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Abstract. An expression is derived relating the input current for a single neuron in
a neural network to the firing rates of exatatory and inlubitory mputs synapsing on
the dendritic tree of the neuron. Any dendritic geometry and any pattern of synap-
tic connections can be treated using the techniques presented. The input currents
calculated, combined with known finng rate functions, allow the effects of synaptic
conductance changes along dendritic cables to be included in a mean-field descrip-
t1on of network behaviour, The shunting effects of mhibitory synaptic conductances
provide a solution to the high firing rate problem in neutral network models

1. Introduction

Neural network models are often based on a mean-ficld approach [1] that uses known
properties of single neurons to predict the behaviour of large neurcnal populations
In such models, the average firing rates of excitatory and inhibitory neurons are used
to describe the activity of the population. The basic equations of mean-field theory
relate these average rates to the rate of firing of a single neuron expressed as a function
of its input current The equations become a closed system when the input current
15 expressed in turn as a function of the average firing rates for the population In
a laboratory setting, the rate of single-neuron firing for various input currents can
be measured by injecting current directly into the soma through a microelecirode.
However, to use this firng rate in a network setting, we neesd to know the amount of
current flowing into the soma from synaptic inputs as a function of the firing rates of
presynaptic excitatory and inhibitory neurons. This information is much more difficult
to cbtain.

In neural network models, the input current is generally taken to be a lhnear
function of the excitatory and inhibitory mnput firing rates. This approxirnation leaves
out several essential features of real synaptic inputs and real dendritic trees. The
arrival of an action potential at a presynaptic terminal results in a change in the
membrane conductance on the postsynaptic side. The total synaptic conductance due
to many synaptic inputs is an approximnately linear function of the mput firing rate,
but this does not imply that imjected current is linear in the firing rate. Even for quite
low input firing rates, the synaptic conductance may be comparable to or even jarger

than the membrane conductance in the absence of synaptic inputs. When synaptic
andnctancee male an nppgﬂrinh]n contribution to the total membrane ctjmlj_ll(‘,ta.!](,‘.ei

the dependence of somatic input current on presynaptic firing rates becomes nonlinear.
The nonlinear effects of inlibition due to membrane conductance changes have been
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discussed elsewhere [2-5] but have not previously been incorporated into network
models.

Currents entering through dendritic synapses rust travel down dendritic cables
before reaching the soma They are thus subject to losses from the longitudinal re-
sistance of the dendritic cable and due to leakage through the dendntic membrane.
Since synaptic conductances along the dendritic cable dramatically affect the amount
of membrane leakage, they have an important ponlinear impact on the amount of cur-
rent entering the soma. The effect depends on both the geometry of the dendritic tree
and on the placement of synapses along the tree. The linear relation used in neural
network models completely ignores these issues, both of which have a dramatic effect
on single-neuron and network behaviour.

In this pape1, the current entering the soma from synaptic inputs along a dendritic
tree will be computed as a function of the excitatory and mhibitory mput firing rates
The calculation can be applied to any dendritic geometry and any synaptic placemepts
and it incorporates the full nonlinear effects of synaptic conductance changes. Several
typical dendritic structures will be considered in detail and their impact on network
dynamics will be discussed.

The unrealistic linear relation between input current and input firing rates used
in neural network models has had a disastrous impact on their predictions. Due
to extensive work on network associative memories [6, 7] (see [8, 9] for reviews), a
great deal of interest has been focused on self-sustained firing patterns in neuronal
populations. Network models based on linear excitation and inhibition predict that
during such self-sustained firing, neurons will fire at their maxirmum possible rates.
However, cortical neurons typically fire much more slowly than their maximum rates.
Much attention has been given to finding a solution of this problem [10-17]. As
discussed later, the firing rate problem is resolved when a realistic representation of
synaptic inputs and a sustable dendritic geometry are included in the model.

To simplify the discussion, I will mainly consider a homogeneous population of
neurons, that is a population in which all excitatory neurons fire at approximately the
same rate, This will allow all of the issues concerning realistic conductance changes,
dendritic geometry and population firing rates to be addressed. After the main points
have been made, T will consider the case of an inhomogeneous population in which the
spatially-structured firing patterns used in associative memory models can arise.

