random matrix of couplings or more frequently 
with zero coupling J i j  = 0 and repeatedly modifies the synaptic strengths in a specified 
way which hopefully improves the situation until a successful matrix of couplings 
is found. The learning process proceeds from site to site (each of which learns 
independently) and from pattern to pattern either sequentially or  in a random order. 
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Besides biological plausibility, the only real figure of merit for a learning algorithm is 
the time it takes to find a suitable set of couplings. First, we must be assured that the 
algorithm converges if any matrices satisfying the established criteria exist. All of the 
algorithms discussed below have been shown to converge if the required matrix exists. 
Most of the convergence proofs are variants of the original perceptron learning proof 
[l]  and will not be given here. We will concentrate instead on results. All derivations 
and proofs can be found in the literature cited. Once we know that an  algorithm 
converges we are interested in how long it takes to achieve the desired goal. We will 
define the learning time T to be the number of times that the learning rule changes 
the coupling matrix at  a given site before an  acceptable matrix is found. Since this 
may vary from site to site we will consider mean values and/or distributions of values 
for T .  

A very general modification of the synaptic strength J , ,  in learning the memory 
pattern <: takes the form 

where f .  a, b and c may in general be functions of I(’ (or more often hptJ’), J,,, yJ’ and 
I J I , .  

Although neural plasticity has been demonstrated in biological systems the form 
i t  takes is not well known. Synaptic strengthening when both pre- and postsynaptic 
cells are firing has been seen [14] and the original Hebb rule [6], stating that the 
strength of excitatory synapses increases, in this case corresponds to a = b = c = 1 in 
(3.1). Synaptic weakening when either pre- or  postsynaptic cells fire but the opposite 
partner does not fire, known as the anti-Hebb rule, has also been discussed for both 
excitatory [15] and inhibitory synapses [16]. A rule which incorporates both the Hebb 
and anti-Hebb rules in a simple way is, for example, a = b = 

The effect of the learning change (3.1) on the aligned local field hrtJ’ is (for large N )  
and c = 0. 

Ah;(: = (1  + am, + (b  + cm,)tr)f  (3.2) 

where 

1 

i= I 
(3.3) 

The whole point of the learning process is to increase the value of the aligned local 
field hrt,?. For unbiased patterns m, = O ( l / a )  so it appears that non-zero a and  
c are not so bad. However, a value of b with magnitude greater than one would 
be disastrous since sometimes hr t r  would decrease instead of increasing. Peretto has 
studied the effects of non-zero a,b  and c in more detail [17]. Here we will follow 
convention and assume that a and c are small enough to be irrelevant and so set them 
to zero, and assume b is small enough (i?) to be ignored as well. Thus we consider 
learning algorithms which are of the form 

AJ, = (f/N)<”45’(1 - aij). (3.4) 

The function f then determines the size of the correction made to the coupling matrix 
while the pre- and postsynaptic firing patterns determine its sign. Although this form 
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for the learning rule is almost universally used it has the distinctively unrealistic feature 
that couplings increase when neither the pre- nor the postsynaptic cell is firing (<: = -1 
and (y = -1). 

Learning algorithms will be classified by the form of the function f .  For example 
we will term learning conditional or unconditional depending on whether or not f 
vanishes identically for any finite range of its arguments. Models in the Hopfield 
or pseudo-inverse classes can be constructed using unconditional algorithms but to 
get a clipped distribution characterising the Gardner class it is necessary to have a 
conditional algorithm. Algorithms are further distinguished by the variables on which 
the function f depends. It is not unreasonable to assume that the values of the aligned 
local field hrt,!’ are available at  the synapse since h; is just the total postsynaptic signal 
coming into the cell i. Thus we will consider algorithms for which f = f(hj’5;). The 
disadvantage of such algorithms is that they contain no direct information about the 
quantities relevant for adjusting the basins of attraction, the stability parameters $. 

