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We consider homogeneous field transitions in a background de Sitter space by reducing the field theory to an 
equivalent quantum-mechanics problem. These transitions prevent spontaneous symmetry breaking from occurring in de 
Sitter space. We apply our formalism to the Hawking-Moss transition in the new inflationary cosmology. 

1. Introduction. In the inflationary cos- 
mology [1], phase transitions occurring in an 
approximately de Sitter nature of the universe 
during the inflationary period can have an im- 
portant  impact on these transitions. For  exam- 
ple, transitions can occur which are homo- 
geneous across an entire spacelike surface as 
first discussed by Hawking and Moss [2]. In this 
paper,  we study homogeneous  transitions in a 
background de Sitter space. We show that they 
can be analyzed by reducing the four-dimen- 
sional field theory to an equivalent one-dimen- 
sional quantum-mechanics  problem. This prob- 
lem can be solved by W K B  methods or other 
techniques. One interesting consequence of 
homogeneous  transitions is the absence of 
spontaneous symmetry breaking in de Sitter 
space. This is discussed in section 2. In section 3 
we apply our methods to the Hawking-Moss  
transition. The  nature of this transition is partic- 
ularly clear in our formulation.  Finally, we 
analyze an issue of relevance to the new 
inflationary scenerio [3]. 

2. Formalism and absence of  spontaneous 
symmetry breaking. Throughout  this paper  we 
will work in a de Sitter space with cosmological 
constant A. A convenient coordinate system is 
one in which the metric takes the form 

¢~Research supported in part by D O E  contract DE-AC03- 
76ER03232-A011. 

d r  2 = d t  2 - L 2 cosh2(t]L) 

× [da 2 + sinZa (dO 2 + sin20 dq~2)] , (2.1) 

where 

L = (3/a)  la . (2.2) 

We begin by considering a scalar field with the 
action 

V(~b)]. (2.3) 

To evaluate homogeneous  transitions we 
consider field configurations kvhich are functions 
of t ime only 

¢b = q ( t ) .  (2.4) 

The action for such configurations is 

S = 2zr2L 3 f d t  cosh3(t/L)[½(t 2 V(q)] (2.5) 

This is just the action for a one-dimensional 
quantum-mechanical  system. Corresponding to 
the action (2.5) is the Schr6dinger equation*a 

,1 We can generalize (2.6) to include gravity as follows. To 
the lagrangian in (2.3) we add the scalar curvature term, 
-(16rrG)-lR.  Since the transitions are homogeneous [in 
the coordinates (2.1)] we can take R to be a function of t 
only. We represent this by generalizing (2.1) to 

d r  2 = d t  2 - p2(t) d ~  2 . 

Then the Schr6dinger equation (2.6) is replaced by a 
similar one, but with two independent variables, q and p. 
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(i/2 7r2 L 3)O~b/ Ot 
= {[-  1/2(27rZL3) 2 cosh3(t/L)] OZ/Oq 2 
+ cosh3(t/L) V(q)}~.  (2.6) 

Note  that  in (2.5) and (2.6) the role of h is 
played by the quant i ty  1/2~'2L 3. In the flat-space 
limit L goes to infinity so the effective h goes to 
zero. This means  that in fiat space q behaves  
classically and, for  example,  symmetr ies  of V(q) 
can be spontaneous ly  broken.  However ,  in de 
Sitter space with L finite, the effective h is not  
zero and as in any one-dimensional  quan tum 
system the g round  state is unique and spon- 
taneous  symmet ry  breaking is impossible. 

