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Using the Harnson-Zel dovich energy-density fluctuation spectrum predicted by the inflationary cosmology, we com- 
pute multipole moments of the cosmic blackbody temperature. Our results are independent of the details of non-linear 
galactic evoluhon 

The inflationary cosmology [1] makes a prediction 
for the spectrum of  energy-density fluctuations in the 
early universe [2]. The result is the scale-invariant 
Harrison Zel'dovich spectrum [3] : fluctuations of  
wavelength L at a tune t ~ Lie  (the tune of  horizon 
crossing) are predicted to have an amplitude 6 a which 
is independent of  L. The scale-invariant spectrum is a 
model-independent prediction o f  inflation, while the 
value of  the constant e H depends on parameters of  the 
particular theory being considered. A determination 
of  the validity of  the Harrison-Zel 'dovich spectrum 
v~ould test the inflationary hypothesis and an accurate 
measurement o f  e H would have a direct unpact on 
model building. 

Unfortunately, our present knowledge of  galactic 
structure can provide neither of  these. Fluctuations on 
the galactic scale have become nonlinear and have clear- 
ly gone through an extremely complex evolution to be- 
come present-day galaxies and galactic clusters. How- 
ever, the inflationary cosmology also predicts that fluc- 
tuations o f  much longer wavelength exist, and have am- 
plitude e H when they enter the horizon. Fluctuations 
which entered the horizon since the time of  recombina- 
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tion are still evolving linearly today, if e H is of  order 
10 - 4  . These long-wavelength fluctuations can be ana- 
lyzed without any of  the complexities and uncertain- 
ties o f  nonlinear dynamics. In this letter, we show that 
they produce observable amsotropies in the microwave 
background radiation. Using the scale.invariant spectrum 
we predict moments o f  the background blackbody tem- 
perature. Because the lower multipole moments are on- 
ly sensitive to large scale fluctuations our predictions 
for these moments are insensitive to the nonlinear be- 
havior of  shorter-wavelength fluctuations. 

In the absence o f  fluctuations spacetime is described 
by a spatially flat Robertson-Walker metric, 

ds 2 = S2(r)[  - dr  2 + dx .  dx] ,  (1) 

where r is conformal time. Since we are concerned with 
phenomena which occurred after recombination we as- 
sume the universe is matter dominated. Then r as pro- 
portional to the ordinary time t to the 1/3 power. 

We begin by considering fluctuations characterized 
by a single plane wave. Later we superimpose these 
plane waves by integrating over wave-vectors. Fluctua- 
tions of  wave-vector, k, produce variations in the metric 
and energy momentum tensor given by *1 

g00 = -82(7") [1 + 2A('r) Q(x)],  (2a) 

* 1 Here we adopt the notanon of ref. [4] 
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goi = -- $2('c) [B ('c) Qi(x)], (2b) 

gi/ = $2('c)([ 1 + 2HL(O Q(x)] 8 0 + 2HT('C) QiI(x)}, 
(2c) 

r 0 = - o ( r )  [1 + 8 (r) Q(x)], (2d) 

T~ = - [O(O + P(OI  v(O Qi(x), (2e) 

~i  = p('c){ [1 + ,L( 'r)  Q(x)] 6]+ lrT(r ) a~(x)}, ( 20  

where Q(x)is the plane wave exp ( ik .x )  and 

O t = - k - l O i Q ,  Qil=k-2ai~/Q+-~6oQ. (3a, b) 

Indices on Qi and Qi] are raised and lowered with the 
Kronecker delta. The fluctuations o f  eqs. (2) affect the 
observed blackbody background temperature in two 
ways .2 . 

First, ttley produce fluctuations in the temperature 
o f  the plasma which emitted the radiation at the time 
of  recombination r E . These are given by *a 

= ~ (rE) Q(x) .  (4) 8 TE/T E 1S 

Second, fluctuations affect the amount of  redshift 
which the radiation undergoes before being received 
today at conformal time "co. The observed blackbody 
temperature, T O + 6 TO, is related to the temperature 
at emission by * 4 

T O + 6 T  0 = ( T  E +6TE)/(I+z ) (S) 

If  we observe the blackbody radiation along a direction 
specified by the unit vector e, then the factor 1 + z is 
given according to the Sachs-Wolf  formula [6] by 

*2 The variables A, B, H L, H T, *r L, 8 and o are not gauge in- 
variant. We work in a gauge where A = o = 0 although our 
final result is gauge invariant. 

.3 Equivalently one can think of recombination occurring at 
a fixed temperature but at different times at different points 
m space. We assume the fluctuations are adiabatic. 

.4 We assume that there xs not a significant density of rater- 
galactic ionized hydrogen, so that the surface of last scat- 
tering is near recombination. If intergalactic hydrogen is 
ionized by energy released during the gravitational contrac- 
tion of galaxies and clusters of galaxies at z ~ 20 (see ref 
[5] ) then we requtte the density of ionized hydrogen be 
less than about 10 -8 cm -3. 