2. Mean-field theory and the firing rate problem

Consider a population of excitatory neurons firing at an average rate, E(t), at time
t. In the absence of external inputs, this firing rate is controlled by interconnections
between the excitatory meurons in the population and by the effects of inhibitory
interneurons. In the mean-field approach, the average firing rate for the population is
related to the firing rate of a single neuron through the basic equation,

dE
4 = —E+F\) (2.1)

where F(I) is a single-neuron firing rate as a function of input current I. If F(I)
15 determined experimentally by injecting current into the soma, then in the natural
setting the current [ in equation (2.1) must be the current entering the soma due to
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synaptic inputs For theoretical purposes, F{I) is often assumed to have a sigmoidal
form

Fmax (2 2)

F(I) =
D= Ty ele—7a]
where F_ . is the maximum firing rate for the reuron. The parameters & and A
correspond roughly to the threshold current and the width of the rise of the sigmoidal
function. A firing rate F' that is a threshold-linear function of I is probably more
realistic over the relavant range of ﬁrme‘ rates [171 Both forms will he considared

here.

In addition to the excitatory neurons described by the firing rate E, we must
include 2 population of inhibitory interneurons. Let H represent the average firing
rate of these inhibitory neurons. H is determined by an eguation simalar to {2.1).
Since the analysis of the mean-field equation for H is identical to that for E, we will
mainly concentrate on the equation for E. When a value for the mhibitory rate is
needed (for graphs and specific examples) I will assurne that the inhibitory rate H 1s
proportional to the excitatory rate E. In the discussion, I will consider the mean-field
equations for both E and H and show that this assumption is reasonable.

To complete the specification of the mean-field equations, we must determine how
the current I depends on the excitatory and inhibitory firing rates £ and H As
discussed in the introduction, neurzal network models usually assume that T is a linear
function of E and H. The assumed linear relation between input firing rates and
input current leads to a firing rate disaster. The steady-state behaviour of a neuronal
population described by mean-field theory can be determined by setting the time
derivative in equation (2.1) to zero and denanding the self-consistent condition

E = F(I) (2.3)

with F in turn written as a function of E and H. This equation just states that the
average firing rate for the population agrees wiith the single-neuron rate. In figure 1
a graphical solution of equation (2.3} is constructed using the sigmoidal firing rate
curve of equation (2.2). Solutions of (2.3) correspond to the three intersections of the
straight line with the sigmoidal curve. The middle of these three solutions is unstable
so only two states are relevant One is the silent state E = (. Of particular interest
is the other state representing stable self-sustained firing. Such self-sustained states
have hesn used in models of memorv ffi 71 and have been studied in rreat detail [8
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9]. However, while figure 1 indicates the ex:steuce of such a state it also points out
the problem with it. The self-sustained firing state has a rate very near the maximum
firing rate of a single neuron. Since recordings from the brain rarely detect neurons
firing anywhere near their maximal firing rates, it is hard to argue that this state has
anything to do with actual brain function.

Many suggestions have been made about how to get around the firing rate problem
[10-17]. From this work it is known that nonlinear inhibition can solve the problem.
Here, 1 will show how nonlinear inhibition arises as a natural consequence of correctly
treating the shunting effects of synaptic inhibition along a dendritic cable.

3. Synaptic inputs and dendritic currents

To calculate how the somatic input current depends on the firing rates ai excitatory
and inhibitory synapses, we must assume some model for the neuron we consider. The
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Figure 1. Graphical solution determining the average firing rate of a neuronal
population. The sigmoidal curve is the single-neuton firing rate as a function of Input
current. The straight line is the result of the linear relation between input current
and firing rate assumed in most neural network models. The inhibitory rate has been
set equal to the excitatory rate. The two curves intersect at rates corresponding to a
silent state, E = 0, an unstable intermediate state and a stable seli-sustained firing
state for which the firing rate is essentially the maximum single-neuron rate. The
firing rate for this state js unrealistically high.

