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Using the formalism of Boucher we derive the conditions under which gravity can stabilize otherwise metastable or unstable
scalar field configurations. For the case of a double-welled potential we rederive the stability criteria first obtained by Coleman
and DeLuccia. Our derivation does not require the assumption of O(4) symmetry or the thin-walled approximation used in
their work. We also give the conditions for which gravity can stabilize the symmetric points of general quartic potentials and of

a Coleman-Weinberg potential.

Under certain circumstances gravitational effects
can stabilize a scalar field configuration which would
be metastable or unstable in the absence of gravity
[1—4]. Consider for example, a potential with two
local minima, one at ¢ = ¢, and one at ¢ = ¢_, with
an energy splitting V(¢,) — V(¢_) = €. Normally, the
state ¢ = ¢, would be metastable. However, Coleman
and DeLuccia [1] have shown that for sufficiently
small e if V(¢,) <0, the tunnelling rate between the
states ¢ = ¢, and ¢ = ¢_ vanishes when gravity is in-
cluded in the calculation. More recently, Boucher
[4] has provided a general formalism for analysing
the stability of various field theories based on Witten’s
proof of the positive energy theorem {5] applied to
the energy as it is defined in the flat [6] or anti-
de Sitter [7] space cases. Here, we apply this formal-
ism to the situation considered by Coleman and
DeLuccia rederiving their stability conditions [1,8].
Our approach allows this to be done without requir-
ing the assumption of O(4) invariance and without
using the thin-walled approximation. It also gives ad-
ditional information which constrains the general
form of the potential. In addition we derive the con-
ditions for which gravity can stabilize the symmetric
points of general quartic potentials and of a Coleman—
Weinberg potential [9].

* Supported in part by the US Department of Energy under
Contract No. DE-AC03-76-ER03232-011 and by an Alfred
P. Sloan Foundation Fellowship.

0370-2693/85/$ 03.30 © Elsevier Science Publishers B.V.
{(North-Holland Physics Publishing Division)

Boucher’s formalism is remarkably simple to de-
scribe and implement. For any potential ¥{¢) with an
extremum V'(¢,) = 0, a positive energy theorem for
the state ¢ = ¢,. can be proven using the approach of
Witten provided that there exists a real function f(¢)
satisfying

£(8s) = [-V(9,)/3k]11/2
(f)? - 3kf2<3V(9),

where k = 87G. Clearly the first equation above re-
quires that ¥(¢,) < 0. Because of the resulting posi-
tive energy theorem, the existence of such a function
is sufficient to prove that the state ¢ = ¢, is both
classically and semi-classically stable.

We consider first the asymmetric double-welled
potential. In this case we can write ¥{(¢) in the form

V(¢)=Vo(9) - 6V(9), 0]

where V), is a potential with Vy(¢,) = Vy(¢_) and
8V introduces the splitting V(¢,) — W(¢_) = €. We
also choose 8V to satisfy

0]

5V($4)=0,

and

§V'(94)=8V'(9)=0 &)

so that the minima are not shifted. If we write

19) =) + [-V(9:)/3k] 12, @
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then eq. (1) is equivalent to
g(¢+) = 0 ]

and
) — g3k V(e — 3xg?

<3 [Vo®) — Vo(@s)] ~28V(9). ®)
To solve these equations we choose g to satisfy

&) =31Vo@) - Vool . (6)

With the boundary condition g(¢,) = 0, this gives
[]
g=* [ '3 Vo) - V@ 2. ™)
L

We choose the sign in eq. (7) so that g is always posi-
tive. Then in order for that state ¢ = ¢, to be stable
8V must satisfy what is left of eq. (5),

8V <3kg? + 2g[—-3xV(p,)] Y2 . 8)

This restricts 6V in a way we discuss more fully be-
low. However, whatever 8V is, at the point ¢ = ¢_
where by definition 8V = € it must satisfy eq. (8). Fol-
lowing Coleman and DeLuccia [1] we define

¢_
S1= [ d'(2[Vo(®") - Vo2, ©)
o,
and then eq. (8) gives us the condition for stability,
e < kST + [-3x (o)1 2S, . (10)

This agrees exactly with the results [1,8] obtained by
assuming O(4) symmetry and demanding that the
tunnelling rate vanishes in the thin-walled approxima-
tion. This agreement supports the assumption that
0O(4) invariant solutions dominate the semi-classical
tunnelling rate. For V(¢,) = 0 we recover from eq.
(10) the original result of Coleman and DeLuccia [1]
that the state ¢ = ¢, with V(¢,) = Ois stable if

e<3nsy. @an

Eq. (8) gives a general constraint on the form of
8V. For example, if

Vo(9) = \g? - b2)2, (12)
and we choose ¢, = —b, then stability is assured if
SV <8V 0y (13)
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where

8V max = $ (@3 — 3020 — 2632 ¢<b,

(o3 — 3029+ 632 ¢>b. (14)

It is interesting to apply the Boucher [4] formal-
ism to some other simple cases. For example, by con-
sidering the form £ = a + b¢? we find that the symme-
tric point ¢ = 0 of the potential

V=3m2¢2 +ix¢% — A (15)
is stable, provided that

m? > —%KA ,

and

A= —3k[2m? + 3kA +kAQ + 12m2[kA)12] . (16)

Note that this includes the possibility of gravitational
stabilization of the state ¢ = 0 for a potential with
negative quadratic or negative quartic terms or even
with both of these.

Another interesting case is the Coleman—Weinberg
[9] type of potential

V=B¢*[In(¢2/0?) —3] — A, a7

arising from radiative corrections to a purely quartic
potential. Here B is a positive constant. Once again
we consider the stability of the state ¢ = 0 which is
unstable in the absence of gravity. This is clearly a
more complicated case than the simple quartic poten-
tial. The stability criterion for the potential (17) must
give stability for B < B itica1 With B ps.a1 t0 be de-
termined. In the limiting case, the inequality in eq.

(1) is saturated and thus to find B, We can re-
write eq. (1) as

fO=WAB)Y2, f'=GV+afH2.  (18)
For small values of ¢ eq. (18) requires that
£=(ABYY2 +3:/30A 92 + O(9%) . (19)

To determine B ;.. We use (19) as initial data and
numerically integrate (18) to larger values of ¢. The
stability condition is then that the parameters A and
B be chosen so that the square root in eq. (18) never
becomes imaginary. We find for ko2 < 0.1 that the
state ¢ = 0 of the potential (17) is stable provided
that

B<125kA/a? . (20)



Volume 156B, number 5,6

The Boucher method can obviously be applied to
many other types of potentials (see for example ref.
[10]). However, for most purposes the results of eqgs.
(10), (16) and (20) should be sufficiently general.

We are grateful to D. Freedman for helpful and en-
couraging comments.
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