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Abstract. An expressionis derived relating the input current for a single neuron in 
a neural network to the firing rates of exutatory and ithbrtory mputr synapsing on 
lite dendrrtic tree of the neuron. Any dendritic geometry and any pattem of synap 
tic connections c m  be treated using the tecldques presented. The input aments 
calctdllated. combmned with known k n g  rate functrons, d l o w  the eRects of synaptic 
conductance dmnges along dendritic cables to be rncluded in a meamfield deswrp 
tmn of network beliaviour. The shunting effects of mhibitory synaptic conductances 
provide a solution to tlie ltigh firing rate problem in neutral network models 

1. In t rodnc t ion  

Neural network models are often based on a mean-field approach [l] that uses known 
properties of single neurons to predict the behaviour of large neuronal populations 
In such models, the average firing rates of excitatory and inhibitory neurons are used 
to describe the activity of the population. The basic equations of mean-field theory 
relate these average rates to the rate of firing of a single neuron expressed as a function 
of its input current The equations become a dosed system when the input current 
IS expressed in turn as a function of the average firing rates for the population In 
a laboratory setting, the rate of singleneuron firing for various input currents can 
be measured by injecting current directly iuto the soma through a microelectrode. 
However, to use this firing rate in a network setting, we need to know the amount of 
current flowing into the soma from synaptic inputs as a function of the firing rates of 
presynaptic excitatory and inhibitory neurons. This information is much more difficult 
to obtain. 

In neural network models, the input current is generally taken to be a h e a r  
function of the excitatory and inhibitory input firing rates. This approximation leaves 
out several essential features of real synaptic inputs and real dendritic trees. The 
arrival of an action potential at a presynaptic terminal results in a change in the 
membrane conductance on the postsynzptic side. The total synaptic conductance due 
to many synaptic inputs is an approxiinately linear function of the input firing rate, 
but this does not imply that injected current is linear in the firing rate. Even for quite 
low input firing rates, the synaptic conductance may be comparable to or even larger 
than the membrane conductance in the absence of synaptic inputs. When synaptic 
ceg&&Ece, 
the dependence of somatic input current on presynaptic firing rates becomes nonlinear. 
The  nonlinear effects of inhibition due to membrane conductance changes have been 

0954-8!38X/91/030245+14$03.50 0 1991 IOP Publishing Ltd 245 

8.". =pye&& cQntribubjon to thp tot.=! memhralle conrl?lct.ance, 



246 L F Abbott 

discussed elsewhere 12-51 but have not previously been incorporated into network 
models. 

Currents entering through dendritic synapses must travel down dendritic cables 
before reaching the soma They are thus subject to losses from she longitudinal re- 
sistance of the dendritic cable and due to leakage through the dendritic membrane. 
Since synaptic conductances along the dendritic cable dramatically affect the amount 
of membrane leakage, they have an important nonlinear impact on the amount of cur- 
rent entering the soma. The effect depends on both the geometry of the dendritic tree 
and on the placement of synapses along the tree. The linear relation used in nsuural 
network models completely ignores these issues, both of which have a dramatic effect 
on single-neuron and network behaviour. 

In this papei, the current entering the soma from synaptic inputs along a dendritic 
tree will be computed as a function of the excitatory and inhibitory input firing rates 
The calculation can be applied to any dandritic geometry and any synaptic placements 
and it imorporates the full nonlinear effects of synaptic conductance changes. Several 
typical dendritic structures will be considered in detail and their impact on network 
dynamics will be discussed. 

The unrealistic linear relation between input current and input firing rates used 
in neural network models has had a disastrous impact on their predictions. Due 
to extensive work on network associative memories [6, 7] (see [S, 91 for reviews), a 
great deal of interest has been focused on self-sustained firing patterns in neuronal 
populations. Network models based on linear excitation and mnhibition predict that 
during such self-sustained firing, neurons will fire a t  their maximum possible rates. 
However, cortical neurons typically fire much more slowly than their maximum rates. 
Much attention has been given to finding a solution of this problem [lo-171. As 
discussed later, the firing rate problem is resolved when a realistic representation of 
synaptic inputs and a slutable dendritic geometry are included in the model. 

To simplify the discussion, I will mainly consider a homogeneous population of 
nenrms, that is a population in which all excitatory neurons fire at approximately the 
same rate. This will allow all of the issues concerning reallstic conductance changes, 
dendritic geometry and population firing rates to be addressed. After the main points 
have been made, I will consider the case of an inhomogeneous populatxon in which the 
spatially-structured firing patterns used in associative memory models can arise. 