model neuron used throughout this discussion consists of an active soma and a single,
passive dendritic tree. This arrangement is commonly known as the Rall model of the
neuron [18, 19] and it has a long history in the literature {2, 3, 20-22]. The soma is
considered to be the site of the nonlinear processes which result 1n the generation of an
action potential and which determine the firing rate. (I will not distinguish between the
soma and a nearby trigger zone on the axon, assuming that these are isopotential.} The
dendritic tree is taken to have passive, voltage-independent membrane conductances.
This is a fairly drastic approximation. However, even with a passive dendritic tree the
nonlinear eflects of synaptic conductances and dendritic geometry will be apparent
and a passive dendritic model is sufficient both to incorporate these effects and to
solve the firing rate problem. [ will assume for simplicity that all synapses lie on the
dendritic tree of the model neuron and not on its soma, although somatic inputs could
easily be included. The general structure of the model neuron 1s shown in figure 2(a).

Since the synaptic inputs are located on the dendritic tree, the somatic input
current ] which determines the firing rate F(I} is the current that enters the soma
{from the trunk of the dendritic tree (see figure 2(a)). Therefore, we must compute the
current which flows out of the trunk of a dendritic tree into the soma when the dendritic
membrane conductance is modified by synaptic excitatory and inhibitory inputs firing
at rates £ and H. The firing rates E and H are properties of the entire population
so it is unlikely that they change appreciably over typical time scales corresponding
to most dynamic processes within a single neuron. As a result the inputs governed
by E and H are quasi-staiic ca the scale of single neuron dynamics The quasi-static
approximation is also justified by the fact that the time dependence of equation (2.1} is
not intended to be reahistic. The features modelled most accurately by the mean-field
approach are, in fact, static.

Let ¥(z) be the membrane potential at point z on an arbitrary dendritic tree We
define the potential so that the membrane resting potential is zero. Thus, all other
potentials are measured relative to the resting potential, The dendritic membrane
conductance per unit area in the absence of synaptic inputs is denoted by &, Exci-

tatory and inhibitory synapses along ihe dendritic tree produce conductance changes
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Figure 2. The model neurvas considered. (2) The active soma and passive dendritic
tree joined at the coordinate point £ = 0. The current I to be computed is the current
flowing from the dendritic tree into the soma (3), (¢) and (4) The active soma with
a single passive dendritic cable equivalent to the full tree in (2). For (}) excitatory
and inhibitory synapses are uniformly distributed over the equivalent cable. In (¢)
excitatory synapses are located at the end of the cable and inlubitory synapses occur
umformly along its length. (4) shows an equvalent cable with excitatory synapses
on the distal portion and inhibitory synapses spread over the proximal region.

that are proportional to the excitatory and inhibitory firing rates ¥ and H We de-
note the conductance per unit area due to excitatory and inhibitory inputs at the
point z by c.(2)F and ¢, (z)H respectively. The coefficients ¢ (z) and ¢,(z) deperd
on the density and strength of excitatory and inhibitory synapses at the point z. The
membrane pofential V{z) is governed in the quasi-static case by the time-independent
cable equation [23, 24]

a d2v
2r dz?

where a is the radius of the dendritic cable in the neighbourhood of the pownt =, r
is the resistivity of the intracellular fluid and ¥, and ¥}, are the reversal potentials
for the excitatory and inhibitory synapses Typically, o is a few pm, r = 100 2 cm
and V, is around 75 mV. ¥}, = 0 for shunting inhibition and V}, is about —10 mV for
hyperpolarizing inhibition.

Once equation (3 1) is solved for V(z) the somatic input current can be found
We choose the coordinate z as in figure 2(q) so that the soma joins the dendntic tree
at the pomnt z = 0. If the membrane potential at the soma is ¥ then to ensure a
continuons potential at 2z = 0 we must impose the boundary condition

V)=V, (32

=9mV+ceE(V_Ve)+chH(V_'Vh) (31)

Additional boundary conditions are imposed at the branching nodes and at the points
where the branches of the dendritic iree terminate [23, 24].

