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Using the Harrison—Zel dovich energy-density fluctuation spectrum predicted by the inflationary cosmology, we com-
pute multipole moments of the cosmic blackbody temperature. Our results are independent of the details of non-linear

galactic evolution

The inflationary cosmology [1] makes a prediction
for the spectrum of energy-density fluctuations in the
early universe [2]. The result is the scale-invariant
Harrison Zel’dovich spectrum [3]: fluctuations of
wavelength L at a time ¢ = L/c (the time of horizon
crossing) are predicted to have an amplitude ey which
1s independent of L. The scale-invariant spectrum is a
model-independent prediction of inflation. while the
value of the constant €;y depends on parameters of the
particular theory being considered. A determination
of the validity of the Harrison—Zel’dovich spectrum
would test the inflationary hypothesis and an accurate
measurement of e would have a direct impact on
model building.

Unfortunately, our present knowledge of galactic
structure can provide neither of these. Fluctuations on
the galactic scale have become nonlinear and have clear-
ly gone through an extremely complex evolution to be-
come present-day galaxies and galactic clusters. How-
ever. the inflationary cosmology also predicts that fluc-
tuations of much longer wavelength exist. and have am-
plitude ey when they enter the hornizon. Fluctuations
which entered the horizon since the time of recombina-
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tion are still evolving linearly today, if ey is of order
10—4. These long-wavelength fluctuations can be ana-
lyzed without any of the complexities and uncertain-
ties of nonlinear dynamics. In this letter, we show that
they produce observable anisotropies in the microwave
background radiation. Using the scale-invariant spectrum
we predict moments of the background blackbody tem-
perature. Because the lower multipole moments are on-
ly sensitive to large scale fluctuations our predictions
for these moments are insensitive to the nonlinear be-
havior of shorter-wavelength fluctuations.

In the absence of fluctuations spacetime is described
by a spatially flat Robertson—Walker metric,

ds? = S2(r)[— dr2 + dx - dx], 1)

where 7 is conformal time. Since we are concerned with
phenomena which occurred after recombination we as-
sume the universe is matter dominated. Then 7 1s pro-
portional to the ordinary time ¢ to the 1/3 power.

We begin by considering fluctuations characterized
by a single plane wave. Later we superimpose these
plane waves by integrating over wave-vectors. Fluctua-
tions of wave-vector, k, produce variations in the metric
and energy momentum tensor given by *1

800 = —$%(r) {14 24(r) Q(x)], (22)

*1 Here we adopt the notation of ref. (4]
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goi = —SIM[B(1) Q;()], (2b)

g; = SUD{[1+2H (1) Q)] 8+ 2H1(1) Q)
(2¢)

Td=— p()[1+5(r) Q), (2d)

Th= - [p(r) + p()] v(r) QI(x), (2)
T = p({[1+7 () Q)1 8} + mp(r) Q}@)},  (26)

where Q(x) 1s the plane wave exp (ik *x) and
0;=—-k719;0, 0;=k"29;3,0+55,0. (3a,b)

Indices on @; and Qij are raised and lowered with the
Kronecker delta. The fluctuations of eqgs. (2) affect the
observed blackbody background temperature in two
ways¥2,

First, they produce fluctuations in the temperature
of the plasma which emitted the radiation at the time
of recombination rg . These are given by ¥3

8§ Ty /Tg =35 8(75) Q). 4

Second, fluctuations affect the amount of redshift
which the radiation undergoes before being received
today at conformal time 7. The observed blackbody
temperature, T +8 T, is related to the temperature
at emission by *4

TO +5TO=(TE +8TE)/(1+Z) (5)

If we observe the blackbody radiation along a direction
specified by the unit vector e, then the factor 1 +z is
given according to the Sachs—Wolf formula [6] by

*2 The variables A, B, Hy , Hy, ny , § and v are not gauge in-
variant. We work in a gauge where A = v = 0 although our
final result is gauge invariant.

3 Equivalently one can think of recombination occurring at
a fixed temperature but at different times at different points
1n space. We assume the fluctuations are adiabatic.

