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Techniques are developed for computing particle production due to the time dependence of a scalar field expectation 
value during a phase transition. We review the new version of the inflationary universe and discuss baryon production in 
this model. 

1. Introduction. In the big bang cosmology, the 
universe may undergo a series of phase transitions as 
it cools. Under such circumstances it is likely that the 
universe (or some part of it) was temporarily in an 
unstable or metastable field configuration and then 
underwent a transition to the stable vacuum state. 
The purpose of this paper is to show how particle 
production occurs during this transition and how the 
Final vacuum state is reached. Techniques for analys- 

ing such a situation are developed in section 2. 
Recently, a new variant of Guth's  inflationary cos- 

mology [1] has appeared [ 2 - 4 ] .  We review this sce- 
nario in section 3 and point  out that the presence of 
Hawking radiation may limit the amount of exponen- 
tial growth. In addition we discuss the baryon asym- 

metry produced in the new inflationary model. 
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2. Particle production. We wish to compute the 
density of particles produced by a scalar field when it 
changes from some initial value ~ = A, oscillates and 
then settles into a new state ~ = 0. Such a situation 
could occur in the early universe due to thermal ef- 
fects [5]. Here in a simple model, we will simulate 

these thermal effects by introducing a source J which 
holds the system in the ~b = A state until  at some time 

J is turned off and the system subsequently evolves to 
the ~ = 0 state. For simplicity, we consider a scalar 

field of mass m which is free except for Yukawa 
couplings to fermions + 1. The various species of fer- 
mions to which the scalar field is coupled will be la- 
belled by an index i. 

Classically, the evolution of the ~ field in this 
model is determined by the field equation 

8S/8~ = (V12 + m2)~b = - a ,  (2.1) 

where S is the classical action. The source J is chosen 
to be 

,1 We require that the fermion mass be less than half the scalar 
m a s s .  
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J = -m2AO(- t ) ,  (2.2) 

so that the conditions discussed above are met for the 
4 field. The solution of  eq. (2.2) satisfying the bound- 
ary conditions appropriate to this case is 

4 = A  t < 0 ,  
(2.3) 

4 = A c o s m t  t > 0 .  

Thus, classically the 4 field oscillates indefinitelyafler 
it is released from the 4 = A configuration. 

The oscillations of  the 4 field result in the produc- 
tion of fermion-ant i fermion pairs through the 
Yukawa interactions Eigi4 ~i~ki. To calculate the to- 
tal number of  fermions of  type i which are produced 
(to lowest order ingi),  we must compute the ampli- 
tude 

.¢{ = +(Fi, Fil fd 4x ( - ig i4~ igg i )10)  . (2.4) 

In the expression (2.4) the fields ~i and ~i will create 
the fermions F i and Fi leaving the matrix element 
+(01410)_. The field given by (2.3) is the expectation 
value (01410) . The expectation value we want,  
+(01410) , is also a solution of  the field equation 
(2.1) but with Feynman rather than retarded bound- 
ary conditions. This solution is 

+<01410>_ =A[1  ~ exp ( imt ) ]  t < 0  
(2.5) 

- ~ A e x p ( - i m t )  t > 0 .  +(01410)_ - 1 

If  the field (2.5) is inserted into the amplitude 
(2.4) we find that an infinite density of  fermions will 
be produced. This is because the field (2.5) [like (2.3)] 
oscillates indefinitely and thus keeps producing par- 
ticles forever. However, in reality particle production 
damps out these oscillations and a finite fermion den- 
sity results. This can be seen by considering quantum 
corrections to the field equations. The full quantum- 
mechanical field equation is 

6 [ ' /84  = - J ,  (2.6) 

where F is the effective action. To leading order in 
the gi the quantum corrections to the effective action 
are given by fig. 1 and, to this order, 

F = - ½ f d 4 x d a y ~ ( x ) r ( Z ) ( x , y ) 4 ( y ) ,  (2.7) 

qfi X . . . . . .  ~ . . . . . . .  X 

Fig. 1. One-loop contribution to the effective action. 

where 

F(2)(x, y ) = f  v d ~ 4  ex p [ip" (x - Y)I 
(2n) 

X [ p 2  m 2+ y,(p2)] . (2.8) 

Here, m 0 is the bare mass and E the one-loop correc- 
tion to the scalar propagator (fig. 1). The quantum- 
mechanical field equation is then 

fd4y r (2)(x, y) 4(Y) = -J(x). (2.9) 