The current entering the soma from the dendritic tree can be obtained from V(z)
by noting that the current flowing longitudinally down a dendritic cable 1s given by
the derivative of the voltage divided by the resisiance of a umt length of cable,

maf dV

1= (3.3)

rodz |, _q

Here a, is the radius of the dendritic trunk. Once we have solved for V{z), (‘% .3) gives
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L
~
us the desired formula for the input current I as a function of the firing rates E and H
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Equation (3.1) is most easily solved if the synapses occur in bands of uniform
density and strength so that ¢, and e, are piecewise constant functions. In this case,
over any region of cable where ¢, and ¢, are constant V(«) has the general form

V(z) = A;sinh(z/),) + B, cosh(z/\.} + ¥, (34)

where the index 7 labels the particular region being discussed. If region i has a cable

radius ¢; and constant synaptic density factors cg') and CE) then the cable length
constant is given by

1/2
a
A = . (3 5)
' (2r(gm +E 4 cf:)H))

and

_ eV, + Y,
g+ E+ O H

(36)

)

Note that ¥V, and A; both depend on the firing rates £ and H. The dependence of the
length constant A, on the firing rates introduces the most dramatic nonlinearity into
the relation between input current and firing rates.

The coeflicients A, and B, are determined by imposing the boundary conditions
consisting of (3 2) as well as continuity of the potential and current conservation at
all junctions between regions and at all branching nodes on the tree. In addition, the
appropriate boundary conditions must be satisfied at the terminals of the tree If we
label the region on the trunk of the dendritic tree nearest to the soma by ¢ = 0 then
the desired current entering the soma is

2
_ Tay
I= % Ag. (3.7

Using these equations, the computation of the somatic input current as a function
of £ and H for any dendritic structure 1s merely a matter of algebra. However, for
highly structured dendritic trees the algebra can be tedious and the answers quite
complicated. The tedium and complexity are dramatically reduced f we make use of
a very convenient simplification due to Rall [20, 23]). The idea is to replace a com-
plete dendritic tree with a single cylindrical cable having the same total electrotonic
length as the original tree and the same total surface area. The electrotonic length
is computed by sminming the lengths of the various segments of the tree measurng
each segment length in units of its length constant A,. This reduction is exact if the
geometry of the dendritic tree satisfies three requirements:

(i} the electrotonic length is the same from the soma to all terminals of the tree;

(i} at anode where a single dendritic cable segment breaks into several branches, the
sum of the 2 power of the radii of each of the branches is equal to the 2 power of
the radjus of the original cable segment; and

(iii) regions of the dendritic tree at equal electrotonic distances from the soma receive
equal synaptic inputs.
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Even if these requirements are not exactly satisficd the equivalent cable is a reasonable
approximation.

We now compute J(E, H} for a single equivalent cable of radius a and length L
considering several different synaptic placements. First, imagine that the excitatory
and inhibitory synapses are uniformly spread along the entire dendritic cable as in
figure 2(b). In this case, the synaptic density and strength factors ¢, and ¢, are
constants and we only need a single region corresponding to i = 0 In this example,
no current flows in or out of the end of the cable at z = L so we require the boundary
condttion.

dv
S| =o (3.8)
x z=L

The cable length constant for this case is
a \1[ 2

\2?‘(9,." + ceE + chH)j

| -
A=

—
(%]
o>

St

and the input current for the geometry of figure 2(5) given by these formulae 1s

I =2maA[-g, V., + ¢, E(V, - V} + ¢, H(V, — V)] tanh(L/}). (3.10)
For a short cable L < A, this formula s, in fact, linear in E and H,

Iz 2rali—g, V, +c . E(V, - V) + c, H(V}, — V)] (3.11)

Note that this 1s just the area of the cable times the input current density. However,
the cable length is typically not much shorter than the jength constant even when
E = H = 0 but instead L is of order A. In any case, as the finng rates £ and H
increase the cable length constant, which is inversely proportional to the square root
of g, +c.E+ec H, gets smaller and eventually it will become considerably less than L
At this pomt the current (3.10) grows only like E*/2 for large E 'Thus, even for this
trivial geometry we see that cable effects produce a nonlinear dependence on firing
rates and reduce the growth of I with E.