2. Mean-field theory and the firing rate problem 

Consider a population of excitatory nenrons fuing at an average rate, E(t), at time 
t .  In the absence of external inputs, this firing rate is controlled by interconnections 
between the excitatory nenrons in the population and by the effects of inhibitory 
interneurons. In the mean-field approach, the average firing rate for the population is 
related to the firing rate of a single nenron through the basic equation. 

E + F ( I )  
d E  
dt - 

wheze F ( 1 )  is a singknenron firing rate as a function of input current I. If F(1)  
is determined experimentally by injecting current into the soma, then in the natural 
setting the current I in equation (2.1) must be the current eutering the soma due to 
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synaptic inputs For theoretical purposes, F ( I )  is often assumed to have a sigmoidal 
form 

where Fmax is the maximum firing rate for the neuron. The parameters hi and A 
correspond roughly to the threshold current and the width of the rise of the sigmoidal 
fnnction. A firing rate F that is a threshold-linear function of I is piobably more 

here. 
In addition to the excitatory neurons described by the firing rate E;  we must 

include a population of inhibitory interneurons. Let H represent the average firing 
rate of these inhibitory neurons. H is determined by an equation similar to [2.1). 
Sinre the analysis of the me;i-field equation for H is identical to that for E, we will 
mainly concentrate on the swation for E. When a value for the inhibitory rate is 
needed (for graphs and specific examples) I will assunie that the inhibitory rate H 1s 
proportional to the excitatory rate E. In the discussion, I will consider the mean-field 
eqnations for both E and H and show that this assumption is reasonable. 

To complete the specification of the mean-field equations, we must determine how 
the current I depends on the excitatory and inhibitory firing rates E and H As 
discussed in the introduction, neural network models usually assume that I is a linear 
fitr~tion of E and II: The assumed linear relation between input firins rates and 
input current leads to a firing rate disaster. The steady-state behaviour of a neuronal 
populatiou clescribed by mean-field t,heory can be determined by settlng the time 
derivative in equation (2.1) to zero and deinanding the self-consistent condition 

r 4 i s t i r  oyer the r&va_nt range of firing rates [I!: Both forms w g  

E = F ( I )  (2.3) 
with I in turn written as a function of E and H. This eqdation just states that the 
average firing rate for the population agrees with the singleneuron rate. In figure 1 
a graphical solution of equation (2.3) is constructed using the sigmoidal firing rate 
curve of equation (2.2). Solutions of (2.3) correspond to the three intersections of the 
straight line with the sigmoidal curve. The middle of these three solutions is unstable 
so only two states are relevant One is the silent state E = 0. Of particular interest 
is the other state representing st,able self-sustained firing. Such self-sustained states 

91. However, while figure 1 indicates the existence of such a state it also points out 
the problem with it. The self-sustained firing state has a rate very near the maximum 
firing rate of a single neuron. Since recordings from the brain rarely detect neurons 
firing anywhere near their maximal firing rates, it is hard to argue that this state has 
anything to do with actual brain function. 

Many suggestions have been made about how to get around the firing rate problem 
[IO-171. From this work it is known that nonlinear inhibition can solve the problem. 
Here, 1 will show how nonlinear inhibition arises as a natural consequence of correctly 
treating the shunting effects of synaptic inhibition along a dendritic cable. 

hm? heee” !sed in Ende!. of memory [e, 7; ilnd hzve beea studied in ge.t detail [8; 

3. Synaptic inputs and dendritic currents 

To caicuiate how the somatic input current depends on the firing rates a t  excitaiory 
and inhihitory synapses, we must assume some model for the neuron we consider. The 
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Input Current I Threshold Current 

Figure 1. Graphical solution determining the average firing rate of e. neuronal 
popuktion. The rigmoidalcurve is the single-neuron firing rate as a functionofrnput 
ament. The straight line is the result of the linear relation hetween input c-nt 
andf i r ingrate~Jumedinm~tneura lne t~~~kmode~ .  Theizhbitoryrate hasbcen 
set e q d  to the excitatory ne. The two -yes intersect at rates corresponding to a 
dent state, E = 0, an unstable intermediate state and a stable self-sustained firing 
state for whidt the firing rate is essentially the maximum srnglenevron rate. The 
firing rate for this state is unrealistically high. 

