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A mechanism is presented for relaxing an initially large, positive cosmological constant to a value near zero. This is done 
by introducing a scalar field whose vacuum energy compensates for the initial cosmological constant. The compensating sec- 
tor involves small mass scales but no unnatural fine-tuning of parameters. It is not clear how to incorporate this mechanism 
into a realistic cosmology. 

The extremely small observational limits on the val- 
ue of  the cosmological constant indicate that the vacu- 
um energy density in our universe has magnitude less 
than (0.003 eV) 4. The vacuum energy density receives 
contributions proport ional  to the fourth power of  vir- 
tually every mass scale in particle physics. Since each 
of  these terms individually is many orders of magni- 
tude larger than (0.003 eV) 4, mysterious and unnatu- 
ral cancellations must occur in order for their sum to 
produce a sufficiently small total energy density. This 
situation is very different from that of  a naturally 
small mass parameter like the electron mass. The mass 
of  the electron is also small compared to most other 
scales in particle physics but,  because of  a chiral sym- 
metry,  corrections to m e are always proport ional  to 
m e itself and thus are small for any reasonable cut-off 
value. Although we cannot claim to know why the 
electron is so light, the fact that we have a sensible 
low-energy effective theory in which the value of  m e 
does not require miraculous cancellations suggests 
that there may be hope of  achieving a better  under- 
standing in the future using a more complete theory. 
In the case of  the cosmological constant there is little 
reason for similar optimism as long as the low-energy 
theory requires unnatural cancellations. 

The fact that the cosmological constant requires 
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cancellations at the level of  thousandths of  an electron 
volt suggests that modifications must be made in particle 
physics at very low energies. An attractive possibility 
is the existence of  a compensating field whose vacuum 
energy dynamically adjusts itself to cancel the large 
contribution coming from conventional particle phys- 
ics. Any model of  this type is likely to involve small 
mass parameters associated with the compensating 
field theory sector and we must require of  any sensible 
model that these parameters be naturally small. Other- 
wise we are just replacing one unnaturally small mass 
parameter, the cosmological constant, with another. In 
addition, if this idea is to work it seems that the com- 
pensating sector must have a stable or metastable state 
at virtually every value of its own vacuum energy den- 
sity in order that an arbitrary particle physics contri- 
bution can be cancelled. Also, a mechanism must exist 
for insuring that the compensating sector will evolve to 
a state with an acceptably small value of  the total en- 
ergy density. Finally, it must be possible to incorpo- 
rate such a mechanism into a realistic cosmology. 

In this note, I present a model constructed along 
these lines. A compensating sector is introduced which 
can dynamically reduce any initially large, positive 
cosmological constant to a value arbitrarily close to 
zero. The model is a low-energy effective field theory. 
No at tempt is made to incorporate it into a complete 
high-energy theory.  The compensating sector has very 
small mass parameters associated with it, but these are 
protected by symmetries from getting large radiative 
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corrections and therefore they are natural. No fine- 
tuning is required to keep them small. The model pro- 
vides evidence that this type of  approach can work. 
However, it is not clear how the present mechanism 
can be incorporated into a realistic cosmology. 

The model being discussed consists of  a scalar field, 
B, coupled to a gauge theory. The entire compensating 
sector is only coupled to ordinary particles through 
gravity and therefore is only detectable through its 
gravitational effects. For example, all ordinary parti- 
cles are singlets under the gauge group of  the gauge 
theory in the compensating sector. For this reason 1 
call it a phantom gauge theory. The lambda parameter 
which characterizes the coupling strength of  the phan- 
tom gauge theory, Aph is extremely small - less than 
10-34 eV. This may seem like an extraordinarily small 
value, but actually it is quite natural for an isolated 
gauge theory to have a lambda parameter which is 
vastly different from AQC D which sets the scale for 
hadronic masses in our world. If we characterize a 
gauge theory by the value of  its coupling constant at 
the Planck mass for example, then 0~QCD(mpI ) ~ 0.02,  

corresponding to AQC D ~- 100 MeV. If our phantom 
gauge theory is SU(3) with phantom quarks like QCD 
then by requiring that O~ph(mp1 ) ~< 0.006 we find that 
Aph ~< 10 -34 eV. If  the phantom theory is SU(2) with 
six flavors of  phantom quarks then O~ph(mpl ) ~< 0.01 
assures that Aph ~< 10 -34 eV. Thus, with quite con- 
ventional values of  the coupling constant we find ex- 
tremely small values of  the lambda parameter for the 
phantom gauge theory. A small Aph is crucial for 
achieving a sufficiently small final cosmological con- 
stant in this model. 