The nonlinear dependence of I on the firing rates 1s more dramatc if the excitatory
and inhibitory inputs are segregated along the cable. To keep the following expressions
as simple as possible we will consider this case when the membrane potential of the
soma is equal to the resting potential, ¥, = 0. In addition, we take the mhibitory
synapses to be of the shunting type so that ¥, = & as well. The first synaptic placement
we consider is that of excitatory synapses located at the end of the equivalent cable
at ¢ = L and shunting inkibitory synapses located uniformly all along the equivalent
cable. This geometry is shown in figure 2(¢). The calculation is almost identical to
the previous case except that the boundary condition at the end of the cable is now

dv

| =reEl.- V(L)) (3.12)

r=L

and the cable length constant is
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Note how intreased inhibitory finng decreases the size of this length constant. The
resulting somatic current for the synaptic connections shown in figure 2(¢) is

na’e EV,
= . 3.14
= h(T/3) £ rac Esnb(L/N) (3.14)
In the limit of short cable length L < ), this becomes
2
I TV (3 15)
l+re EL v

In this limit, we see that for high excitatory firing rates the current approaches a finite
limiting value

2
TV,

I— rL

(3.16)

which is just the value given by Ohm’s law for the cable. However, typically L = A
in the zbsence of inhibitory inputs and L > X when the inhibitory inpuis are firing.
Then the nonlinear effects of inhibition become even more pronounced The current
(3.14) is plotted mn figure 3 assuming ¢ £ = ¢, H with typical values of the cable
parameters (Choosing ¢, F = ¢, H means that a relatively small amount of current
enters through the excitatory inputs since these are restricted to the end of the cable.
However, increasing c, does not drastically change the shape of the curve in figure 3,
it mainly increases the overall amplitude of the current ) Note that for high finng
rates the current turns over and goes ultimately to zero

i T T

ra’g V,

0 5 10 15 20 35
cElg,

Figure 2. The input current as a function of excitatory rate for the geometry of
figure 2(¢) The excitatory and inlubitory synaptic conductances have been set equal
to each other Note that the nondinear effect of shunting intubition causes the input
current to reach a maxnuum value and then to decrease with mcreased input firing

The result (3.14) 1s well fitied by an approximate formula
I = aEexp(—fV H) (3.17)
with « and § constants It is easy to see where such a form comes from. The linear
dependence 1 the excitatory rate is just what has always been used 1n network models.

When a current propagates down a cable of length of L it is, roughly speaking, reduced
by a factor exp{—L/A) The form (3.17) follows from the fact that when shunting
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mhibition is large enough to significantly modify the total membrane conductance,
the cable length constant A is preportional to the inverse of the square root of the
mhibitory rate. The exponential dependence n (3.17) shows the highly nonhnear
effect of shunting inhibition.

As a final example, we consider the case shown in figure 2(d) where uniform
shunting mhibitory synapses are located ip the region 0 € z € L, and excitatory
synapses in the region Ly < £ € L. We impose the no-current boundary condition at
z = L and V, = 0. The resulting current is

2rad c EV, tanh[(L — Lj)/A)]

= Cosh(Lofhg) + dof My sl Lo/ Mdvantii(L — Lo)/a] (3-18)
where
12
Yo = (m) (3 19)
and

This result if elearly more complicated than the previous ones However, it still has
the basic shape of the result shown in figure 3 and can be approximated with an
expression of the form (3 17). In particular, it shows the exponential suppression of
the current for large inhibitory firing rates.

4. Results from a realistic model neuron

To verify that Lhese results are relevans for realistic neurons, I have performed simu-
lations of & multi-compartmental neuron model based on measured active membrane
conductances. The model used for simulations has an active soma compartment and
ten passive compartments forming an equivalent dendritic cable. The active conduc-
tances ale a transient sodium conductance, a delayed-rectifier potassium conductance
and a transient potassium conductance. The form and dynamics used for these con-
ductances is exactly as measured m [25] The transient sodium and delayed-rectifier
conductances are needed to generate action potentials while the transient potassium
conductance is required to obtain a realistic firing rate as a function of injected cur-
rent. The presence of the transient potasshrm current altlows the model neuron to
repetitively fire at arbitrarily slow rates for mnput currents near the threshold value.
This model is the simplest conductance-based model which gives a firing rate curve