Consider ,  for  example,  a potential  V(q) with 
degenera te  minima at q = + a  and a discrete 
q ~ - q  symmetry .  Classically the symmet ry  is 
b roken  and this result also holds for the quan-  
tum theory  in fiat space. However ,  in de Sitter 
space the symmet ry  is res tored by h o m o g e n e o u s  
transitions. There  are two ways that the tran- 
sition f rom 4~ = - a  to ~b = + a  can occur.  First, 
because the hamil tonian in eq. (2.6) is time- 
dependen t  energy is not conserved and the time 
dependence  can induce hopping over  the top of 
the barr ier  separating the q = + a  states. This is 
the Hawking -Moss  type of transition. It will be 
evaluated for  a general  potential  in the next 
section. Second,  a tunnelling may occur  between 
the q = + a  states. We  will assume that the 
tunnelling process occurs quickly on the scale of 
L. Note  that the barr ier  height for  the potential  
in eq. (2.6) goes like cosh3(t/L). It is therefore  
smallest at t = 0 and so the tunnelling ampli tude 
is domina ted  by transit ions occurr ing at t = 0. 
This does not imply any b reakdown of the de 
Sitter symmetries.  We  have chosen a part icular  
coordina te  system and in this system homo-  
geneous  transit ions occur on the hypersurface  
t = 0. Of  course transitions along any o ther  
hypersurface  which can be obta ined f rom this 
one  by a de Sitter t ransformat ion are equally 
likely. 

If we set t = 0 in eq. (2.6) we get the simple 
Schr6dinger  equat ion 

(i/27"r2L3)O~O/Ot = {[-  1/2(2rr2L3)Z]O2/Oq2 + V(q)}~O. 

(2.7) 

This can be evaluated,  for example,  by W K B  
techniques.  In this approximat ion,  tunnelling 
introduces  a splitting between the degenera te  
g round  states ,2 

AE = A exp(-27r2L 3 i dq[2V(q)]t/2), (2.8) 
- a  

where  A is unde te rmined  since it depends  on 
the effects of the o ther  modes  which are not 
spacially uniform. The  unique ground  state in 
this approximat ion  is the symmetr ic  com- 
bination 2-1n([a) + I-a)). 

Restora t ion  of cont inuous  symmetr ies  also 
occurs in de Sitter space. Consider,  for example,  
a complex scalar field with U(1) symmet ry  and a 
potential  V with a min imum at I~b[ 2 = a 2. We  
can evaluate h o m o g e n e o u s  transit ions by con- 
sidering field configurat ions 

6 = a exp[i6(t)/~/2a]. (2.9) 

The  action for such configurat ions is 

S = 27"r2L 3 f dt cosh3(t/L)½~ 2 . (2. 10) 

Once  again for the flat-space case L goes to 
infinity and (2.10) describes a classical rotor .  For  
finite L, quan tum effects are relevant and the 
g round  state is a symmetr ic  S-wave state. No te  
that in this case there  is a gap in the spect rum 
indicating the absence of a massless Golds tone  
excitation. 

Thus,  during the de Sitter phase of  an 
inflationary cosmology  spontaneous ly  b roken  
symmetr ies  are res tored by h o m o g e n e o u s  tran- 
sitions. W h e n  the de Sitter phase ends the uni- 
verse is left in a symmetr ic  superposi t ion of 
states like 2-m(la)+ I-a)) or the S-wave for 6. 
However ,  the normal  effects of spon taneous  
symmet ry  breaking will r eappear  as soon as the 
transit ion ampli tudes be tween classically 
degenera te  states become  negligible. For  opera-  
tors which are singlets under  the symmet ry  
g roup  it is easy to see that, in the absence of 
transit ions between different vacuum states, 

,2 This agrees with the result of Coleman and DeLuccia (ref. 
[4]) in the limit E ~ 0 if a factor of two is introduced for 
application of their formalism to degenerate minima. 
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matrix elements  between a symmetric super- 
position of states are equal to those between 
any particular non-symmetric  ground state. On 
the other hand, if a matrix element  of a non- 
symmetric opera tor  is measured the vacuum 
wavefunctional will immediately collapse into a 
non-superimposed state which will then be 
stable. 

3. H a w k i n g - M o s s  transit ions.  Up to now we 
have largely been ignoring the t ime-dependence 
of the hamiltonian in eq. (2.6). Transitions 
caused by this t ime dependence can change the 
energy (as defined below) of the quantum sys- 
tem and lead to transitions of the type con- 
sidered by Hawking and Moss [2]. In their lan- 
guage the energy non-conservation of these 
transitions is due to thermal fluctuations caused 
by the non-zero Hawking temperature .  To 
evaluate transitions for a t ime-dependent  
hamiltonian, we must imagine that the time- 
dependence is adiabatically turned off in the 
far past and future. Then the probabili ty for a 
transition between two states with asymptotic 
energies E0 and E~ induced by a t ime-dependent  
hamiltonian is given in the WKB approximation 
by [5] 

to 

) P = A e x p  - ~ - I m  ( E t - E 0 )  dt , (3.1) 

0 

where to is the (imaginary) t ime for which 

El(to) = Eo(to).  (3.2) 

A is an undetermined constant. Hawking and 
Moss considered a transition between q = q0 and 
q = q~ where q0 is a minimum of V and q~ the 
local max imum of V at the top of the barrier. 
For this case 

17.o = cosh3( t /L)  V(qo), E ,  = cosh3( t /L)  V ( q , )  , 
(3.3) 

and 

h = 1/2"n'2L 3 . 