In order to contain a dependence on 7:  the function f must depend on the 
normalisation factor IJI; as well as on hrc,!’. This information is not directly available 
when the pattern t,!’ is imposed on the system during learning and so it might be 
considered less plausible in a biological system that f = f(h;(:, i J l i ) .  However, we can 
imagine a way in which such information could be transmitted to the cell [18]. Suppose 
there is noise in the network so that at any given time, when the pattern to be learned 
is imposed on the system the firing pattern Si does not equal t!’ exactly but rather 

s; = ti’ + 6s; (3.5) 

where 6s; is a random variable which when averaged over time satisfies 

(6s;) = 0 

(6Si6Sj) = E6,,. 

Here E is a measure of the noise in the system. If the learning process takes place on a 
fairly slow time scale then the presence of this noise will have no appreciable effect on 
learning because its time average is zero. However, the expectation value of the square 
of the total synaptic signal coming into cell i is given by 

providing a direct measure of the quantity IJI,. Thus, it is perhaps not so unreasonable 
to suppose that some dependence o f f  on IJI, is possible in a biological system. 

Finally, we can include in the learning rule (3.4) a dependence on the synaptic 
strength J,, itself. Such a dependence is quite reasonable especially because the strength 
of a given synapse is certainly bounded and such a dependence can assure that the 
bound is not violated. In addition, synaptic plasticity probably does not extend to the 
value of the sign of the synapse and a dependence on J,, can assure that sign flips are 
not allowed. 

4. Unconditional learning algorithms 

The simplest learning algorithm is just the case f = 1 which constructs the Hopfield 
matrix (2 .5)  after a single pass through ail the sites i and patterns p if we start from 
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the null matrix J Z j  = 0. As mentioned in the introduction this constructs a model with 
a Gaussian 7 distribution with cs = 1 provided that a < zc = 0.14 [12]. However, the 
Hopfield matrix has a fairly limited capacity, makes errors and has limited basins of 
attraction. By introducing some dependence of f on the aligned local field we can 
construct the pseudo-inverse model. This is done [19,20] by choosing 

Starting from a null coupling matrix the application of this learning rule is equivalent 
to the Gauss-Seidel construction (see, for example, [21]) of the pseudo-inverse coupling 
matrix (2.10). The behaviour of the method for linearly dependent patterns is also very 
good [ 2 2 ] .  In learning r N  patterns the rule converges (in infinite time) to a 6 function 
7 distribution with all f = r / ( l  + r )  and all hr t ;  = 1 provided that CI < 1. 

Unlike most of the algorithms discussed here, the algorithm given by (4.1) takes 
an infinite number of learning steps to actually produce the pseudo-inverse matrix. 
Therefore it is essential to analyse the time dependence of the approach to this goal 
so that we can determine what happens in a finite period of training. Since ultimately 
hr t :  + 1 we can define an error function at time t during the learning process as 

1 
N P  

E ( t )  = __ C(1 - h;i";')*. 
'3P 

The behaviour of E as a function of time for a slight generalisation of (4.1) 

has been computed [23,24] and is given by 

where 

This shows immediately that the algorithm will not converge even in infinite time if 
3 > 1 .  However, even for il > 1 only a fraction of the bits are unstable for each 
pattern, so if errors are allowed the algorithm is still very useful. For a < 1 a value 
of y < (1 + 4 ) ' / 2  can always be chosen so that E ( t )  decays exponentially to zero for 
t + a. From this exponential decay of the error function we can define a learning 
lifetime 7 .  As x -+ 1 the learning lifetime diverges. If we demand that most of the 
patterns be learned then, as r --f 1, 

1 
1 - ?  

7 . y -  

while if we demand that all the patterns be learned to the desired level of accuracy 
then for the optimal value 
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we find [24] 

-1 

T = [In (%)I 
which as 3: -+ 1 diverges like 

1 
T&- 

(1 - a)2‘ (4.9) 

The algorithm (4.1) is an  extremely successful unconditional learning rule since it 
converges even for linearly related patterns and the dynamics of the learning process 
is well known. At finite learning times it produces a matrix which is quite acceptable 
and which ultimately approaches the pseudo-inverse coupling matrix as the learning 
process continues. 