The couplings of  the scalar field, B, are restricted 
by the symmetry 

B -+B + constant. (1) 

This symmetry may suggest that B is a Goldstone 
boson. However, I will assume that the range of  B goes 
from minus infinity to plus infinity and that the 
lagrangian does not have to be periodic in B. Thus, B 
is not a Goldstone boson associated with a compact 
symmetry group like U(1). It could conceivably be a 
dilaton, or a field associated with one of  the flat direc- 
tions of  the potential in a supersymmetric theory. For 
the purposes of  the present discussion it does not mat- 
ter where B comes from, as long as it possesses the 
symmetry B ~ B + constant. 

The symmetry of  eq. (1) is softly broken in two 
ways to achieve a non-trivial potential for the B field. 
First B, is coupled to the phantom gauge theory 
through the term 

Lin t = (aph/47r)(B/fB) e #v°~# Tr {FuvFc~},  (2) 

where Fur is the phantom gauge field strength tensor. 
The parameter fB is a large mass (perhaps of  order 
mp1 ) associated with the complete high-energy theory. 
Since Tr {FuvFa~ } eUVC~ is a total derivative this term 
respects the symmetry B -~ B + constant up to surface 
terms. However, instantons contribute to these sur- 
face terms and softly break the symmetry. This is 
exactly the type of  coupling used in axion models to 
break the Peccei-Quinn symmetry [t ]. It is well 
known that the coupling (2) leads to a potential for 
theB field of  the form [1] 

4 
V 1 (B) = - a p h  cos(B/f  B). (3) 

The gauge coupling of  the B field breaks the sym- 
metry B -~ B + constant but still preserves the symme- 
tries 

B ~ B + 2rrf B and B -~ -B.  (4) 

These are broken, again softly, by introducing a term 

V2(B ) = eB / f  B (5) 

into the potential for B. The linear form in (5) is not 
essential but is chosen for simplicity. All that is re- 
quired is a potential which has no minima over the 
range of  B discussed below. The parameter e is as- 
sumed to be less than A4h but is otherwise arbitrary. 
It is a naturally small parameter because its non-zero 
value breaks the symmetries of  eq. (4). Since it breaks 
a symmetry all radiative corrections to the value of  e 
must be proportional to e. Thus no fine-tuning is re- 
quired to maintain its small value. 

When this compensating sector is added to a stan- 
dard particle physics model, the total vacuum energy 
is given by 

4 
V = eB / f  B - Aph cos(B/¢B) + V 0, (6) 

where V 0 represents the vacuum energy density of  all 
the fields other than B. For e ~ Ap4h this potential has 
local minima at 

B ~, 2rrNf B (7) 

for integer N with energy densities 
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-~ 2zrNe - A4ph + V 0. (8) VN 
Since e < (10 -34 eV) 4 it is always possible to find val- 
ues of  N for which eq. (8) gives a sufficiently small 
vacuum energy. In fact, for any value of  V 0 there ex- 
ists a state with energy density less than or equal to 
2~re which can be made arbitrarily small by adjusting 
the value of  e. 

Although the potential of  eq. (7) always has meta- 
stable minima with acceptably small vacuum energies, 
to account for the small value of  the cosmological 
constant we must explain why the universe is in one 
of  the states with V N < (0.003 eV) 4 instead of  being 
in some other metastable state. Suppose that at some 
initial time the universe is in a state with a large, posi- 
tive cosmological constant. Thus, initially we are in a 
de Sitter spacetime. The local minima of  the potential 
(6) are unstable because of  the linear tenn. Therefore, 
as time passes the B field will descend down the linear 
slope stepping from one local minima to the next, 
continually decreasing the vacuum energy density. At 
first, when the vacuum energy density, VN, is greater 
than m21A~h the barriers separating the local minima 
in the potential (6) have no effect and the descent of  

~ r 

B to lower energies is relatively rapid. There are two 
reasons that the barriers produced by the cosine term 
in the potential are irrelevant for V N > m21A~h . First, 
the de Sitter space metric is time-dependent and, as a 
result, violations of  energy conservation of  order AE 
= (VN/m21)  1/2 occur due to the time dependence of  
the hamiltonian [2]. One can think of  these violations 
as being caused by the non-zero Hawking temperature 
T H = (2VN/31rm21)l/2 in de Sitter space [3].  For V N 

> m21A2 h the energy fluctuations are sufficient to 
make the B field hop over the barriers betw0en succes- 
sive minima of  the potential. The second reason that 
the barriers have no effect initially is that for T H 
> Apb instantons of  the phantom gauge theory which 
produce the cosine term in the potential are suppressed 
by finite temperature effects [4].  For both reasons the 
B field descends down the slope unimpeded by the co- 
sine barriers. 