model neuron used throughout this discussion consists of an active soma and a single, 
passive dendritic tree. This arrangement is commonly known as the Rall model of the 

considered to be the site of the nonlinear processes which result in the generation of an 
action potential and which determine the firiugrate. (I willnot distinguish between the 
soma and a nearby trigger zone on t,he axon, assuming that these are isopoiential.) The 
dendritic tree is taken to have passive, voltage-indepeudent membrane conductances. 
This is a fairly drastic approximation. However, even with a passive dendritic tree the 
nonlinear effects of synaptic conductances and dendritic geometry will be apparent 
and a passive dendritic model is sufficient both to incorporate these effects and to 
solve the firing rate problem. I will assume for simplicity that all synapses lie on the 
dendritic tree of the model neuron and not on its soma, although somatic inputs could 
easily be included. The general structure of clle model neuron is shown in figure 2 ( a ) .  

Since the synaptic inputs are located on the dendritic tree, the somatic input 
current I which determines the firing rate F ( I )  is the current that enters the soma 
from the trunk of the dendritic tree {see figure Z ! a ) ) ;  Thereforei we must compt,e t,he 
current which flows out of the trunk of a dendritic tree into the soma when the dendritic 
membrane conductance is modified by synaptic excitatory and inhibitory inputs firing 
at rates E and H. The firing rates E and H are properties of the entire population 
so it is unlikely that they diange appreciably over typical time scales corresponding 
to most dynamic processes within a single neuron. As a result the inputs governed 
by E and H are quasi-static ou the scale of single neuron dynamics The quasi-static 
approximation is also justified by the fact that the time dependence of equation (2.1) is 
not intended to be reahstic. The features modelled most accurately by the mean-field 
approarh are, in fact, static. 

Let V ( x )  be the membrane potential at point x on an arbitrary dendritic tree We 
define the potential so that the membrane resting potential is zero. Thus, all other 
potentials are measured relative to the resting potential. The dendritic membrane 
conductance per unit area in t.he ahsencc of synaptic ispxts is de~oted by 5,. Exci- 
tatory and inhibitory synapses along the dendritic tree produce conductance changes 

11p"roo" [!& 1 q  .nA_ i!. bar a long history in the literat13re p; 3, zn-zz!: The somm k 
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(a) @? fr\ \"I g!? 
Figure 2. The model newusis considered. (a)  The active somaand passive dendritic 
treejoiuedat f.hecoordinatepoint I = 0. Thecurrent I to be computedis thecurrent 
flowing Loni the dendritic tree into the soma (6) .  ( c )  and ( d )  The active soma wrth 
a single parsive dendritic cable equivalent to the full tree in (a). For (a )  excltatmy 
and inhibitory synapses are uniformly distributed over the equivalent cable. In ( e )  
excitatory synapses me located at the end of the cable and inlubrtory synapses occur 
uufonnly dong its length. ( d )  shows an equrvalent cable with excitatory synapses 
on the distal portion and inhihitory synapses spread over the proximal region. 

that are proportional to the excitatory and inhibitory firing rates E and H We de- 
note the conductance per unit area due to excitatory and inhihitory inputs at the 
point z by c,(x)E and ch(x)H respectively. The coefficients c,(x) and ch(z) depend 
on the density and strength of excitatory and inhibitory synapses at the point x. The 
membrane potential V(x) is governed in the quasi-static case by the timeindependent 
cable equation [23, 241 

where a is tlie radius of tlie dendritic cable in the neighbourhood of the point x, r 
is the resistivity of tlie intracellular fluid and V, and Vh are tlie reversal potentials 
for the excitatory and inhibitory synapses Typically, a is a few pm, r % 100 Cl cm 
and V, is around 75 mV. V, = 0 for shunting inhibition and Vh is about -10 mV for 
hyperpolarizing inhibition. 

Once equation (3 1) is solved for V(x) the somatic input current can be found 
We choose the coordinate x as in figure Z ( Q )  so that the soma joins the dendritic tree 
at tlie point x = 0. If tlie membrane potential at the soma is < then to ensure a 
cont,iniioiis potential at x = 0 we must impose the boundary condition 

Addit~ional boundary conditions are imposed at the branching nodes and at the points 
where the branches of the dendritic tree terminate [23, 241. 