5. Conditional algorithms 

If we want to construct models of the Gardner class we must put a strict bound on the 
7 distribution yj( > ti. This is most easily done by including a term O ( t i  - f )  in f .  This 
will be done in the next section but for now we will restrict ourselves to rules which 
d o  not involve the coupling normalisation factor IJI, and so which d o  not involve yj( 
directly. Instead we let 

f = O(c - hj’<;)g(llt’<;) 

and thus require that the learning algorithm be applied if the aligned local field is 
smaller than some value c. A behaviour involving some threshold in the total synaptic 
signal does not seem unreasonable for a biological system although it would of course 
be more realistic to use a smoother function than the 0 function with the same general 
behaviour. Smooth functions in place of the O function have been considered by Peretto 

Various forms for g have been considered [26] and shown to converge to a matrix 
~ 5 1 .  

satisfying 

provided such a matrix exists. (Since we have not specified anything about the 
normalisation all that is actually needed is that a matrix satisfying /I;<; > 0 exists 
because by multiplying this matrix by a suitable constant Ai we can achieve (5.2).) An 
interesting case is 

for arbitrary positive B. This algorithm converges and has the interesting property that 
it increases the normalisation IJI’ by a fixed amount B I N  upon each application. A 
non-trivial function g is of course useful because we can adjust the learning step size 
to maximise convergence time [26]. For example, the step size given by (5.3) is larger 
for aligned local fields which are far from the goal than for those that are near to it. 
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We postpone discussion of an optimal choice for g until we discuss algorithms which 
depend on the normalisation lJl i  because in this case the advantage of a variable step 
size can be exploited most fully. 

The case g = 1 has been studied most thoroughly [20,27,28]. The learning time for 
g = 1 is bounded by [27] 

N 2 c +  1 
T I T - -  (5.4) 

&,ax 

where ti,,, is given by equation (2.16). In addition, the normalisation factors of the 
resulting matrix although not specified in the learning rule satisfy 

2 c +  1 
IJI, ___ 

‘ma, 

so that the y distribution is of the Gardner class where y r  > K with [27] 
C 

t i > -  
2c + 1 Kmax. 

(5.5) 

It is important that we know that IJI, is bounded for this learning rule since unlimited 
growth of the synaptic strengths would be highly unrealistic. In addition the limit 
on the K value achieved is important since it at least puts a bound on the radius of 
the domain of attraction even if this is not known exactly. Note that for c -+ x, 
ti > tim,,/2. In fact, numerical simulation shows that for sufficiently large c, values of K 

close to K , ~ ,  can be obtained. Faster convergence can be achieved by using non-trivial 
g functions. 

Krauth and Mezard [27] have given an interesting variant of the g = 1 algorithm 
which yields a definite value of ti which is in fact K,,,. The learning rule itself is 
unchanged, but it is applied at any given time only using the pattern (r with the 
minimum value of h f t?  at site i. This procedure has been shown to provide a model 
of the Gardner class with optimal stability y p  > ti = timax in the limit c --f a3 provided 
that such a matrix exists. The dynamics of the Krauth and Mezard learning process 
has been analysed by Opper [24: 291. These results are also approximately valid for the 
general algorithm with sufficiently large values of c. Opper shows that the fraction of 
memory patterns which require a learning time between cx and c(x + dx) is given by 
w(x) dx where 

where 

with 

i. = CIK,,, si DZ ( Z  + K,,~). 
-Kmax 

The average learning time required to learn all the given patterns is 
cN ( T )  = - 

K k a x  
(5.10) 

As a goes to its maximum value of 2 this diverges like (2 - a)-2.  
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6. Algorithms involving the magnitude of the coupling matrix 

Much of the complication in the last section on conditional algorithms came about 
because the algorithm makes reference only to the local aligned fields /I;(: while the 
condition desired for Gardner-type models refers to the stability parameters f, namely 
7: > ti. These complications can be avoided and considerably efficiency gained by 
considering rules which allow f to be a function of jJ(, as well as /It. The first such 
algorithm, considered by Gardner [9], was 

f = Q ( K  - 7 ; )  (6.1) 
which was shown to converge in T sweeps where 

T N 
E 26(ti + 6 )  

provided that a matrix exists satisfying the condition 

J = 1  

for all p and i and arbitrary positive 6. The learning rule of course produces a 
Gardner-type matrix with 7:  > ti .  

