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Conserved gauge-invariant electric and magnetic charges are defined for non-abelian gauge theories in terms of the 
asymptotic symmetries of the field configurations. They are expressed as flux integrals. Illustrations include the magnetic 
charge of the 't Hooft-Polyakov monopole and the electric and magnetic charges of the Julia=Zee dyon. 

1. Introduct ion.  Despite the formal similarities 
between Yang-Mills and Maxwell theories, it is well- 
known that the definition o f  charge is much more 
subtle in the non-abelian case because the field strengths, 
rather than being invariants, transform as gauge vectors. 
The same situation occurs in gravity where the curva- 
tures are gauge tensors and the "charges" include ener- 
gy; but there is by  now general agreement, both on in- 
tuitive and formal levels, as to the correct definition 
o f  gravitational energy. It is our purpose here to provide 
a framework for defining charges in Yang-Mills theory 
corresponding closely to that o f  gravity. We shall fol- 
low a recent treatment [ 1 ] of  gravity and supergravity 
in which the role of  asymptotic symmetries of  field 
configurations (not necessarily those o f  flat space) was 
particularly emphasized in defining conserved quanti- 
ties. Charges of  both electric and magnetic type will 
be defined. Our principal explicit applications will be 
to the 't  Hoof t -Polyakov [2] monopole, and to the 
Jul ia-Zee [3] dyon as an illustration of  the more 
straightforward notion o f  electric charge. The defini- 
tions can also be applied in euclidean formulation, 
although there the idea o f  a conservation law is less 
physical than in the hyperbolic case ,1 
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*1 An example would be instanton solutions, with respect to 
their asymptotic (pure vacuum) background, defining 
charge in terms of flux integrals over arbitrary two-spheres 
at infinity. Although instanton solutions do not themselves 
possess Killing vectors [4], it is the background's symme- 
tries that are relevant. 

2. Formalism, In matrix notation (A u = Aa u T a where 
T a are group generators), the Yang-Mills field equa- 
tions are 

DuFUV = OuFUV _ i g [ A u ,  F~V] = j v  , (1) 

where the field strength is 

Fg v = O~A v - OvA ~ - i g [ A ~ , A v ]  • 

Let us expand the gauge field A u about a background 
field Au which is a solution of  the source-free (for 
simplicity) field equations. The particular form of  A~ 
is to be chosen so that Av approachesAv at spatial 
infinity. Since we are interested in field configurations 
with bounded sources, this represents no real restric- 
tion. We write 

A u  = A u  +au " 

The field a~ is no t  necessarily a small perturbation but, 
of  course, it does vanish at spatial infinity. Since 
DuFUV = buff~u - ig[.~u, Fur ]  = 0, the field equa- 
tions (1) may be rearranged to read 

~ u f u v  - ig[au,  Fur]  = j r ,  (2) 

where 

f~,~ = O ~ a ,  - D ~ a  u , l ~ = j r  _ (DuFUV)N " 

Here (DuFUV)N represents the remaining terms in 
D~FUV which are o f  quadratic or higher order in au. 

The left side of  eq. (2) satisfies a background co- 
variant conservation law since D v D  v f u r  = ~ lg[ Fuv ' 
fray] and ~0 v [ at~ , FUrl = - ~  [ f #v, FtW]. (This conser- 
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vation follows from expanding the identity DuDvFUV 
=- 0 to first order in a u.) Thus, the total current ] v is 
covariantly conserved, 

DvJ ~ = O. (3) 

To obtain useful conservation laws, however, we need 
currents which are conserved in the ordinary, not in 
the covariant sense: they must be gauge-singlets. This 
can be done if (and only if) the background field AlA 
has symmetries. To each of these is associated a Kil- 
ling vector, namely a covariantly constant matrix 
field ~s 

Du ~s = O, (4) 

where the label s distinguishes the various Killing vec- 
tors. Each of them is the parameter of an infinitesimal 
gauge transformation which leaves the field Av invari- 
ant. Covariant differentiation of eq. (4) implies that 
[ff~.v, ~s] = 0. Eqs. (3) and (4) show that the quantity 
tr{~S] v} is covariantly conserved, but since it is a 
background-gauge singlet, covariant and ordinary dif- 
ferentiations are identical 

~v tr {~S] v} = O . 