Setting E0 = E1 we find that to = i½~L and 

P -- A exp{-  87r2L4[ V ( q l )  - V(qo)]} • (3.4) 

In performing this calculation we have con- 
sidered a constant background spacetime and 
have ignored the effect which the difference 
V ( q l ) -  V(qo) has on the cosmological constant. 
Thrs ,  our  calculation is valid in the limit 
8 7 r G [ V ( q l ) -  V(q0)] ~ A. In this limit (3.4) 
agrees with the result of Hawking and Moss. 

After  the transition to the top of the barrier, 
q = ql, the transition to the new vacuum state 
occurs classically. If the classical transition f rom 
the top of the barrier to the minimum of the 
potential is rapid, then in the coordinate system 
we have been using, the transition looks as in 
fig. 1A. That  is, at a certain t ime (shown there 
as t = 0) a transition f rom old vacuum to new 
vacuum occurs homogeneously over  a complete 
spacelike section. It is interesting to see what 
this homogeneous  transition looks like in the 
more conventional coordinates in which 

d r  2 = dt 2 - eEt/g(dx 2 + dy 2 + d z 2 ) .  (3.5) 

This is shown in fig. lB. In these coordinates 
the transition looks like the collapse of a bubble 
of old vacuum. Note  that the transition occurs 
completely inside the event horizon. 

An issue of relevance to the new inflationary 
cosmology [3] is the velocity, q, when q appears  
at the top of the barrier, q = ql, after the 

T 

_ _  v o c u u m  

A B 

Fig. 1. Appearance of a homogeneous transition occurring 
at t = 0. Fig. 1A shows the transition in the coordinates (2.1) 
and fig. 1B in the coordinates (3.5). In the latter coordinates 
the transition looks like the collapse of a bubble of old 
vacuum inside the event horizon. The shaded area 
represents old vacuum. 
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H a w k i n g - M o s s  transi t ion has occurred.  When  
q = ql and ~) is non-zero  the energy  is 

Eq(t) = cosh3(t/L)[½gt 2 + V(ql)] • (3.6) 

Thus,  according to our  formal ism,  the prob-  
ability for  the sys tem to appea r  at ql with veloc- 
ity ~ is 

to 

P(t))  = A exp( -47r2L3 Im f dtcosh3(t/L) 
0 

× [~)2 + V ( q l ) -  V(q0)]) ,  (3.7) 

where  to is the imaginary  t ime for  which 

cosha(t/L)[l~l 2 + V(ql)] ---- cosha(t/L) V(qo). (3.8) 

Thus,  once again, to = i ~ L .  The  expec ta t ion  
value of Iq[ is then given by 

(Iq]) = f d~) ]t)l P(t))  = (3/47ra)l/ZL_ 2 (3.9) 
f dq P ( q )  

In te rms  of the Hawking  t empe ra tu r e ,  TH = 
1/2~'L, this is 

(14[) = (12~-) r o T 2 .  (3.10) 

This is of  the o rder  of magn i tude  of what  had 
previously  been  guessed on d imens ional  g rounds  
[6], a l though we find the  ra ther  large fac tor  
(127r) 1/2. Howeve r ,  in the classical equat ions  of 
mot ion  for  q(t) it is the rat io  of ([41) to (3/L) 2 
that  is re levant  and this is still small.  For  a 
C o l e m a n - W e i n b e r g  potent ia l  we find that  (3.10) 
is small enough  so that  the amoun t  of inflation 
is not significantly reduced  by this non-zero  in- 
itial velocity.  

We  wish to thank  A. G u t h  for  helpful  dis- 
cussions. 
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