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Bound states of the two-dimensional O( N) model*
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Using the semiclassical methods of Dashen, Hasslacher, and Neveu we compute the bound-state spectrum of a
two-dimensional model of scalar bosons with O(N) symmetry and ¢* coupling.

I. INTRODUCTION

In a series of papers,'”® Dashen, Hasslacher,
and Neveu (DHN) have pioneered the use of semi-
classical and WKB methods in quantum field
theory. In particular, they have employed semi-
classical and inverse scattering techniques to
calculate the bound-state spectrum of the Gross-
Neveu model.® Here, we apply these methods to
an O(N)-symmetric theory of scalar bosons with
¢* coupling in two spacetime dimensions. Our
computation is to leading order in an expansion
by powers of 1/N, and therefore corresponds to
the many-field limit of the theory.

In Sec. II we introduce the two-dimensional O(N)
model and discuss some of its relevant features.
The semiclassical methods of DHN are applied in
Sec. III, and bound-state masses and form factors
are calculated in Sec. IV. A last section is de-
voted to summary and conclusions.

II. THE O(N) MODEL

The O(N) model with ¢* coupling is given by the
(unrenormalized) Lagrangian

A
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where a sum over repeated index a from 1 to N
is implied throughout. In two dimensions we re-
quire only a mass renormalization of y,. A more
convenient form for the Lagrangian is
£=30,$40" ¢~ 23X b ¢u+32_1;:x2 —%&uozx :
(2.2)
By solving the field equation for y we see that this
Lagrangian is equivalent to (2.1).
The effective potential for this model has been
computed to leading order in 1/N elsewhere.* ®
It determines the vacuum values of the fields,
which we denote by ¢, and X. In accordance with
Coleman’s theorem,® the continuous O(N) sym-
metry cannot be spontaneously broken in two di-
mensions, so

3.=0. (2.3)

To this order, the square of the physical meson

14

mass is given by
X =m? (2.4)
and X is determined by the gap equation

- A X
x=u2—24—‘”ln(1‘%2>, (2.5)

where M is an arbitrary renormalization mass.
The parameter p (an intermediate renormalized
mass) depends on the value of M chosen to re-
normalize p, while A is independent of M since it
is not renormalized. A convenient renormaliza-
tion-invariant mass parameter is

24
Xo=M?exp <——Aﬁ>. (2.6)
Then, writing

X =PXo» 2.7
Eq. (2.5) becomes
Inp=—- <@Q> p. (2.8)

An examination of Fig. 1 will indicate the key
features of this equation. For

24my

—)T—Q =0 (2.9)
there is a unique solution in the range
0<p=s1. (2.10)
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FIG. 1. Graphical solutions to Eq. (2.8) for the three
ranges discussed in the text.
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If
0>2Mo > _ o (2.11)
Eq. (2.8) has two solutions:
e>pr>1, (2.12)
pr =e. (2.13)

The larger of these two solutions, p;;, will always
give a lower vacuum energy and hence will de-
termine ¥ through (2.7). Finally, when

280 < _ g1 (2.14)
there are no solutions at all for p and the theory
has no vacuum state. Using (2.13) with (2.4) and
(2.7), this means that the physical parameters of
the model must satisfy

A

W>—1 (2.15)

in order for a vacuum to exist. This corresponds
to the allowed domain found by Schnitzer® in order
to avoid tachyons in the two-point Green’s func-
tions.

If A<0, the effective potential, V(¢, ¢,), becomes
complex for sufficiently large values of ¢, ¢,, and

furthermore

Re[V(p, ¢o)l — ~=

6 0g = (2.16)

In Sec. IV we will require A<0 to bind mesons.
Equation (2.16) would suggest stability problems
with such a scheme. However, very large ¢, ¢,
lies outside the domain of applicability of the 1/N
expansion, so Eq. (2.16) may not be a definite
property of the model. Also, it has been shown®'”’
that, to leading order in 1/N, the model is con-
sistent and possesses no tachyons in the negative
range of A allowed by (2.15). Schnitzer® has found
a two-body bound state in the negatively coupled
theory when (2.15) is satisfied.