The current entering tlie soma froiii the dendritic tree can be obtained from V(x) 
by noting that tlie current flowing longitudinally down a dendritic cable is given by 
the derivative of t,lie voltage divided by the resistance of a unit length of cable, 

(3.3) 

!!ere eo is t ! ~  radius ~f the dendritic trunk: Once we have so!ved for V(z)> (33)  gives 
ns the desired formula for the input current I as a function of the firing rates E and H 
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Equation (3.1) is most easily solved if the synapses occur in hands of uniform 
density and strength so that c, and ch are piecewise constant functions. In this case, 
over any region of cable where c, and ch are constant V ( z )  has the general form 

V ( z )  = Ai sinh(z/Ai) + B, cosh(z/A,) + 2 (3.4) 

where the index i labels the particular region being discussed. If region i has a cable 
radius ai and constant synaptic density factors c?) and cc) then the cable length 
constant is given by 

and 

Note that and X i  both depend on the firing rates E and If. The dependence of the 
length constant A, on the firing rates introduces the most dramatic nonlinearity into 
the relation between input current and firing rates. 

The coefficients A, and B, are determined hy imposing the boundary conditions 
consisting of (3 2) as well as continuity of the potential and current conservation at 
all junctions between regions and at all branching nodes on the tree. In addition, the 
appropriate boundary conditions must he satisfied at the terminals of the tree If we 
label the region on the trunk of the dendritic tree nearest to the soma by i = 0 then 
the desired current entering the soma is 

Using these equations, the computation of the somatic input current as a function 
of E and If for any dendritic structure is merely a matter of algebra. However, for 
highly structured dendritic trees the algebra can be tedious and the answers quite 
complicated. The tedium and complexity are dramatically reduced if we make use of 
a very convenient simplification due to Rall [20, 231. The idea is to replace a com- 
plete dendritic tree with a single cylindrical cable having the same total electrotonic 
length as the original tree and the same total surface area. The electrotonic length 
is computed hy summing the lengths of the various segments of the tree measuring 
each segment length in units of its length constant A,. This reduction is exact if the 
geometry of the deudritic tree satisfies three requirements: 

(i) the electrotonic length is the same from the soma to all terminals of the tree; 
(ii) at a node where a single dendritic cable segment breaks into several branches, the 

sum of the f power of the radii of each of the branches is equal to the f power of 
the radius of the original cable segment; and 

(iii) regions of the dendritic tree at equal electrotonic distances from the soma receive 
equal synaptic inputs. 
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Even if these requirements are not exactly satisfied the equivalent cable is a reasonable 
approximation. 

We now compute I ( E ,  H) for a single equivalent cable of radius a and length L 
considering several different synaptic placements. First, imagine that the excitatory 
and inhibitory synapses are uniformly spread along the entire dendritic cable as in 
figure 2 0 ) .  In this case, the synaptic density and strength factors ce and eh are 
constants and we only need a single region corresponding to i = 0 In this example, 
no ciirrent flows in or out of the end of the cable at  x = L so we require the boundary 
condition. 

The cable length constant for this case is 

and the input current for the geometry of figure 2 ( b )  given by these formulae is 

I = SsnA[-g,V, + c,E(I/ ,  - V,) + chH(Vh - V,)] tanh(L/A). (3.10) 

For a short cable L << A, this formula is, in fact, linear in E and H, 

I 2~uL[-g,,,ll ,  + c,E(Ve - V,) + chH(Vh - V,) ]  (3.11) 

Note that this is Just the area of the cable times the input curxent density. However, 
the cable length is typically not much shorter than the length constant even when 
E = H = 0 hut instead L is of order A.  In any case, as the firing rates E and H 
increase the cable length constant; which is inversely proportional to the square root 
of g ,+ceE+ehH,  gets smaller and eveutually it will become considerably less than L 
At this point the rurrent (3.10) grows only like Ell2 for large E Thus, even for this 
trivial geometry we see that cable effects produce a nonlinear dependence on firing 
rates and reduce the growth of I with E. 

