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We study the impact of correlated neuronal !ring rate variability on the
accuracy with which an encoded quantity can be extracted from a pop-
ulation of neurons. Contrary to widespread belief, correlations in the
variabilities of neuronal !ring rates do not, in general, limit the increase
in coding accuracy provided by using large populations of encoding neu-
rons. Furthermore, in some cases, but not all, correlations improve the
accuracy of a population code.

1 Introduction

In population coding schemes, the activities of a number of neurons jointly
encode the value of a quantity. A frequently touted advantage of popula-
tion coding is that it suppresses the effects of neuronal variability. The ob-
servation of correlations in the trial-to-trial !uctuations of simultaneously
recorded neurons (Gawne & Richmond, 1993; Zohary, Shadlen, & New-
some, 1994; Lee, Port, Kruse, & Georgopoulos, 1998) has raised some doubt
as to whether this advantage is actually realized in real nervous systems.
The dramatic effects of correlated variability can be seen by examining its
impact on the average of N neuronal "ring rates. When the !uctuations of
individual neurons about their mean rates are uncorrelated, the variance
of the average decreases like 1=N for large N. In contrast, correlated !uc-
tuations cause the variance of the average to approach a "xed limit as the
number of neurons increases. While illustrative, this example is not con-
clusive because the value of an encoded quantity can be extracted from a
population of neurons by methods that do not require averaging their "r-
ing rates. Statements in the literature suggest that correlated variability can
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either decrease or increase (Snippe & Koenderink, 1992; Shadlen & New-
some, 1994; Shadlen, Britten, Newsome, & Movshon, 1996; Reike, Warland,
de Ruyter van Stevenick, & Bialek, 1996; Oram, Foldiak, Perett, & Sengpiel,
1998; Lee et al., 1998) the accuracy of a population code. The purpose of this
article is to clarify this situation by addressing two questions: (1) Does cor-
relation necessarily increase or decrease the accuracy with which the value
of an encoded quantity can be extracted from a population of N neurons?
(2) Does this accuracy approach a "xed limit as N increases?

This issue of correlated variability was "rst addressed by Johnson (1980b),
who discussed circumstances under which correlation is either helpful or
harmful for discrimination. Snippeand Koenderink (1992) studied the effect
of correlated variability on optimal linear discrimination and also found
some cases in which correlation improved discrimination and others in
which discrimination was degraded by correlation.We will study the effects
of correlation on population coding accuracy by computing the Fisher infor-
mation (Cox & Hinckley, 1974; Paradiso, 1988; Seung & Sompolinsky, 1993).
The inverse of the Fisher information is the minimum averaged squared er-
ror for any unbiased estimator of an encoded variable. It thus sets a limit on
the accuracy with which a population code can be read out by an unbiased
decoding method.

Two simple examples illustrate the subtleties involved in analyzing the
effects of correlation. Consider a set of N neurons with "ring rates ri, for
i D 1; 2; : : : ; N, which have mean values fi, identical variances ¾ 2, and
correlated variabilities so that

«
.ri ¡ fi/.rj ¡ fj/

¬
D ¾ 2 £

±ij C c.1 ¡ ±ij/
¤

; (1.1)

with correlation coef"cient c satisfying 0 · c < 1. The angle brackets on the
left side of this equation denote an average over trials, and ±ii D 1 for all i
while ±ij D 0 if i 6D j. In this case, the variance of the average of the rates,

R D
1
N

NX

iD1
ri; (1.2)

is

¾ 2
R

D
¾ 2

N
[1 C c.N ¡ 1/] : (1.3)

This illustrates two negative effects of correlation. For "xed N, the variance
increases as a function of the degree of correlation c, and beyond N ¼
1=c the variance approaches a "xed limit ¾ 2

R
! c¾ 2, as discussed in the

opening paragraph. Correlation among the activities of neurons in area
MT of monkeys that are viewing moving random dot displays has been
estimated at about c D 0:1 ¡ 0:2 (Zohary et al., 1994; Shadlen et al., 1996).
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This has led to the suggestion that coding accuracy will not improve for
populations of more than about 100 neurons (Shadlen & Newsome, 1994).