S(To) ! (1 h('c) 1 +Z =S-~E ) 

*'o - r E  

+ f dy Q ( x ) t H L (  Q +{/tT( 'C) -- B'('c)/k 
0 

- / t T  (r) (e" k )2 /k2] ) ,  (6) 

where a dot denotes differentiation with respect to 'c 
and 

x = ey, "c = "c o - y. (7a, b) 

Eqs (4) (5) and (6) can be combined to give a general, 
gauge-invariant expression for the observed blackbody 
temperature. This expression will be discussed in more 
detail in a further publication [7]. For the present pur- 
poses it is sufficient to specialize to the case of  a per- 
fect fluid in a matter-dominated universe. Then, the 
Einstein equations and the energy and momentum con- 
servation equations can be used to simplify the result 
yielding 

TE S('C E ) 
(1 - /~(r)  O ( x ) / k ~ =  0 T O + 6 T O = ,~ S('co) 

r o  - r E 

wi thx  and 'c given by eqs. (7). The function e is 
Bardeen's [4] gauge-invariant generalization of  the 
energy-density fluctuation 

e = 8 + 3 [(p + p)/p] k -1 (S/S) (u - B). (9) 

Eq. (8) is gauge invariant because gauge dependence of  
the time of  reception cancels against the gauge depen. 
dence o f  the term BQ/k ly =0. The factor BQ/k ly= 0 
produces an overall renormalization of  the observed 
temperature due to fluctuations evaluated at the ob- 
server's location. Since it is independent of  the direc- 
tion vector e it does not contribute to the anisotropy 
and we absorb it into our defimtion o f  T 0. Then 

6T0 1 ~ ° - r E  " 2 f dyQ(x )e ( ' c ) ( e . k ) .  (10) 
TO k2 0 

In the matter-dominated era it is well known that e 
is proportional to t 2/3 or equivalently to 'c2. The infla- 
tionary cosmology equates ¢ at the time of  horizon 
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crossing, r = 2/k, to a random variable ~(k) satisfying 

~*(k) gt(k')) = (e2 /k 3) 5 3(k - k ' ) .  (11) 

This definition assures that the expectation value of e 2 
at the time of  horizon crossing 

= k3fd3q  ~t* (k) a(q)), (12) <e 2) 

takes the predicted value e 2.  Combining these results 
we find that the inflationary prediction for e is 

1 e(r)  = ~ ~k2r  2, (13) 

with d sansfying eq. (11). 
The quanti ty 6To/T 0 can be expanded in multipoles 

6T O 
= & aim Ylm(e). (14) 

TO 

We will predict expectation values for the rotationally 
mvariant quantities ,s 

l 
a 2--_ ~ lalm [2, (15) 

m=-I 

by projecting out the appropriate multipole 

alm = f dS2e YTm (e) (SZo/Zo) (16) 

with 6To/T 0 given by eq. (10). The expectation value 
of  a/2 is then obtained by substituting eq. (13) into eq. 
(16), integrating over wave-vectors k, squaring, using 
eq. (1 I) to evaluate the expectation value and summing 
over m. The result for l I> 2 is 

t, Oma  X 

(a 2) = 47r2 ~ {(21 + f 1)h(,,.,) 
o 

+ [r E/( r  0 -- r E)] CO [l h -  1 (CO) -- (I + 1 ) h+l  (¢0)]) 2, 

(17) 

where/ l  is a spherical Bessel function and we have ex- 
pressed the integral over k in terms of  the dimension- 
less variable co = k ( r  0 - rE). The k integration is cut 
of f  at the value Wma x ~ 80, which restricts it to fluc- 
tuations that entered the horizon since the time of  re- 
combination. We have evaluated eq. (17) numerically 
for l = 2 - 1 5  and find that it is cut off independent ,  at 

,5 The expectation values of the [alml 2 for a given l are the 
same and equal to [1/(21+l)](a~). 

the level of  twenty percent, for a factor of  two change 
m COma x. This cutoff  independence indicates that for 
these low moments  our results are insensitive to the 
shorter wavelength fluctuations that have gone non- 
linear, and to the details o f  the process of  recombina- 
tion [8]. 

The numerical results for (17) are well approximated 
by a simple analytic result. In eq. (17) ~'E/r0 ~ 0.03 so 
the first term in the integrand dominates over the last 
two. Also, since the resulting integral is essentially cut- 
off  independent we can extend COma x to infinity. We 
then find that 

(a 2) ~- 2zr 2 e 2 [ (2 l+  1)/l(l + 1)]. (18) 

Eq. (18) is our main result. If  observanons of  the 
anisotropy of  the microwave background confirm this 
/-dependence, then the spectrum of  fluctuations predict- 
ed by the inflationary cosmology is correct ,6. The 
present limit on the quadrupole moment  [10], a 2 < 5 
× 10 -8 ,  gives, from eq. (18), the bound 

e H < 6 × 10 -5 .  (19) 

The inflationary cosmology also predicts the vari- 
ance of  a/2. Since e is generated by the quantum fluc- 
tuations of a free scalar field in de Sitter space h(k) is 
a random variable with a gaussian probabili ty distribu- 
tion. Therefore, 

[ffa2) 2 - (a2)2)] 1/2 = [2/(21 +1)11/21a2). (20) 

From eq. (10) we can get the contribution of  large 
scale fluctuations to the dipole moment  of  the micro- 
wave background. We find that 

2- 2 2 (a l )=~Tr  ~ 2 a x e  2 .  (21) 

I f  e H is o f  order 10 -5  this contributes significantly to 
the total dipole moment .  

After completion of  this paper it was brought to 
our attention that a similar computat ion was perform- 
ed in ref. [11]. We thank C.J. Hogan for informing us 
of  this work. 

.6 There are other scenarios for generating fluctuations which 
can give a Harrison-Zel'dovich spectrum. See, for exam- 
ple, ref. [9]. 
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