Since the Gardner learning algorithm involves the quantities y; a dependence on 
the coupling normalisation IJI, has entered f .  Much more efficient algorithms can be 
constructed [30] if we take full advantage of dependence on IJl, to resolve a problem 
which we have not yet discussed or faced. All the algorithms considered thus far 
involve either a fixed learning step size, or one that depends on the value of the local 
aligned field h f [ r .  Since the step size does not depend on the normalisation of the 
coupling matrix in these previous algorithms the same step size will be taken whether 
the elements of the coupling matrix are small or gigantic. This is clearly inefficient. 
In addition step size has in previous algorithms depended at most on /I:(: not on 7:  
which is the relevant quantity. Both problems can be solved by considering learning 
rules of the form [30] 

which have been shown to converge for any g(i‘) satisfying 

0 < g(y) < 2(ti + 6 - y )  

where 6 is again givea by the condition (6.3). These algorithms converge in a time 
bounded by 

T 2N/d2. (6.6) 
The most efficient algorithm can be found by maximising the step size without de- 
stroying the convergence rate bound that applies in general to these algorithms. The 
optimal choice seems to be 

g ( y ) = K + 6 - y + + ( t i + 6 - ~ ) 2 - S 2  (6.7) 
for small values of 6.  This essentially saturates the upper limit of the bound for 
convergent g functions and it provides a remarkably fast algorithm for constructing a 
matrix of the Gardner type. For example, in a network with N = 100 the algorithm 
converged at least 10 times faster that the g = 1 algorithm over a range 0.2 < cx < 1.5 
and 1.5 > K > 0.04. 
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7. Algorithms with restricted synaptic strengths and signs 

Learning rules which involve a dependence of the change in the coupling matrix, 
AJi, ,  on J t j  itself, are introduced to ensure that the magnitude of individual synaptic 
strengths remains bounded or that synaptic strengths cannot change from excitatory to 
inhibitory or vice versa. In the algorithms we have discussed thus far, nothing prevents 
an individual element JIj from growing or shrinking without bound, a highly unrealistic 
situation. Various modifications in the learning rule which assure that the magnitude 
of any given synaptic strength is bounded have been proposed [31], the simplest being 

Such a decrease in the amplitude of the coupling strength over time could also be 
the result of some aging process [32] rather than of the learning rule itself. Bounding 
the synaptic strengths has the interesting consequence of introducing learning with 
forgetting. In the usual Hopfield model, constructed by the above algorithm with 
i = 0, memories can be added to a network until at the critical capacity x = 0.14 there 
is a transition to a state where all memories are lost [12]. With non-zero 2, adding new 
memories past the critical limit has a much less drastic effect. As new memories are 
added old ones are lost so that asymptotically the network always stores the latest set 
of patterns which it has learned. 

Obviously the idea of bounding the synaptic strengths can be included in any of 
the algorithms we have discussed. Krauth and Mkzard [27] have pointed out that the 
problem of maximising the aligned local fields while keeping the J,, within specified 
bounds is a standard problem in linear programming which may be solved, for example 
by the simplex algorithm [33]. 

In addition to restricting the magnitude of synaptic strengths, the more severe 
constraint of binary synapses has been studied. This is perhaps of more interest for 
electronic circuit applications than biological modelling. The binary Hopfield model 

has a capacity about three quarters of that of the unconstrained model (see, for 
example, [34]) while in general [35] the capacity of any model with synaptic strengths 
restricted to J,, = k1 seems to be LX < 0.83. 

Another shortcoming of the algorithms considered thus far is that they allow a 
given synapse to change from excitatory to inhibitory or from inhibitory to excitatory. 
Biological synapses are not only believed to be prohibited from making such sign 
changes but, in the cortex at least, they also seem to obey Dale’s rule [36] stating that 
synapses emanating from a given neuron are all either excitatory or inhibitory. This 
constraint can be imposed by introducing the quantity g ,  which is +1 if neuron i has 
excitatory synapses so that J,, 2 0 for all j and -1 if they are inhibitory so that J,, I 0 
for all j .  In other words we constrain the synaptic matrix so that 

J i j g i  2 0. (7.3) 

A simple way of imposing the sign constraint on synaptic weights is to eliminate 
any synapses which after application of one of the unconstrained learning rules have 
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the wrong sign. If this is done for the Hopfield model the maximum storage capacity 
is x ,  = 0.09 [34] down from SI, = 0.14 for the unconstrained model. Work on such 
diluted models has continued as part of a general program to study diluted models 
with reduced firing rates [37]. The sign constrained model has, in addition to the 
learned patterns, a uniform fixed point which can act as an attractor for unrecognised 
patterns [38]. 