Thus, the singlet currents tr (~s]v} are conserved in the 
ordinary sense. With each of these is associated a charge 

Q~=l f d3xtr(~Sj°}. 

This charge can be evaluated, using the field equation 
(2), as 

Q~ = ~ f d3x tr {~s (/3lA fu0 - ig[au, r , 0 ] ) )  

_ 1 fd3x ~, tr(~sfiO ) (5) 
4rr 

where properties of the Killing vectors given above 
have been used. Finally, the integral in eq. (5) can be 
put into the flux integral form 

1 fdS. tr[V({Sa 0) + 30 {~Sa}l • (6) 

Note that this result is exactly like the definition o f  
charge in electrodynamics with tr {{sfiO} and tr ({Sa.} 
playing the role of the electric field and vector potential. 

The number of charges which can be defined through 
eq. (6) depends on the number of Killing vectors in the 
background field Au. Physically, the most important 

case is that of vanishing background field strength 
when iilA is just a pure gauge 

XlA = ( i/g) G - l  O.G . 

Here the Killing vectors can be represented by 

~s = G-1TSG , 

and their number equals the number of group genera- 
tors T s. In the quantum theory, the charges correspond. 
ing to these Killing vectors will be generators of sym- 
metry transformations and, although background gauge 
singlets, will satisfy the non-abelian algebra 

[ Q~, Q~] = i fs tu O~ , 

where 

[ ~s, ~ t] = i f s tu{u  . 

3. Magnetic charges, monopoles and dyons. Formal- 
ly, magnetic charges can be defined for non-abelian 
gauge theories following the approach of section 2 but 
starting with the identity *2 

DlA *FlAv = 0 (7) 

as the counterpart of (1), where 

, F l A p  _ 1 eUVagFo~ 
- - 2  

Expanding around a background XlA as before (with 
field strengths replaced by their duals) we find the co- 
variantly conserved current (/SlA *flAy _ ig lag, *ffgv]). 
This can once again be transformed into an ordinary 
conservation law through the use of Killing vectors, 
leading to the conserved magnetic charges 

O~l = l f  d3x ~i t r ({S*f  iO) 

) r f f d S ' V  x tr (~Sa}. (S) 

Note that this is exactly like magnetic charge in electro- 
dynamics with tr (~s *frO} and tr {~Sa} playing the role 

42 The gravitational analog of (7) is the uncontracted Bianchi 
Dp*R *lAvab =- 0 where *R* is the (double) dual of identity 

the curvature on its world and local indices. Summing over 
v = a gives the contracted identity DlA GlAv ~ 0 on which the 
energy definition is based [ 1]. It would be of interest to see 
whether there exist solutions for which the remaining (trace. 
less) part of the Bianchi identity could define topological 
charge of the magnetic type. 
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of  the magnetic field and vector potential. Just as in 
electrodynamics, eq. (8) will always lead to vanishing 
magnetic charges unless tr {~Sa} has the singular prop- 
erties of  the vector potential for a magnetic monopole, 
namely a String. As we shall see this is exactly what 
happens in the 't Hoof t -Polyakov solution *a 

In a spontaneously broken gauge theory, there is 
an additional consideration in defining a Killing vector. 
As we have noted, a background Killing vector is the 
parameter of  a transformation which leaves the back- 
ground gauge field Au invariant. When a symmetry- 
breaking scalar vacuum expectation ~ is also present, 
this gauge transformation must also leave ¢ unchanged 
for the Killing vector to correspond to a symmetry of  
the full vector-scalar system. Killing vectors which do 
not leave q~ invariant correspond to broken symmetries 
of  the theory and hence will not  lead to meaningful 
charges. If  the scalar field ¢ is in the adjoint represen- 
tation, then the further condition is just 