The solution of  eq. (2.9) which replaces the zeroth 
order solution (2.5) is, to lowest order in gi, 

+(01410) = A [ 1 -  ½ exp (imt)  exp(½ Ptott)] t < 0, 
(2.10) 

+(0[4[0)_ = ½A exp ( - i m t )  1 exp ( -  5 ['to t t) t > 0,  

where 

Fto t = m -1 Im Y~(rn 2) , (2.11) 

m 2 = m 2 + Re £ (m2)  . (2.12) 

Eq. (2.12) gives the usual mass renormalization, while 
(2.11) gives the damping rate- for the field oscillations. 
By unitarity m -1 Im Z(m 2) is just the decay rate for 
scalar decays into fermions so the field damping rate 
Pto t is identical to the scalar particle decay rate. This 
result has a simple physical interpretation. The initial 
state 4 = A can be thought of  as a coherent state of  
scalar particles, This state then decays through the or- 
dinary particle decays of  these scalars. 

We can now calculate the final density of  fermions 
produced in the transition of  the scalar field from 4 = 
A to 4 = 0. We insert the damped solution (2.10) into 
the amplitude (2.4) and determine the density of  fer- 
mions of  type i produced as 

n i = mA 2B i , (2.13) 

where 

B i = Fi/Ftot , 
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is the scalar particle branching ratio into type i fer- 
mions. Since EiBi = 1, the total density o f  fermions 
produced is 

n = m A  2 (2.14) 

On the average these fermions are produced with an 
energy m/2 so the ffmal energy density of  all fermions 
is 1/2m2A 2 which is exactly the energy stored in the 
initial field configuration ¢ = A. 

In a realistic model the potential will also contain 
a X~4/2 term. Then the classical solution (with Feyn- 
man boundary conditions) is 

¢(t) = m i x  1/2 sinh m (r + it) 

2rn ~ exp [ - ( 2 n  + 1)m(r  + i t ) ] ,  (2.15) 
xl/2 n=0 

for t > 0. r is an integration constant chosen to 
match the solution for t < 0. The oscillating ~ field 
now produces fermion pairs with energies E n = (2n 
+ 1)m; n = 0, 1 ,2 ,  .... The instantaneous production 
rate per unit volume for a fermion pair o f  energy E n 
is 

Ptproduction/V (2.16) 

= (m2/Xrr) exp (-2Enr)g2E2n(1 - 41~2/E2n)3/2, 

where the fermion mass/~ < En/2.  If  X is very small 
the solution (2.16) must match the harmonic oscilla- 
tor result and exp ( - m r )  ~-A x l / 2 /4m .  In this case 
the production of  fermion pairs with energy E 0 = m 
dominates and the production of  more energetic fermions 
is exponentially suppressed. Finally we note that sca- 
lar self couplings introduce spacial inhomogeneities 
which may grow more rapidly than the fermion pro- 
duction damps the oscillations. This is an indication 
that the coherent state scalars are interacting and de- 
veloping non zero-momenta. 

3. The new inflationary cosmology. The inflation- 
ary cosmology [ 1 ] provides a possible explanation for 
the extreme flatness and large scale homogeneity of  
the present universe. The inflationary scenario re- 
quires that the universe, as it cools, spends a signifi- 
cant time in a metastable or unstable field configura- 
tion with a large energy density. This energy density 
causes the Robertson-Walker scale factor to grow as 
exp (Ht) where H 2 is 87rG/3 times the field energy 

density. If  the universe remains in this configuration 
for a long enough time (on the scale l /H) then the 
Robertson-Walker factor can easily grow by the 28 
orders of  magnitude needed to explain the flatness o f  
the present universe. 

Recently a new mechanism for holding the universe 
in an unstable field configuration for a significant pe- 
riod of  time has been proposed [2,3]. It involves the 
phase transition from a high temperature symmetric 
~b = 0 state to a Final state ~ = a -~ 1015 GeV in which 
some grand unified theory like SU(5) is broken down 
to SU(3) × SU(2) × U(1). In this scenario the curva- 
ture of  the potential at the origin is adjusted to be 
small at the temperature where the ~ = 0 vacuum is 
destabilized. As a result, it takes a long time for the 
field to "roll down" its potential hill to get to the ~ = 
o vacuum state. A Coleman-Weinberg [6] potential 
has been suggested as having the desired characteris- 
tics + 2. During the time that the scalar field is making 
its slow transition, that is while it is rolling down the 
hill, the universe expands exponentially due to the 
large energy density stored in the scalar field for ~ ~ 0. 
The Robertson-Walker scale factor grows like exp(Ht) 
where, for a Coleman-Weinberg potential in SU(5), 
H ~ 5 ×  109GeV. 