Synaptic inputs are included in the model by changing the membrane conductances
in the various dendritic compartments receiving synaptic inputs. Each input spike
results in a transient conductance change given by the difference of two exponentials
For these simulations the synapiic rise tame was 1 ms or less and the decay time was
in the range of 1-10 ms. The results are not very sensitive to the values used for
the synaptic time constants. The length of the egquivalent dendritic cable was three-
quarters of a length constant in the absence of synaptic mpués Excitatory synaptic
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conductance changes were introduced into the distal three compartments and shunting
synaptic inputs affected the proximal seven compartments of the dendritic cable. Thus
the arrangement is similar to figure 2(d). The inhibitory and excitatory input rates
were set equal to each other The input raie for simulation runs 1s defined to be the
total number of inputs per unit time along the entire dendritic cable and thus is larger
than any single-neuron rate.

300

00

100 -

Firing Rate (1/sec)

0 1000 2000 3000
Input Rate (1/sec)

Fignre 4. The firing rate as a function of excitatory input rate for a mulir-
compartmental model neuron based on realistic conductances [25] The input rate
shown refers to the sum of all inputs synapsing on the dendntic cable, not to a single-
neuron rate. The broken curve 1s the firing rate in the absence of mhibition whale
the full curve corresponds to shunting inhibition with the inhibitory firing rate pro-
portional to the excitatory rate. In the presence of inhibition, the firing rate reaches

a maximum and then decreases to zero as the input rate is increased.

The results of the snnulation runs are shown in figure 4 The broken curve shows
the firing rate as a function of input rate in the absence of shunting inhibition The
curve rises linearly at first and then continues to rise more slowly. The solid curve
shows the firing rate including shunting. As predicted by the results of the previous
section, the firing rate reaches a maximumn value and then decreases. Shunting has the
nonlinear effect predicted and is able to bound the firing rate well below its maximum
value. The firing rate has a plateau at about 100 Hz. This could be reduced more
by increasing the magnitude of the transient potassium conductance or by includ-
ing additional currents that produce spike rate adaptation (see, for example, [26-27].
However, the model as shown clearly exhibits the nonlinear inhibitory effects we are
discussing.

5. Firing rates in a population with shunting inhibition

To see how the input currents we have computed resolve the firing rate problems, we
solve equation (2.3} for the static finng rate using the firing rate function (2.2} but
this time with the result of equation (3.14) for the input current as a function of firing
rate. Again we taken ¢ F = e, H A graphical solution is shown in figure 5. There
are three solutions corresponding to places where the two lines cross, but only the
solutions at £ = H = 0 and at the right-most crossing are stable. As in figure 1, there
exists a self-sustained firing state but now the rate is well below the maximum firing
rate for the neuron. The same firing rate curve was used in figure 5 as in figure 1, the
difference is solely the result of nonimear shunting inhibition It is interesting to note

that as tho calficuctinad ctata P RO [
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actually deerezses after first passing through a maximum.
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Figure 5. Graphical solution determining the average firing rate of a neuronal
population. The curve is the single-neuron firing rate as a function of input rate using
the nonlinear expression for the dendritic geometry of figure 2(c) This curve meets
the straight line at places where a static solution of the mean-field equations exist

One mtersection corresponds to the silent state E = 0 The mtermediate crossing is
unstable and the upper intersection represents a stable self-sustained firing state for
which the firing rate is significantly lower than the maximum single-neuron rate.

6. Discussion

Within the cable literature there are analyses of the impact of synaptic conductance
on the time and length constants of dendritic cables [2, 3, 20-22]. The main message
of this paper is that the effects of dendritic geometzy, synaptic placements and synap-

tic conductances can be included in mean-field-hased network modele For avamnla
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shunting inhibition along the length of a dendritic cable through which excitatory
signals must pass results in an exponential suppression of the firing rate This result
can be approximated by relation (3 17). In the discussion to this point, T have used
the standard sigmoidal firing rate curve of equation (2.2). However, as can be seen by
the bioken curve in figure 4, in the low-rate region a threshold-linear function is more
appropriate,

F(h =11 - &0l - &) 61)

where # is the threshold current and © is a unit step function The units of the current
I have been chosen so that the multiplicative constant in equation (6.1} is unity. The
threshold linear form cannot be used in models which assume a linear dependence of
the current on ihe jining raies since these models rely on ihe firing raie maximum of
the sigmoidal function to prevent arbitranly high rates. Now that we have resolved
the firing rate problem, we can use the sumpler and more realistic threshold-linear
farm.