[~*, ~b] = O. (9) 

The original solution of  ' t  Hooft  and Polyakov [2] 
was in an SO(3) gauge theory with a triplet of  scalars 
in the form 

~ b = F ( r ) ~ - / ,  F(r) -+ F .  
T - - +  oo 

Therefore, to satisfy eq. (9) we must choose the Kil- 
ling vector to be parallel to ~b. This can be obtained 
by gauge rotating the trivial Killling vector { = o 3 (or 
equivalently a .  ri) into the "hedgehog" configuration 

= ,~. ~ .  (10) 

This is necessarily a unit vector, since it results from 
rotating a unit vector. The background gauge field for 
the monopole is just the vacuum (ffuv = 0); the pure 
gauge potential A~ must be written in a gauge which 
admits (10) as a Killing vector. This pure gauge field 
can be obtained from the trivial fieldAu = 0 (with 
Killing vector g = 03) by perfa.ming the gauge rotation 

:I:3 Our formalism does not, of course, guarantee that there will 
be non-vanishing magnetic charge for a given configuration. 
Indeed, one of the important results in this area is that this 
can only occur when the symmetry is broken down to U(1). 
For a recent review and references to literature on mono- 
poles, see ref. [5]. 

mentioned above ,4 

• 1 , 1  G = exp( l~ba3)  exp(l~-0o2) e x p ( - i l ~ a 3 ) ,  

so that 

~ = G - l o 3  G = ~" i" 

and 

Au = (i/g) GolOuG.  (11) 

This~l u is singular along the negative z axis. In order 
to describe the background field everywhere, we must 
introduce a second field 

A-'~(x,y ,z)= eg , (x ,y ,  - z )  . 

This field also admits (10) as a Killing vector and is 
singular along the positive a-axis but regular along the 
negative a-axis. We must use both gauge field patches 
to cover all o f  space with a background field which is 
non-singular. We will use the field X u everywhere but 
in an infinitesimal region around the negative a-axis, 
which will be covered by A-~. There is another impor- 
tant singularity in this system, that o f  the Killing vec- 
tor (10) at the origin. This results in a weak modifica- 
tion of  the Killing equation at the origin, 

/)i~ = &r8 3(r)iir2 . (12) 

Thus, in the case of  the monopole, condition (9) has 
also forced us to use a Killing vector with singular prop- 
erties at the origin. It is the presence of  these singular- 
ities which allows a non-vanishing value of  the magnetic 
charge for the ' t  Hoof t -Polyakov solution. Note that 
the charge defined by eq. (8) is still conserved, despite 
(12), as may be checked explicitly. 

Since we are using a background field X u (or A-~) 
we must expand the monopole solution about this 
background so that 

(monopole) a. =A. (13) 
Since our background field is a pure gauge, Fur = O, 
the current upon which we base our magnetic charge 

~:4 Since the charge is a background gauge invariant, one could 
also evaluate it in the ordinary ~ = 0 gauge, with constant 
Killing vector ~ = a a . The singularities would then reappear 
in the gauge transformed Ai, which would rotate according 
to the inverse of that defined by G of (11). Note that this 
procedure is not the same as usingAi = 0 together with the 
untransformed Ai; as explained in the text, this choice 
would not correspond to alignment with the physically un- 
broken direction. 
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is just Du *fur. Using the definition of fur given above 
one finds that this current vanishes identically, as fol- 
lows from the original identity (7). However, the field 
we must consider for the magnetic conservation law is 
tr(~ *fur} and from eq. (12) we find that 

Oi tr(~ *fly} = 47rr263(r) tr(~ *fir) ii . (14) 

Therefore, if the singularity in the Killing vector at the 
origin multiplies a 1/r 2 singularity in the field tr (~ *fir), 
then the right side of eq. (13) can act as a point-like 
monopole charge for this field. This is exactly how the 
't Hooft-Polyakov solution develops its non-vanishing 
magnetic charge. 