Suppose that at the time when the ~ -- 0 state be- 
comes unstable, fluctuations are such that ~ senses a 
curvature in the potential of  order - /a  2 , where/a is much 
less than H. The evolution of  the q~ field is governed by 
the field equation in an expanding space-t ime ,3 

+ 3H~ - U2~b = 0 .  (3.1) 

Eq. (3.1) has a growing solution 

~ exp ( la2t /3H).  (3.2) 

Thus, the time scale for rolling away from the q~ = 0 
configuration is 

Trolling = 3H/la 2 . (3.3) 

Eq. (3.1) is for the zero momentum mode of  the 
field. However, the other modes are rapidly red shifted 
towards zero momentum by the exponential expansion. 
Once ~ has moved appreciably away from ¢ = 0, the 
transition to the q~ = o state occurs rapidly. Thus, during 

+2 The potential must be unnaturally tuned against all induced 
mass effects including those of gravity (see ref. [7]). 

,3 See Vilenkin [4], for a similar analysis. 
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the transition process the Robertson-Walker factor 
grows to 

R ~ H -1 exp (H/'rolling) = H -1 exp (3H2//22) . (3.4) 

It would appear that by adjusting/a in eq. (3.4) any 
desired degree o f  exponential growth can be achieved. 
However, the existence of  a Hawking temperature [8], 
TIt = H/2n, in de Sitter space may in fact place a limit 
on how much inflation can occur ,4 .  The extreme 
curvature of  space probably induces quantum fluctua- 
tions in the field q~2 of  order T 2 . This means that even 
in a Coleman-Weinberg potential tuned to be flat at 
the origin the $ field senses a curvature of  order T 2 . 
Therefore trolling is expected to be about 3H/T 2 re- 
sulting in a scale factor 

R ~-H 1 exp(3H2/T 2) 

= H - l e x p ( 1 2 7 r  2 ) -~H 1X1051 . (3.5) 

This estimate is large enough to make the inflationary 
scenario work but it is very sensitive to unknowns in 
the exponent. 

During the inflationary phase when the ~ field is 
moving slowly away from q~ --- 0, the universe expands 
so much that any particles present before the infla- 
tion are diluted to a negligibly small density. All of  
the matter in the present universe must be generated 
during the "Great Thaw" when the scalar field relaxes 
into its final state, ~ = o, producing particles by the 
mechanism discussed in section 2. In particular, the 
baryon asymmetry of  the universe must be produced 
in this way. In standard calculations of  the baryon 
asymmetry [9,10] the present asymmetry may depend 
on the initial asymmetry, which is usually assumed to 
be zero. (This is because an initial baryon asymmetry 
might not thermalize away.) In the inflationary cosmo- 
logy this assumption does not have to be made because 
any initial baryon asymmetry is diluted to zero. 

Once the q~ field has moved appreciably away from 
4~ = 0 the transition to ~ = o will occur rapidly com- 
pared with the expansion rate of  the universe. Thus 
gravitational effects are negligible during the epoch 
of  particle production. 

As discussed in section 2, the oscillations in the 
field around its vacuum value are damped by particle 

,4 This point was stressed to us by P. Ginsparg, A. Guth and 
A. Strominger. 

production. If  we assume that the grand unified group 
is SU(5) then the 4~ field is the SU(3) × SU(2) × U(1) 
singlet component of  the 24 dimensional adjoint repre- 
sentation. This field has direct couplings to all particles 
which get mass at this stage of  symmetry breaking. 
These include the color octet and weak triplet scalars 
in the adjoint, the X and Y bosons, and the 5 dimen- 
sional Higgs fields H which decompose into color trip- 
lets H 3 and weak doublets H 2 . When the q5 field relaxes 
these particles will be produced. The initial relative 
abundances (before thermalization) of  these particles 
and of  ;b particles is difficult to determine. Regardless 
of  the initial abundances, the interactions of  these 
particles will eventually produce a thermal distribution 
with a temperature which can be determined by energy 
conservation. In SU(5) with a Coleman-Weinberg po- 
tential, this reheating temperature is about T R ~- 5 X 
1013 GeV. Typical particle interaction rates, through 
gauge boson exchange, are of  order cX2TR ~- 2 X 1010 
GeV, (ag ~- 1/45). This is higher than the initial expan- 
sion rate H ~- 5 × 109 GeV so thermal equilibrium will 
be reached quickly on the cosmic time scale. 