The nonlinear dependence of I on the firing rates is more dramatic if the excitatory 
and inhibitory inputs are segregated along the cable. To keep the following expressions 
as simple as possible we will consider this case when the membrane pot,ential of the 
soma is equal to the resting potential, V,  = 0. In addition, we take the inhibitory 
synapses to be of the shunting type so that Vh = 0 as well. The first synaptic placement 
we consider is that of excitatory synapses located at the end of the equivalent cable 
at  z = L and shunting inhibitory synapses located uniformly all along the equivalent 
cahle. This geometry is shown in figure Z(c). The calculation is almost identical t o  
the previous c a ~ e  except that the boundary condition at  the end of the cable is now 

= rc,E[V, - V ( S ) ]  

and the cable length constant is 

(3.12) 

(3.13) 
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Note how increased inhibitory firing decreases the size of this length constant. The 
resiihng somatic current for the synaptic connections shown in figure 2(c) is 

I =  mZc,EV, 
cosh(L/X) + rXc,Esinh(L/X) 

In the  limit of short cable length L << A, this becomes 

(3.14) 

(3 15) 

In this limit, we see that for high excitatory firing rates the current approaches a finite 
limiting value 

razv, I-- 
T L  

(3.16) 

which is just the value given by Ohm's law for the cable. However, typically L sz X 
in the absence of inhibitory inputs and L > X when the inhibitory inputs are firing. 
Then the nonlinear effects of inhibition become even more pronounced The current 
(3.14) is plotted in figure 3 assuming c,E = chH with typical values of the cable 
parameters (Choosing c,E = chH means that a relatively small amount of current 
enters through the excitatory inputs since these are restricted to the end of the cable. 
However, increasing c. does not drastically change the shape of the curve in figure 3, 
it  mainly increases the overall amplitude of tbe current ) Note that for high firing 
rates the current turns over and goes ultimately to zero 

C,E I g, 

Fignre 2. The input current 85 a lunction of excitatory rate for the geometry of 
figure 21 e )  The excitatory and inlubitory synaptic conductances have been set equal 
to each other Noto that the nonlinear effect of shunting idubition causes Ihe input 
current to readl a maxnmm value and then to decrease wrth increased input firing 

The result (3.14) is well fitted by an approximate formula 

I = o lEexp( -P f i )  (3.17) 

with a and P constants It is easy to see where such a form comes from. The linear 
dependence in the excitatory rate is just what has always been used in network models. 
When a current propagates down a cable of length of L it is, roughly speaking, reduced 
by a factor exp(-L/X) The form (3.17) follows from the fact that when shunting 
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inhibition is large enough to significantly modify the total membrane conductance, 
the cable length constant X is proportional to the inverse of the square root of the 
inhibitory rate. The exponential dependence in (3.17) shows the highly nonlinear 
elFecl of shunting inhiyition. 

As a final example, we consider the case shown in figure 2 ( d )  where uniform 
shunting inhibitory synapses are located io the region 0 Q x Q Lo and excitatory 
synapses in the region Lo < z Q L. We impose the no-current boundary condition at 
x = L and V ,  = 0. The resulting current is 

2raAiceEVe tanh[(L - LO)/Xi] 
cosh(L,/X,) + Xo/Xi  sinh(L,/X,)tanh[(L - La)/Ai] I =  (3.18) 

where 

and 

a 
” = ( Z r ( g ,  + c,E) (3.20) 

This result if clearly more complicated than the previous ones However, it still has 
the basic shape of the result shown in figure 3 and can be approximated with an 
expression of the form (3 17). In particular, it shows the exponential suppression of 
the current for large inhibitory firing rates. 

4. Results froin a realistic model iieuroii 

To verify that these results are relevant for realistic neurons, I have performed simu- 
lations of a multi-Compartmental neuron model based on measured active membrane 
conductances. The model used for simulations has an active soma compartment and 
ten passive compartments forming an equivalent dendritic cable. The active conduc- 
tances aie a transient sodium conductance, a delayed-rectifier potassium conductance 
and a transient potassium conductance. The form and dynamics used for these con- 
ductances is exact!y as measured in [25] The transient sodium and delayed-rectifier 
conductances are needed to generate action potentials while the transient potassium 
conductance is required to obtain a realistic firing rate as a function of injected cur- 
rent. The  presence of the transient potassium current allows the model neuron to 
repetitively fire at arbitrarily slow rates for input currents near the threshold value. 
This model is the simplest conductancebased model which gives a firing rate cnrve 

Syiiaptic inputs are included in the model by changing the membrane conductances 
in the various dendritic compartments receiving synaptic inputs. Each input spike 
results in a transient conductance change given by the difference of two exponentials 
For these simulations the synaptic rise time was 1 ms or less and the decay time was  
in the range of 1-10 ms. The results are not very sensitive to the values used for 
the synaptic time constants. The  length of the equivalent dendritic cable was three- 
qnartcrs of a length constant in the absence of synaptic inputs Excitatory synaptic 

rises castini:ons!y ko!n zero 



conductance changes were introduced into the distal three compartments and shunting 
synaptic inputs affected the proximalseven compartments of the dendritlc cable. Thus 
the arrangement is similar to figure 2 ( d ) .  The inhibitory and excitatory input rates 
were set equal to each other The input rate for simulation runs IS defined to he the 
total uumher of inputs per unit time along the entire dendritic cable and thus is larger 
than any singleneuron rate. 