Recently, the Gardner calculation of the storage capacity and stability parameter 
bound for arbitrary coupling matrices has been repeated for sign-constrained synaptic 
weights [39]. The results of this calculation are surprisingly simple. The maximum 
storage capacity of a sign-constrained network at fixed K value is independent of the 
particular set of g, being used and is exactly half of the maximum capacity of the 
unconstrained network given by equation (2.14). A learning algorithm capable of 
finding such matrices if they exist has also been formulated [40]. We start with an 
initial matrix satisfying (7.3) and then apply a standard algorithm with the additional 
condition that no change be applied if it would result in a new coupling matrix violating 
this constraint. For example, the algorithm with 

f = e(-yi’)e(Ji j (JI j  + gt;)) (7.4) 

has been shown to converge [40]. It would be interesting to explore the convergence 
and dynamics of all the learning algorithms we have discussed with this extra constraint 
imposed. 

An old model which incorporates many of the features discussed in this section and 
which has received recent attention [41] is the Willshaw model [42]. This stores patterns 
in a purely excitatory synaptic matrix constrained to take on the values J i j  = 0, l .  The 
Willshaw learning rule is extremely simple, J j j  is set equal to one if neuron i and neuron 
j are both active in any of the memory patterns, and to zero otherwise: 

The model only works well if the memory patterns are highly biased towards non-firing 
cells, i.e. most (r = -1, but in this case the model can form the basis of an associative 
memory with low overall and local firing rates which improves agreement with firing 
data taken from the cortex [43]. 

8. Conclusions 

There is no doubt that the results reviewed here, and the many interesting developments 
which could not be covered, represent a significant achievement and a dramatic advance 
in our understanding of mathematical network models. What is much less clear is 
whether we have learned anything of biological relevance from all this work. Synaptic 
plasticity has been shown to be an enormously powerful adaptive force in network 
behaviour and both the extent and the limits of its capabilities have been explored. 
However, application to biological systems has been hampered by several unanswered 
questions. 

How big a role do dynamic properties of individual neurons play in network 
behaviour? The idealised binary neurons we have discussed are clearly unrealistic. 
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More sophisticated neuronal behaviour can be modelled [44] and so it should be 
possible to address this question theoretically and of course experimentally. Of special 
interest is the role of oscillating or burster neurons in network behaviour. 

What is the correct form for neuronal plasticity? Perhaps the biggest roadblock to 
making the mathematical models more realistic is our lack of knowledge about the real 
form that neuronal plasticity takes. This may be completely different for excitatory and 
inhibitory synapses. Clearly more experimental results are needed here, but in addition 
attempts at more realistic learning rules can be explored theoretically. 

How does learning take place as a dynamic process? We have considered learning 
only in a controlled, supervised mode of operation. In an isolated biological network 
learning is part of the dynamic process by which the network operates. Work on 
dynamic, unsupervised learning has begun [45] but much remains to be learned. 

It may be that a further difficulty concerns the approach taken by researchers 
to learning problems. Typically, in both computations and simulations networks are 
pushed to their limits, saturating their capacities and making the basins of attraction as 
deep as possible. Likewise, researchers are tempted to devise clever algorithms which 
work with maximum efficiency and speed. It is only natural to rise to such intellectual 
challenges. However, biological systems probably work far from the limits of their 
capacities and learning in real biological systems is unlikely to be maximally efficient 
by our measures of efficiency and for simple tasks we might devise as tests. Perhaps we 
must learn to appreciate the inherently convoluted and redundant nature of biological 
design, for despite their apparent lack of optimisation, biological networks are capable 
of achieving behaviours which modellers have yet to touch. 
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