The second example may seem a bit contrived but is nevertheless illus-
trative. Consider the sign-alternating sum

QR D
1
N

NX

iD1
.¡1/iri : (1.4)

The variance of this quantity (for even N) is

¾ 2
QR D ¾ 2

N
.1 ¡ c/ : (1.5)

For this variable, positive correlation always decreases the variance, and the
variance is proportional to 1=N whether or not correlation is present.

One reason to think that correlation need not always be harmful is that
it generally reduces the entropy of the variability in a neural population,
suggesting that it should therefore increase the accuracy of a population
code. Our results on population coding generally concur with this entropy
analysis. For the cases we consider, the lower limit on the averaged squared
decoding error provided by the Fisher information is proportional to 1=N
for large N, similar to the behavior of equation 1.5, not equation 1.3. For
additive or multiplicative noise with uniform correlations, the dependence
on the degree of correlation c also resembles that of equation 1.5, and thus
correlation improves population coding accuracy. We also consider correla-
tions of limitedrange for which coding accuracy can display both increasing
and decreasing behavior (Snippe & Koenderink, 1992).

2 The Model

We consider a population code in which N neurons respond to a stimulus
with "ring rates that depend on a variable x that parameterizes some stim-
ulus attribute (Johnson, 1980a,b; Georgopoulos, Schwartz, & Kettner, 1986;
Paradiso, 1988; Baldi & Heiligenberg, 1988; Snippe & Koenderink, 1992;
Seung & Sompolinsky, 1993; Salinas & Abbott, 1994; Snippe, 1996; Sanger,
1996). The activity of neuron i, averaged over trials that use the stimulus x,
is fi.x/, and its activity on any given trial is

ri D fi.x/ C ´i : (2.1)

We interpret this as the number of spikes "red by the neuron over a "xed
time period. We do not discuss encoding that involves the "ne-scale tem-
poral structure of spike trains. The random terms ´i for i D 1; 2; : : : ; N are
generated from a gaussian probability distribution with zero mean and co-
variance matrix Q.x/. We consider three different models of variability. In
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the additive noise model (Johnson, 1980b), the covariance matrix is identical
to equation 1.1:

Qij D ¾ 2[±ij C c.1 ¡ ±ij/] : (2.2)

For multiplicative noise, the variability in the "ring rate is still described by
equation 2.1, but the covariance matrix is scaled by the average "ring rates,

Qij.x/ D ¾ 2[±ij C c.1 ¡ ±ij/] fi.x/ fj.x/ : (2.3)

This produces variances that increase as a function of "ring rate and larger
correlations for neurons with overlapping tuning curves, as seen in the data
(Lee et al., 1998). We also consider a model in which the correlations can
have an even more dramatic dependence on the distance between tuning
curves. This is the limited-range correlation model (Snippe & Koenderink,
1992), with the correlation matrix written as

Qij D ¾ 2½ |i¡j |; (2.4)

where the parameter ½ (with 0< ½ <1) determines the range of the correla-
tions between different neurons in the population. The parameter ½ can be
expressed in terms of a correlation length L by writing

½ D exp.¡1=L/; (2.5)

where 1 is the spacing between the peaks of adjacent tuning curves.
We use the notation Q to denote the matrix with elements Qij, and r

and f.x/ to denote the vectors of "ring rates with elements ri and fi.x/,
respectively. In the additive and limited-range cases, Q does not depend on
x, while for multiplicative noise it does.

The average "ring rates f.x/ are the tuning curves of the neurons in the
population. We imagine that the tuning curves are arranged to cover a range
of x values, with different tuning curves localized to different ranges of x.
We assume that the coverage is dense and roughly uniform (we de"ne these
terms below), but otherwise leave the exact nature of these tuning curves
relatively unrestricted.

3 Fisher Information

The Fisher information provides a useful measure of the accuracy of a pop-
ulation code. Through the Cramér-Rao bound, the Fisher information limits
the accuracy with which any unbiased decoding scheme can extract an es-
timate of an encoded quantity from the activity of a population of neurons.
The average value of an unbiased estimate is equal to the true value, x, of
the encoded quantity, but the estimate will typically differ from x on a trial-
to-trial basis. For an unbiased estimate, the average squared decoding error
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is equal to the variance of these trial-to-trial deviations. The Cramér-Rao
bound states that the average squared decoding error for an unbiased esti-
mate is greater than or equal to 1=IF.x/, where IF.x/ is the Fisher information.
Although in some cases, an biased decoding scheme may outperform a bi-
ased method, no biased estimate can do better than the Cramér-Rao lower
bound. To compute the Fisher information, we need to know the condi-
tional probability distribution P[r |x], which determines the probability that
a given response r is evoked by the stimulus x. The Fisher information is
given in terms of P[r |x] by