" 
0 ION zwo 3WO 

Input Rate (Ihec) 

Fignre 4. The firing rate ag a function of excitatory input rate for a multr- 
compartmental model newon based on rralistrc conductances [25] The input rate 
ahoxn refera to the s u m  of all inputs synapsing on the dendritic cable, not to a s m g l ~  
neuron rate. The bmken NTM is the firing rate in tbe absence of dlibrtion wlule 
the full curve corresponds to shunting inhibition with the inhibitory firing rate pm- 
portion4 to the excitatory rate. hi the presence of inhibition, the firing rate r e d e r  
e mzri::::F. a.- .'.c.-aer an &a inn,? r*$e i. i...cre.-d. 

The results of the simulation runs are shown in figure 4 The broken curve shows 
the firing rate as a function of input rate in the absence of shunting inhibition The 
curve rises linearly at first and then continues to rise more slowly. The  solid curve 
shows the firing rate including shunting. As predicted hy the results of the previous 
section, the firing rate reaches a maximum value and then decreases. Shunting has the 
iionlinear effect predicted and is able to bound the firing rate well below its maximum 
value. The firing rate has a plateau at about 100 He. This could he reduced more 
by increasing the magnitude of the transient potassium conductance or by includ- 
ing additional currents that produce spike rate adaptation (see, for example, [26-271. 
However, the model as shown clearly exhibits the nonlinear inhibitory effects we are 
discussing. 

5. Firing rates in a populatiou with shunting inhibition 

To see how the input currents we have computed resolve the firing rate problems, we 
solve equation (2.3) for the static firing rate using the firing rate function (2.2) hut 
this time with the result of equation (3.14) for the input current as afunction of firing 
rate. Again we taken c,E = chH A graphical solution is shown in figure 5. There 
are three solutions corresponding to Dlaces where the two lines cross, but only the 
solutions at E = H = 0 and at the right-most crossing are stable. As in figure 1, there 
exists a self-sustained firing state hut now the rate is well below the maximum firing 
rate for the neuron. The same firing rate curve was used in figure 5 as in figure 1, the 
difference is solely the result of noniinear shunting inhibition. It is interesting to note 
"1.1" Y I.._ IL..-I"IYU...C" aum1.Z fiD '.pp~".%L"Y L L Y l l l  &"U I C l l  1" rrgure 4, Idle ,,r,ug raw 
actually decrewes after first passing through a maximum. 
hint +ha cAf.cs.o+n;~..A "<-+a :- --..--,.-I.-> C--- LL- 3-c~ :- C -  .... c &I. c.:-. ..I~ 
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Figure 5. Graphical solution determining the average firing rate of s neuronal 
population. The E U W ~  is the single-neumn king rate as a function of input rate using 
the nonlinear expressmn for the dendritic geometry of fi- 2( c) This m v e  meets 
the straglit line at places where a static solution of the mean-field equations exist 
One intersection corresponds to the silent state E = 0 The mtermediate crossing is 
unstable atid the upper intersectton represents a stable sell-rustbed king state for 
wl&3c the firing rate is significantly lower than the niaxnnm single-newon rate. 

6. Discussion 

Within the cable literature there are analyses of the impact of synaptic conductance 
on the time and length constants of dendritic cables [Z, 3, 20-221. The main message 
of this paper is that the effects of dendritic geometry, synaptic placements and synap- 

shunting inhibition along the length of a dendritic cable through which excitatory 
signals must pass results in an exponential suppression of the firing rate This result 
can he approximated by relation (3 17). In the discussion to this point, I have used 
the standard sigmoidal firing rate curve of equation (2.2). However, as can be seen by 
the bioktw curve in figure 4, in the low-rate region a threshold-linear function is more 
appropriate, 

tic cor?d"c?.nces C." he inc!.ded i" mea2k!?e!C!-h,Pd ne?%& p.ode!s FG.: exzmp!e, 

F(Z) = [ I  - r;]O[Z - 4 (6 1) 

where K is the threshold current and 8 is a unit step function The units of the current 
I have been chosen so that the multiplicative constant in equation (6.1) is unity. The 
threshold linear form cannot he used in models which assume a linear dependence of 
the curreni on the firing raies since these modeis reiy on the firing raie maximum oi 
the sigmoidal function to prevent arbitrarily high rates. Now that we have resolved 
the firing rate problem, we can use the simpler and more realistic threshold-linear 
form. 