Up to now the dynamics of the inhibitory rate H has not been considered. H
obeys an equation similar to (2.1) and two, coupled differential equations describe the
combined system. Suppose that the inhibitory neurons shunt the dendritic cables of
the excitatory neurons but not each other, and that the inhibitory neurons are excited
by the E neurons. The dendritic geometry for excitatory neurons is as in figures 2(c)
or 2(d) so that the fit of equation (3.17) is applicable. For inhibitory neurons I take a
geometry as in figure 2(b) except that there are no inhibitory synapses. I assume that
for the inhibitory neurons g, > ¢ F over the range of interest so that the excitatory
input is approximately linear for these neurons, I = vE. This is not essential but it
simpiifies ihe resulting equaiions. Finally, T use the ihreshold-iinear firing rate curve
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(6.1). The coupled equations describing the system are then

Sld—f— =-FE+ (crEexp(—,B\/E) - EE)G[GEGXP(—.B‘/E) - &,] (62)
and
-rhég- = ~H + (7E ~ £, )9[yE — ] (6:3)

We have included the time constant 7}, to allow for the possibility that the mbhibitory
neurons respond at a different rate from the excitatory ones. Note that if the inhibitory
threshold current &, is small the asymptotic value of the inhibitory rate is proportional
to the excitatory rate as we have assumed in previous sections.

Static solutions of the coupled equations for E and H can be found by plotting
nullclines in the E-H plane. These are lines along which either dE/dt = Gor dH fdt =
0. This is done in figure 6. In addition to the silent state £ = H = 0, static
gsolutions are given by the intersections of the two nuliclines Again only the righi-
most intersection point is stable and we find a self-sustained firing state sumilar to
that of figure 5

A

H (i/sec)

3] 1 1
0 10 20 30

E (1/sec)

Figure 6. Nullclines for the coupled system of equations describing the dynamics of
both excitatory and inlubitory neurons. The mtersections of the two curves as well
as the point £ = H = 0 are the static states as discussed in the caption of figure 5.

In neural network models, spatially structured patterns of self-sustained firing are
used as memory states [5-9] To describe such patterns we must include a set of N
variables £, and H, which are the average excitatory and inhibitory firing rates in a
spatial region labelled by the index i = 1,2 ., N. These regions may correspond to
small populations or even single neurons The excitatory regions are coupled to each
other with vanable strength. The strength of the synapse coupling region j to region
i is given by the matrix element J,, In addition the excitatory neurons in region
£ couple locally to inhibitory interneurons in that region and the inhibitory neurons
shunt the excitatory neurons m the region but not each other. Clearly this is just one
of many possible arrangements The network is described by the 2N equations

4E

N N
5 =-E+ (aZ]J.,E, exp(—~BVH,) - ne) ® [az J, B, exp(—BV/1,) - ne]
= =1

L

(6.4)
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and

dH,
3o Tal H, +(vE; — 1, )O[vE; — &) (6 5)

These equations can be simplified if in the time units we are using 7, < 1. Then the
inhtbitory neurons respond more quickly than the excitatory neurons and we can set
the H, equal to their asymptotic values. For small inhibitory thresholds this means
we can take i, a2 vE,. Then the 2N equations are replaced by N equations.

N N

dE

dts =-E+{a E J,E,exp(~F'V/E}~x,| B |a E I, B, exp(-f'\/E,) - %,
=1

1=1
(6.6)

where 8/ = B(7)/? Using either the 2N or the simplified N equations these models
represent a neural network with associative memory properties and a well regulated
firing rate. The model of equations (6.4) and (6.5) has been simulated and shown to
provide associative recall of stored memory firing patterns with stable, low firing rates
[28].

I have concentrated mostly on dendritic geometries like those of figure 2(c) or 2(d)
becanse they clearly ilustrate the nonlinear effect of shunting along a cable However,
the formalism developed here allows any dendritic structure with any placements of
excitatory and inhibitory synapses to be mncluded in network models This will permit
studies of the effect of dendritic and synaptic geometry on network behaviour.
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