IF.x/ D ¡
Z

drP[r |x]
d2 log P[r |x]

dx2 : (3.1)

The maximum likelihood estimator, which chooses for an estimate the
value of x that maximizes P[r |x], asymptotically saturates the Cramér-Rao
bound as N ! 1. Thus, the bound sets a realizable limit, making it a
good measure of the accuracy of a population code (see Paradiso, 1988; Se-
ung & Sompolinsky, 1993; and Pouget, Zhang, Deneve, & Latham, 1998, for
discussions of the use of maximum likelihood (ML) techniques and Fisher
information for population codes in the absence of correlation). The psy-
chophysical measure of discriminability d0 that quanti"es how accurately
discriminations can be made between two slightly different values x and
x C 1x based on r is related to the Fisher information by the formula

d0 D 1x
p

IF.x/ : (3.2)

The larger the Fisher information, the better the discriminability and the
smaller the minimum unbiased decoding error.

When the random ´ terms are generated from a gaussian probability
distribution as discussed above,

P[r |x] D
1

p
.2¼/N det Q.x/

exp
µ

¡1
2

[r ¡ f.x/]TQ¡1.x/[r ¡ f.x/]
¶

; (3.3)

where T stands for the transpose operation. This equation does not give
zero probability for negative "ring rates, but we assume that the means and
variances are such that this has a small effect. Substituting equation 3.3 into
equation 3.1, we "nd (see, for example, Kay, 1993),

IF.x/ D f 0.x/TQ¡1.x/f 0.x/ C
1
2

Tr
h
Q 0.x/Q¡1.x/Q0.x/Q¡1.x/

i
(3.4)

where Tr stands for the trace operation,

Q 0.x/ D dQ.x/

dx
and f 0.x/ D df.x/

dx
: (3.5)



96 L. F. Abbott and Peter Dayan

When Q is independent of x, as it is for additive noise and limited-range
correlations, this reduces to

IF.x/ D f 0.x/TQ¡1f 0.x/ : (3.6)

Equations 3.4 and 3.6 are the basis for all our results. To apply them, we
need the inverses of the covariance matrices, which are, in the additive case,

[Q¡1]ij D
±ij.Nc C 1 ¡ c/ ¡ c

¾ 2.1 ¡ c/.Nc C 1 ¡ c/
I (3.7)

in the multiplicative case,

[Q¡1.x/]ij D
±ij.Nc C 1 ¡ c/ ¡ c

fi.x/ fj.x/¾ 2.1 ¡ c/.Nc C 1 ¡ c/
I (3.8)

and in the case of correlations with limited range,

[Q¡1]ij D
1 C ½2

¾ 2.1 ¡ ½2/

µ
±ij ¡ ½

1 C ½2

¡
±iC1;j C ±i¡1;j

¢¶
: (3.9)

4 Results

4.1 Additive Noise. The Fisher information in the additive case is com-
puted by substituting the correlationmatrix (2.2) into equation 3.6 and doing
the necessary algebra. The result depends on two sums,

F1.x/ D
1
N

X

i

¡
f 0
i .x/

¢2 and F2.x/ D
!

1
N

X

i
f 0
i .x/

!2

: (4.1)

These have been scaled to be of order one for the case of uniform tuning
curve placement. In terms of these quantities,

IF.x/ D cN2[F1.x/ ¡ F2.x/] C .1 ¡ c/NF1.x/

¾ 2.1 ¡ c/.Nc C 1 ¡ c/
: (4.2)

As N tends to in"nity,

IF.x/ ! N[F1.x/ ¡ F2.x/]
¾ 2.1 ¡ c/

; (4.3)

which grows with N and c provided that F1.x/ ¡ F2.x/ > 0. Note that aside
from the factor of F1.x/ ¡ F2.x/, the inverse of this expression matches the
variance of equation 1.5. For large N, a uniform array of tuning curves



Effect of Correlated Variability 97

should generate functions F1.x/ and F2.x/ that are insensitive to the values
of either x or N (indeed, this is our de"nition of uniform tuning curve
placement). Tuning curve arrays that are symmetric with respect to the sign
!ip x ! ¡x (that is, for every neuron with tuning curve f .x/ there is another
neuron with tuning curve f .¡x/) have F2.x/ D 0.

