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Using the formalism of Boucher we derive the conditions under which gravity can stabilize otherwise metastable or unstable 
scalar field configurations. For the case of a double-welled potential we rederive the stability criteria first obtained by Coleman 
and DeLuccia. Our derivation does not require the assumption of 0(4) symmetry or the thin-walled approximation used in 
their work. We also give the conditions for which gravity can stabilize the symmetric points of general quartic potentials and of 
a Coleman-Weinberg potential. 

Under certain circumstances gravitational effects 
can stabilize a scalar field configuration which would 
be metastable or unstable in the absence of  gravity 
[ 1 4 ] .  Consider for example, a potential with two 
local minima, one at ~ = ~+ and one at ~ = ~_,  with 
an energy splitting V(¢+) - V(~_) = e. Normally, the 
state ~ = ~+ would be metastable. However, Coleman 
and DeLuccia [ 1 ] have shown that for sufficiently 
small e if V(q~+) ~< 0, the tunnelling rate between the 
states ~b = q~+ and ~b = ~b_ vanishes when gravity is in- 
cluded in the calculation. More recently, Boucher 
[4] has provided a general formalism for analysing 
the stability of  various field theories based on Witten's 
proof of  the positive energy theorem [5] applied to 
the energy as it is defined in the fiat [6] or anti- 
de Sitter [7] space cases. Here, we apply this formal- 
ism to the situation considered by Coleman and 
DeLuccia rederiving their stability conditions [ 1,8]. 
Our approach allows this to be done without requir- 
ing the assumption of  0(4)  invariance and without 
using the thin-walled approximation. It also gives ad- 
ditional information which constrains the general 
form of the potential. In addition we derive the con- 
ditions for which gravity can stabilize the symmetric 
points of  general quartic potentials and of  a Coleman-  
Weinberg potential [9]. 
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Boucher's formalism is remarkably simple to de- 
scribe and implement. For any potential V(~) with an 
extremum V'(~+) = 0, a positive energy theorem for 
the state ~b = ¢+ can be proven using the approach of  
Witten provided that there exists a real function f(~)  
satisfying 

f(~b+) = [-V(~.)/3t¢] 1/2, 

( f ) 2  _ ~Kf2 ~<~ V(~b), (1) 

where K = 87rG. Clearly the first equation above re- 
quires that V(q~+) < O. Because of  the resulting posi- 
tive energy theorem, the existence of  such a function 
is sufficient to prove that the state ~ = ~+ is both 
classically and semi-classically stable. 

We consider first the asymmetric double-welled 
potential. In this case we can write V(~) in the form 

V(~) = V0(~ ) - 6 V(~), (2) 

where V 0 is a potential with V0(¢+) = V0(q~_ ) and 
8Vintroduces the splitting V(0+) - V(¢_) = e. We 
also choose 8 V to satisfy 

8 v(~+) = 0 ,  

and 

8V'(¢+) = 8V'(~_)  = 0 (3) 

so that the minima are not shifted. If  we write 

f (¢)  = g(O) + [-V(~b+)/3g] 1/2, (4) 
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then eq. (1) is equivalent to 

= o ,  

and 

(8,)2 _ g[--3K V(~b+) 1 1/2 _ ~Kg2 

½ - v 0 ( ¢ + ) ]  - ½8v( ). ( 5 )  

To solve these equations we choose g to satisfy 

(8 ')  2 = ½ [V0(¢) - V0(¢.)] . (6) 

With the boundary condition g(¢+) = 0, this gives 

g=_+ f de(½ fro(e)- v0(¢+)]) 1/2 (7) 

We choose the sign in eq. (7) so that g is always posi- 
tive. Then in order for that state ¢ = ¢+ to be stable 
8Vmus t  satisfy what is left of  eq. (5), 

5V~< 3Kg 2 + 2g[-3KV(¢+)] 1/2. (8) 

This restricts 6Vin  a way we discuss more fully be- 
low. However, whatever 6 V is, at the point ¢ = ¢_ 
where by definition 6V= e it must satisfy eq. (8). Fol- 
lowing Coleman and DeLuccia [ 1 ] we define 

¢,_ 

Sl -- f d¢(2tVo(¢)- VO(¢+)] )  1/2 , (9) 
~+ 

and then eq. (8) gives us the condition for stability, 

e~3 2 ~KS 1 + [-3gV(¢+)]  1/2S 1 . (10) 

This agrees exactly with the results [ 1,8] obtained by 
assuming 0(4)  symmetry and demanding that the 
tunnelling rate vanishes in the thin-walled approxima- 
tion. This agreement supports the assumption that 
0(4)  invariant solutions dominate the semi-classical 
tunnelling rate. For V(¢+) = 0 we recover from eq. 
(10) the original result of  Coleman and DeLuccia [1] 
that the state ¢ = ¢+ with V(¢+) = 0 is stable if 

a 2 (11) e ~< 7IKS 1 . 

Eq. (8) gives a general constraint on the form of  
8V. For example, if 

VO(¢) = X(¢ 2 - b2) 2 , (12) 

and we choose ¢+ = - b ,  then stability is assured if 

6V <~5Vma x (13) 

where 

6Vma x =-~XK(¢ 3 - 3 b 2 • - 2 b 3 )  2 ~b~< b , 

=~M(¢3-3b2¢+6b3)2 ¢ > b .  (14) 

It is interesting to apply the Boucher [4] formal- 
ism to some other simple cases. For example, by con- 
sidering the form f =  a + be 2 we find that the symme- 
tric point ¢ = 0 of  the potential 

V = ½m2¢ 2 + ~X¢ 4 - A (15) 

is stable, provided that 

m 2 / > - ~ K A ,  

and 

h ~> -~K [2m 2 + 3KA + gA(9 + 12m2/KA)I/2] . (16) 

Note that this includes the possibility of  gravitational 
stabilization of the state ¢ = 0 for a potential with 
negative quadratic or negative quartic terms or even 
with both of these. 

Another interesting case is the Coleman-Weinberg 
[9] type of potential 

V = Be  4 [ln(¢2/o 2) - ~] - A ,  (17) 

arising from radiative corrections to a purely quartic 
potential. Here B is a positive constant. Once again 
we consider the stability of  the state ¢ = 0 which is 
unstable in the absence of  gravity. This is clearly a 
more complicated case than the simple quartic poten- 
tial. The stability criterion for the potential (17) must 
give stability for B < Beritieal with Beritical to be de- 
termined. In the limiting case, the inequality in eq. 
(1) is saturated and thus to find Beritical we can re- 
write eq. (1) as 

f(O)=(h/3K)l/2, f '=(~V+~Kf2)  1/2. (18) 

For small values of  ¢ eq. (18) requires that 

f= (A/3K)l/2 + ~X/ ~ ¢2 + O(~b4). (19) 

To determine Beritieal we use (19) as initial data and 
numerically integrate (•8) to larger values of  ¢. The 
stability condition is then that the parameters A and 
B be chosen so that the square root in eq. (18) never 
becomes imaginary. We find for Ko 2 < 0.1 that the 
state ¢ = 0 of  the potential (17) is stable provided 
that 

B <~ 1.25KA/o 2 . (20) 
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The Boucher method can obviously be applied to 
many other types of  potentials (see for example ref. 
[ 10] ). However, for most purposes the results of eqs. 
(10), (16) and (20) should be sufficiently general. 

We are grateful to D. Freedman for helpful and en- 
couraging comments.  
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