*4 We assume that there 1s not a significant density of inter-
galactic ionized hydrogen, so that the surface of last scat-
tering is near recombination. If intergalactic hydrogen is
ionized by energy released during the gravitational contrac-
tion of galaxies and clusters of galaxies at z ~ 20 (see ref
[51) then we require the density of jonized hydrogen be

less than about 1078 ¢m™3,
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S . -
+z= S((:S (1 -B(1) Q(x)/ki}};;go_TE
TO P 7E . . .
v [ ay o HM+ 3 Hr () - Bk
0
~ Hr(r) (e k)2/k2]) , (6)

where a dot denotes differentiation with respect to 7
and

x:ey’ T:TO _y. (7a, b)

Eqs (4) (5) and (6) can be combined to give a general,
gauge-invariant expression for the observed blackbody
temperature. This expression will be discussed in more
detail in a further publication [7]. For the present pur-
poses it is sufficient to specialize to the case of a per-
fect fluid in a matter-dominated universe. Then, the
Einstein equations and the energy and momentum con-
servation equations can be used to simplify the result
yielding

TpS .
T0+6T0=—%%Q(1—B(T)Q(x)/kly=0
1 TO—TE .
L[ aoman e w), ®)
k“ 9

with x and 7 given by eqgs. (7). The function € is
Bardeen’s [4] gauge-invariant generalization of the
energy-density fluctuation

e=8+3[(p+p)lp] k~1(S/S) (v - B). ©)

Eq. (8) is gauge invariant because gauge dependence of
the time of reception cancels against the gauge depen-
dence of the term BQ/k |, =¢. The factor BQ/k |-
produces an overall renormalization of the observed
temperature due to fluctuations evaluated at the ob-
server’s location. Since it is independent of the direc-
tion vector e it does not contribute to the anisotropy
and we absorb it into our definition of Ty. Then

6T0 To—TE

_T_O_=k__12 OfdyQ(x)e’(r)(e-k)2. (10)

In the matter-dominated era it is well known that €
is proportional to ¢2/3 or equivalently to 72. The infla-
tionary cosmology equates ¢ at the time of horizon
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crossing, 7 = 2/k, to a random variable 2(k) satisfying
@ kyak'y = (ef/k3) 83k — k). (11)

This definition assures that the expectation value of €2
at the time of horizon crossing

=k [ d3q @* (k) a(@), (12)

takes the predicted value 6]_2[. Combining these results
we find that the inflationary prediction for € is

e(r) =1 ak27r2, (13)

with 4 satisfying eq. (11).
The quantity §T,/T can be expanded in multipoles

= 123 ap, Yim(e). (14)

We will predict expectation values for the rotationally
invariant quantities *5

d= 20 lay, (15)
m =

by projecting out the appropriate multipole

Gy = [ 4R Yir € 6To/To) (16)

with 8T/T, given by eq. (10). The expectation value
of af is then obtained by substituting eq. (13) into eq.
(16), integrating over wave-vectors k, squaring, using
eq. (11) to evaluate the expectation value and summing
over m. The result for/ =2 is

ant 5
2y AT’ 2
(ﬂl)"21+lEH

Of %:3{(2“ 1)) (w)

+Hrghrg—1E)] wlljp_1(@) = A +1) jrq (@)1},
(17)

where j; is a spherical Bessel function and we have ex-
pressed the integral over k in terms of the dimension-
less variable w = k(g — 7g). The k integration is cut

off at the value w,,, = 80, which restricts it to fluc-
tuations that entered the horizon since the time of re-
combination. We have evaluated eq. (17) numerically
for /=2—15 and find that it is cut offindependent, at

*5 The expectation values of the {ajy|? for a given  are the
same and equal to [1/(21+1)](a12).
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the level of twenty percent, for a factor of two change
m w,,,.. This cutoff independence indicates that for
these low moments our results are insensitive to the
shorter wavelength fluctuations that have gone non-
linear, and to the details of the process of recombina-
tion [8].

The numerical results for (17) are well approximated
by a simple analytic result. In eq. (17) 75 /7y = 0.03 so
the first term in the integrand dominates over the last
two. Also, since the resulting integral is essentially cut-
off independent we can extend w,,, to infinity. We
then find that

@ =2n* ef [0+ DI+ 1)]. (18)

Eq. (18) is our main result. If observations of the
anisotropy of the microwave background confirm this
I-dependence, then the spectrum of fluctuations predict-
ed by the inflationary cosmology is correct ¥6. The
present limit on the quadrupole moment [10], a% <5
X 10~8, gives, from eq. (18), the bound

ey <6X10-5. (19)

The inflationary cosmology also predicts the vari-
ance of a,z. Since € is generated by the quantum fluc-
tuations of a free scalar field in de Sitter space a(k) is
a random variable with a gaussian probability distribu-
tion. Therefore,

KaP)? — @2 = 221 +1)] V2. (20)

From eq. (10) we can get the contribution of large
scale fluctuations to the dipole moment of the micro-
wave background. We find that

(a%)=%7r2 w?‘nax 612{. @n

If €y is of order 103 this contributes significantly to
the total dipole moment.

After completion of this paper it was brought to
our attention that a similar computation was perform-
ed in ref. [11]. We thank C.J. Hogan for informing us
of this work.

*6 There are other scenarios for generating fluctuations which
can give a Harrison—Zel’dovich spectrum. See, for exam-
ple, ref. [9].
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