Up to now the dynamics of the inhihitory rate H has not been considered. H 
obeys an equation similar to (2.1) and two, coupled differential equations describe the 
combined system. Suppose that the inhibitory neurons shunt the dendritic cables of 
the excitatory neurons hut not each other, and that the inhibitory neurons are excited 
by the E neurons. The dendritic geometry for excitatory neurons is as in figures Z(c) 
or 2 ( d )  so that the fit of equation (3.17) is applicable. For inhibitory neurons I take a 
geometry as in figure 2 ( b )  except that there are no inhibitory synapses. I assume that 
for the inhihitory neurons gm > ceE over the range of interest so that the excitatory 
input is approximately linear for these neurons, I = y E .  This is not essential hut it 
simpiifies iiie resuiting equations. Finaiiy, i use ihe ihreshoid-iinear firing raie curve 
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(G .1 ) .  The coupled equations describing the system are then 

d E  - =-E+ ( a E e x p ( - a G )  - ~ , ) @ [ a E e x p ( - O G )  - K.] dt (6 2) 

and 

(6.3) 
d H  
dt - r - - -H + ( y E  - rc,,)Q[yE - K1,]. 

We have included the time constant r,, to allow for the possibility that the inhibitory 
neurons respond at a different rate from the excitatory ones. Note that if the inhibitory 
threshold current K~ is small the asymptotic value of the inhihitory rate is proportional 
to the excitatory rate as we have assuined in previous sections. 

Stat,ic solutions of the coupled equations for E and H can be found by plotting 
nullclines in the E-H plane. These are lines along which either dEld t  = 0 or dH/dt = 
0. This is done in figure 6. In addition to the silent state E = H = 0, static 
solutions are given by the intersections of the two nullclines Again only the right- 
most intersection point is stable and we find a self-sustained firing state similar to 
that of figure 5 

E (Ihec) 

Figure 0.  Nulldines {or the coupled system of equations describing the dynamics of 
both eicitatory and inlithitory neurons. The intersections or the two curves as well 

the point E = X = 0 are the static stater as drscusred in tbe caption of figure 5. 

In  neural network models, spatially structured patterns of self-sustained firing are 
used as memory states [5-91 To describe such patterns we must include a set of N 
variables E, and H, which are the average excitatory and inhihitory firing rates in a 
spatial region labelled by the index i = 1,2 _, N .  These regions may correspond to 
small populations or even single neurons The excitatory regions are coupled to each 
other with variable strength. The strength of the synapse coupling region j to region 
i is given by the matrix element J,, In addition the excitatory neurons in region 
i couple locally to inhibitory interneurons in that region and the inhtbitory neurons 
shunt the excitatory neurons in the region but not each other. Clearly this is just one 
of many possible arrangements The network is described by the 2N equations 
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and 

dH, - rh- - H, + ( yEi  - r;,)O[yEi - Kh] dt 

These equations can he simplified if in the time units we are using 7, < 1. Then the 
inhibitory neurons respond more quickly than the excitatory neurons and we can set 
the H, equal to their asymptotic values. For small inhibitory thresholds this means 
we can take H, zs *(E,. Then the 2N equations are replaced by N equations. 

(6.6) 

where 0' = /3(~)'/' Using either the 2N or the simplified N equations these models 
represent a neural network with associative memory properties and a well regulated 
firing rate. The model of equations (6.4) and (6.5) has been simulated and shown to 
provide associative recall of stored memory firing patterns with stable, low firing rates 

I have concentrated mostly on dendritic geometries like those of figure 2(c) or 2 ( d )  
because they clearly illustrate the nonlinear effect of shunting along a cable However, 
the formalism developed here allows any dendritic structure with any placements of 
excitatory and inhibitory synapses to he included in network models This will permit 
studies of the effect of dendritic and synaptic geometry on network behaviour. 

[28]. 
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