In the additive noise case, the inverse of the Fisher information, which
determines the minimum unbiased decoding error, decreases as 1=N for
large N, and also decreases as a function of c, the degree of correlation.
The Fisher information diverges, and the minimal error goes to zero as c
approaches one. As c ! 1, any slight difference in the tuning curves can be
exploited to calculate the noise exactly and remove it.

In their article in this issue, Zhang and Sejnowski note an interesting
scaling property of the Fisher information that also appears in our results.
They considered the simultaneous encoding of D variables by a population
of neurons and studied the effect of changing tuning curve width on encod-
ing accuracy. If the widths of the tuning curves of the encoding population
are scaled by a parameter w, we expect F1 to scale like wD¡2. The factor of
wD re!ects the number of responding neurons, while the factor w¡2 is due
to the squared derivative. For simplicity, we take F2 D 0. Then the Fisher
information satis"es IF / NwD¡2=¾ 2 in agreement with the results of Zhang
and Sejnowski.

The Fisher information we have computed increases as a function of c
and N unless F1.x/¡F2.x/ D 0 or F1.x/¡F2.x/!0 for large N. By the Cauchy-
Schwartz inequality, F1.x/ ¸ F2.x/. For large N, F1.x/¡F2.x/ could go to
zero if both F1.x/!0 and F2.x/!0. We de"ne the tuning curve coverage as
being dense if F1.x/ 6! 0 for any x, since this implies that as more neurons
are added, a "xed fraction respond signi"cantly to x. By the condition for
equality in the Cauchy-Schwartz inequality, the other alternative, F1.x/ D
F2.x/, requires f 0

i .x/ to be independent of i or, equivalently,

fi.x/ D p.x/ C qi (4.4)

for any function p and numbers qi . Thus, the Fisher information will fail
to grow as a function of c and N only if there is an additive separation of
dependency between the value x and the index i. This means that correlation
is harmful only when all the neurons share the same tuning dependence on
x. This is not normally the case since neurons almost always have some
variability in their stimulus preferences. Of course, we must assume that
the mechanism that reads out the encoded quantity takes advantage of this
variability and does not simply perform an averaging operation.

4.2 Multiplicative Noise. When Q.x/ is given by equation 2.3, the Fisher
information de"ned by equation 3.4 depends on the logarithmic derivatives
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of the average "ring-rate tuning curves

g0
i.x/ D 1

fi.x/

dfi.x/

dx
D d ln fi.x/

dx
: (4.5)

In particular, it depends on the sums

G1.x/ D
1
N

X

i

¡
g0

i.x/
¢2 and G2.x/ D

!
1
N

X

i
g0

i.x/

!2

(4.6)

and is given by

IF.x/ D cN2[G1.x/ ¡ G2.x/] C .1 ¡ c/NG1

¾ 2.1 ¡ c/.Nc C 1 ¡ c/

C
[N2c.2 ¡ c/ C 2N.1 ¡ c/2]G1.x/ ¡ c2N2G2.x/

.1 ¡ c/.Nc C 1 ¡ c/
: (4.7)

For large N, this approaches the limit

IF.x/ ! N[G1.x/ ¡ G2.x/]
¾ 2.1 ¡ c/

C N[.2 ¡ c/G1.x/ ¡ cG2.x/]
.1 ¡ c/

: (4.8)

The Fisher information for multiplicative noise contains one term that
depends on the noise variance ¾ 2 and another term that, surprisingly, is
independent of ¾ 2. This second term arises because, with multiplicative
noise, the encoded variable can be estimated from second-order quantities,
not merely from measurements of the "ring rates themselves.

The Fisher information of equation 4.8 is proportional to N and is an
increasing function of c provided that G1.x/>G2.x/. Since G1.x/ ¸G2.x/ by
the Cauchy-Schwartz inequality, the only way to modify this behavior is
if G1.x/ D G2.x/. This condition holds only if g0

i.x/ is independent of i or,
equivalently, if

fi.x/ D p.x/qi C r.x/ C si (4.9)

for any functions p and r and numbers qi and si. This is multiplicative sepa-
rability rather than the additive separability of equation 4.4. As in the case
of additive noise, the Fisher information with multiplicative noise increases
with correlation and grows linearly with N unless a contrived set of tuning
curves is used.