The value of the charge can be obtained from our 
definition (8) either by performing the volume integra~ 
[taking (12) into account] or by using the surface inte- 
gral. In the latter approach, one must recall that the 
background field Au was defined on two patches, so 
the surface integral (which we take to be over the 
sphere at infinity) must correspondingly be divided 
into two regions. One is a small patch around the south 
pole of the sphere and the other the rest of the sphere. 
The surface integral can be expressed as a line integral 
around their boundary, which is an infinitesimal circle 
surrounding the negative z axis. Since the monopole 
field has asymptotic form 

h (monopole) ,,~ (i/g)(~ X i ) / r ,  

{g (monopole) tr A u } = 0 for ~ given by (10). Thus, curi- 
ously, the monopole field itself will not contribute 
directly to the charge flux integral *s. Combining the 
above remarks with the definition (8), we find that 

21r 
_ 1 A '  4 .  f dq~ p tr{~(Aq~ - ~)}[0-,~r,r--,- • 

0 

From eq. (11), 

tr {~ff4)}10~r, r ~ =  = 2/go, 

tr (~A~}10-~w,r~o. = 0 ,  

• s Although this makes it appear that monopoles are present 
purely fxom the kinematics of the background "hedgehog, 
gauge choice, [or through the pure background KJlling term 
in the form (16) below], this is of course not the case and 
dynamics is indeed critical. See the discussion in ref. [6] 
and also footnote 3. 

so we obtain the usual monopole charge QM = 1/g. 
The evaluation of the magnetic charge of the Jul ia-  

Zee dyon [3] proceeds exactly as above. In addition, 
this solution has an electric charge arising from its non- 
vanishing scalar potential ( 2  0 = 0 here), 

A 0 = a 0 ~ [(~- i)/2gr] (cr + d ) ,  
r - - +  oo 

where c and d are constants. 
Substituting a 0 together with the Killing vector (10) 

(which is Killing for the dyon as well as for the mono- 
pole) into the definition (6) results in the usual value 

o.r  = _ l  f ds .  v (c/g + = dig. 

We conclude with some remarks relating our formal- 
ism with some other approaches to the monopole charge 
appearing in the literature [2 ,5-7] .  First, as has been 
noted in ref. [6], the conserved magnetic charge is not 
due to any additional U(1) symmetry in the theory. 
In our formulation, this is a natural consequence of the 
fact that magnetic charge conservation is based on the 
identity (7) and not on any dynamical equation of mo- 
tion. Thus, there are no Noether currents or symme- 
tries associated with it. 

Second, our discussion of magnetic and electric 
charges for the monopole and dyon solutions has been 
based on the identification of the quantity 

F ~  I = tr {~fuv} = tr {3U(~a v) - OV(~aU)} (15) 

as the electromagnetic field tensor. In his original dis- 
cussion [2], 't Hooft suggested using 

F ~  I = tr {~FUV + (i/4g)~tDUdo, DV+]}, (16) 

where ~ = q~/[¢[, which is also our ~. Eq. (15) can also 
be written as [6] 

F~M = tr ( ~U(~A v) - ~V(~AU) + ( i/4g)~[~u+, ~v~]}. 
(17) 

The Killing equation (4) and the fact that ffuv = 0 
straightforwardly imply that our expression (15) is 
identical to (16) or (17). While all valid definitions of 
F ~  1 must agree at infinity, they need not do so in the 
interior, where an unambiguous isolation of electro- 
magnetic forces is impossible. It is amusing therefore 
that 't  Hooft's original field definition for the mono- 
pole coincides everywhere with that based on the pres- 
ent framework. 
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