It is possible that a baryon excess is produced by 
the ~ field oscillations before thermal equilibrium is 
reached. This excess will not be thermalized away if 
there are no light H3's (relative to TR). Baryon non 
conserving collision rates mediated by X and Y bosons 
are typically 2 5 4 agT /mx while those mediated by heavy 
H3's (relative to TR) are on the order ofo~2TS/m 4 
where O~y is the associated Yukawa f'me structure con- 
stant. Both of  these rates are less than H so the expan- 
sion of  the universe freezes in the baryon excess for 
all time. We can get an upper limit on this baryon ex- 
cess by assuming that all of  the energy stored in the 
potential is converted into heavy particles, P, which 
then decay into fermions before reaching thermal 
equilibrium. The initial number density np is deter- 
mined by energy considerations 

mpnv ~ p , (3.6) 

where p is the energy density stored in the ~b field. 
The baryon density is then 

n B ~, (p/mp)&B, (3.7) 

where AB is the mean number of  baryons produced in 
the decay of  a heavy P - P  pair. The ratio nB/s is then 
of  order (TR/mp)AB. Of course this is an upper limit 
and would be greatly reduced if for example the q~ 
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field primarily produced light Higgs doublets, H 2,s. 
Also if light H3's exist then this baryon asymmetry 
will be reduced. This is because inverse decays occur 
at the rate ~y T which is not small compared with H 
for temperatures less than T R. 

After thermalization a baryon excess can result from 
the out of  equilibrium decays of  heavy bosons as the 
universe cools. This is similar to the standard picture 
of  baryon production [9,10] with the important dif- 
ference that the process begins at a moderate tempera- 
ture T R ~- 5 X 1013 GeV with the expansion rate H -~ 
5 X 109 GeV. For a heavy particle to decay out of 
equilibrium we require that there is a period of  time 
during which its decay rate is less than the expansion 
rate. Since H ( t )  < Hinitia 1 we require 

P D < Hinitia 1 , (3.8) 

or 

in a power law suppression of  baryon production. An 
acceptable baryon asymmetry can result for Higgs 
triplet masses between 1011 and 1014 GeV. 

In conclusion, a baryon asymmetry generated when 
the scalar field settles into its true minimum, before 
thermal equilibrium is reached, would persist until 
today if there are no Higgs triplets with masses much 
below the reheating temperature. If  there is insufficient 
baryon production from this mechanism then it is still 
possible to generate a baryon excess as the universe 
cools from the out of  equilibrium decay of  Higgs triplets 
between 1011 and 1014 GeV in mass. 

We are very grateful to Sidney Coleman for many 
fruitful discussions. Alan Guth shared with us many of  
his insights into the early universe. In addition, we 
thank L. Alvarez-Gaume, R. Dashen, P. Ginsparg and 
R. Jaffe for helpful conversations. 

c ~ m p < 5 X  1 0 9 G e V ,  

where c~ is the appropriate coupling constant for decays. 
This places an upper bound on the mass of  the heavy 
particle. We then require the usual condition that when 
the particle does decay, i.e. P D ~ H ( t ) ,  the tempera- 
ture of  the universe is less than the mass. This gives a 
lower bound on mp of  

o~mplanck/20 < mp , (3.9) 

where we have used H ~ 20T2/mplanck . For gauge 
bosons c~ ~ 1/45; condition (3.8) gives mp < 2 X I011 
GeV while (3.9) gives mp > 1 X 1016 GeV so gauge 
bosons can never decay out o f  equilibrium to produce 
a baryon excess. 

For scalar triplets, H 3,s, the appropriate coupling 
is the Yukawa coupling associated with the heaviest 
fermion. Taking into p ~ 15 GeV gives an a y  ~> 7 X 
10 -5 and our two conditions become: 

2 X 1013 GeV ~<mp ~ 7 X 1013 GeV.  (3.10) 

However, numerical studies (taken from Fry et al. 
[10]) have shown that violations of  (3.9) result only 
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