4.3 Limited-Range Correlations. In both of the cases we have studied
thus far, the accuracy of the population code, quanti"ed by the Fisher in-
formation, increases as a function of both N and c. Although the linear
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dependence of the Fisher information on N appears quite general, there are
cases in which introducing correlation decreases rather than increases IF
(Johnson, 1980b; Snippe & Koenderink, 1992). One example is provided by
the limited-range correlations described by the matrix of equation 2.4. The
Fisher information for this case is

IF.x/ D N.1 ¡ ½/F1.x/

¾ 2.1 C ½/
C N1¡2=D½F3.x/

¾ 2.1 ¡ ½2/
; (4.10)

where F1 is as given above, D is the number of encoded variables, and (pro-
vided that x is away from the edges of the range covered by the population
tuning curves),

F3.x/ D N2=D¡1
NX

iD1

¡
f 0
iC1.x/ ¡ f 0

i .x/
¢2

: (4.11)

The power of N in the de"nition F3.x/ is chosen so that it is independent of
N for uniform tuning curve coverage. As N gets large, the distance between
neighboring tuning curves decreases as N¡1=D, and the difference between
their derivatives is proportional to this factor.

For a "xed value of N, the Fisher information in equation 4.10 is a non-
monotonic function of the parameter ½ that determines the range and degree
of the correlations. The "rst term in equation 4.10 is a decreasing function
of ½ and hence of L, the correlation length introduced in equation 2.5, while
the second term has the opposite dependence. For a "xed N value, the "rst
term dominates for small L, and the second dominates for large L.

For any "nite value of D, the "rst term in equation 4.10 will dominate for
large N, so as N ! 1,

IF.x/ ! N.1 ¡ ½/F1.x/

¾ 2.1 C ½/
: (4.12)

Note that this limit is approached more rapidly for small D than for large
D. The expression in equation 4.12 is a decreasing function of ½, so in this
case, unlike the additive and multiplicative cases, increasing correlation de-
creases the Fisher information. However, the Fisher information still grows
linearly with N for any ½ < 1. The only way to prevent the Fisher informa-
tion from growing with N is to force ½ nearer and nearer to 1 as N ! 1.
For example, if ½ D c1=N , for 0 < c < 1, the Fisher information tends to a
constant as N ! 1.

5 Discussion

We have studied how correlations between the activities of neurons within
a coding population affect the accuracy with which an encoded quantity
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can be determined or discriminated (Johnson, 1980b). We "nd that, generi-
cally, correlations between units do not prevent the Fisher information from
growing linearly with the number of encoding neurons, and correlations can
either improve or degrade decoding accuracy depending on the form of the
correlation matrix. Only in the limit as the correlations get very close to 1
can this behavior change in some circumstances. Since our results are based
on the Fisher information, they apply only to unbiased estimates. However,
biased estimates would presumably be used only to improve accuracy fur-
ther, and thus the increase in accuracy with N would not be destroyed by
using a biased estimate. Thus, optimal population-based estimates do not
suffer from the limitations that correlation imposes on estimates of average
"ring rates. Although averaging can be used to obtain more accurate "ring-
rate estimates from a group of neurons, it does not improve the accuracy of
a population decoding procedure.

There are nevertheless possible lacunae in our analysis. We considered
only relatively simplenoise models. We also used noise with gaussian statis-
tics. Poisson noise would be an obvious alternative and would entail slightly
different calculations. Finally, we did not consider the computational com-
plexity or biological implementation of the optimal decoding algorithms,
although a good point of departure would be the work of Pouget et al.
(1998) showing how to perform ML inference using a recurrent network in
the case without correlations. Correlations could make the implementation
of an optimal decoding procedure more dif"cult.

The most relevant requirement for retaining the improved accuracy pro-
vided by large populations of encoding neurons is that the neurons should
have different selectivities to the quantity they are jointly encoding. In par-
ticular, their tuning curves must not be additively or multiplicatively sep-
arable. Tuning functions that are commonly adopted in modeling work
and seen in biological systems do not appear to have these problematic
features.
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