Eventually, by descending down the linear poten- 
tial the B field will reduce the vacuum energy density 
to an acceptably small value, 

V N < m21A~h ~< (0.001 eV) 4. (9) 

At this point the cosine barriers between successive 

minima of  the potential do become relevant. The B 
field cannot roll over these barriers because it is over- 
damped for 2 2 4 V N > (mpl/61rf~)Aph.  It therefore must 
tunnel from one minimum to the next. At first, when 

2 2 V N ~ rnplAph this tunnelling is not significantly sup- 
pressed and the B field proceeds downward at essen- 
tially the same rate as it did before. However, once we 

<~ 2 --2 the tunnelling process get to states with V N ~ mpll~ph 
is highly suppressed and further downward progress is 

2 2 extremely slow. For V N ~ rnplAph the tunnelling rate 
per unit volume is [5 -7 ]  

F / V ~ A  4 e x p ( - 3  4 ph "smpI/VN)" (10) 

Thus, eventually we get to states with acceptably 
small values of  the cosmological constant [see eq. (9)] 
and enormously long lifetimes. 

The relaxation process outlined above is quite slow. 
It takes at least 1045o y for an initial vacuum energy 
density of  order m41 to get reduced to a value less than 
(0.003 eV) 4. However, once this occurs a region the 
size of  our observable universe will remain in a series 
of  states with acceptably small cosmological constants 
for at least 1010248 y. This enormously long time is 
due to the exponential tunnelling suppression in eq. 
(10). During this period tunnelling between neighbor- 
ing minima of  the potential occurs occasionally, but 
this process is extremely gentle. Converting the entire 
observed universe from one vacuum to the next re- 
leases only 10 -37 eV of  energy. 

Unfortunately, the model discussed here arrives at 
states with acceptable values of  the cosmological con- 
stant without ever having produced any matter with 
which to fill the relatively flat spacetime it has 
formed. Thus, as it stands, the model cannot be incor- 
porated into a realistic cosmology. The model seems to 
require the spontaneous production of  a non-zero mat- 
ter density by some rare and presently unknown pro- 
cess. 

The potential of  eq. (6) is of  course unstable and it 
is interesting to ask what happens after the 1010248 y 
period during which the cosmological constant is small 
but positive. Clearly, the B field will eventually tunnel 
to a state with small negative vacuum energy. This 
state has two very interesting properties. First, if we 
could produce a state in which B was exactly at a local 
minimum of the potential with negative vacuum ener- 
gy then this state would be stable despite the apparent 
instability of  the potential (6). It has been shown [6, 
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7] that the rate for tunnelling out of  such a state van- 
ishes in an anti-de Sitter spacetime which is the space- 
time for a negative value of  the vacuum energy. Fur- 
thermore, a positive energy theorem can be proven for 
this state using the techniques of ref. [8].  However, if 
we produce this negative energy density state by tun- 
nelling down from a positive energy state, which is 
what occurs here, then the value of  B in the interior of  
the bubble produced during the transition is not exact- 
ly the value at the local minimum of the potential, but 
is slightly displaced. This situation has been analyzed 
in detail by Coleman and DeLuccia [6]. It seems like- 
ly that the interior of  the bubble suffers a gravitation- 
al collapse in a time of  order (m2pl/2rre)l/2. Thus, after 
around 1010248 y, the ultimate fate of  the universe in 
this model is gravitational collapse. 

Several issues requiring further study are raised by 
this work. The most important of  these is to find a 
mechanism for introducing ordinary matter into the 
universe sometime during the long period during which 
the cosmological constant is acceptably small. Clearly 
this is essential if the model is to be taken seriously. It 
is also important to construct a more complete high- 
energy theory which can produce the type of  non- 

compact Goldstone boson used here. Although it is 
not cosmologically realistic, the model presented here 
does at least demonstrate that a low-energy effective 
theory with a compensating sector which reduces the 
cosmological constant to an acceptably small value 
without unnatural fine-tuning of  parameters can be 
constructed. 

I am extremely grateful to Mark Wise, 
Sidney Coleman, Dan Freedman and Alan Guth for 
very valuable discussions. 
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