We will therefore accept the consistency of the
model in the entire domain of (2.15) and leave the
ultimate problem of stability to be settled by
higher-order calculations or different methods.
One strong motivation for this approach is the
striking similarity between the negatively coupled
two-dimensional theory and its four-dimensional
analog for either sign of A, when evaluated in the
many-field limit.”*® It is therefore hoped that our
calculations might suggest the type of behavior to
be found in the four-dimensional O(N) model.

III. THE SEMICLASSICAL METHOD

In the DHN approach,'™® we identify bound-state energies by considering

Tre ~i#7) f

where the integration runs over all periodic fields,
¢a (X, O):(pa(x) T)’ (3.2)
x (%, 0)=x(x, T). (3.3)

The semiclassical method involves evaluating the
x-field integration by stationary-phase approxima-
tion, and ignoring the Gaussian corrections which
would be computed in a complete WKB calculation.
Here we will not consider all of the stationary-
phase points of the integrand (3.1), but only those
involving time-independent y fields which automati-
cally satisfy (3.3). This will not allow us to com~
pute the complete semiclassical particle spectrum,
but will nevertheless provide interesting bound-
state results.

For time-independent y fields we introduce the
eigenvalues and eigenfunctions of the Schrédinger-
type equation

dz
[-dx—z +x(x)]¢a(x)=w42[x]¢s(x) , (3.4)

where we have explicitly displayed the w; as func-
tionals of x. We can use this complete set of

T w 3N
X]exP[ f dtlmdx<%au¢aa“¢a—%x¢a¢a+ﬁ z

—STN uozx>], (3.1)

r

eigenfunctions (appropriately normalized) to write
balx, 1) =‘;A;(t)¢,. (). (3.5)

This reduces the integrations over the fields ¢, to
functional integrals of simple harmonic-oscillator
coordinates. Then, using well-known results,®
we find for time-independent x

$olo.] exp[ifontf_:dx (%ama"m—éwm,)]
(=l
= exp (-12——N Tz:iwi> %’:}C({n})exp (—iTz; n,w,) ,

(3.8)

where the sum is over all sets of non-negative in-
tegers n; and

Cnt)= II EZ *f)";lz' . (3.7)

Thus, we can write out the contribution to the
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trace (3.1) from time-independent stationary-
phase points explicitly, obtaining

Tr(e~*#7) f: {n})e"E({"})T R (3.8)

where

E{n})=N L[ dx<
+%Zﬁ:wi[x]+%zi: ni“-’i[X]] (3.9)

with y =x(x) given by the stationary-phase condi-
tion

SE({n})
oy

3
X+ Io?X

=0 . (3.10)

The various terms in Egs. (3.8) and (3.9) have
direct physical interpretations. C({n}) is the num-
ber of degenerate states with quantum numbers
{n} and energy E({n}). E({n}) consists of the clas-
sical energy of the x field, a contribution from
quantum fluctuations, and the energy of »; parti-
cles occupying states with energies w;. Since we
are interested in bound states, we will only con-
sider those terms of (3.8) in which all »; =0 ex-
cept those corresponding to bound excitations and

thus satisfying
Wy <m. (311)

In Sec. IV we will see that only one of the eigen-
values of Eq. (3.4) satisfies (3.11) and we will label
it by w, with the corresponding bound-state eigen-
function y,(x). Thus, we will consider bound
states labeled by a single quantum number »n, with
the multiplicity of degenerate states given by

o o)_(1\I+ng—1)!

= (N=1) ] 8.12)

If we want the bound-state energies normalized
to a vacuum energy of zero we must subtract the
vacuum energy

E,=N [ [Ex(—%—?%uf}) +-;-iZ w;[i]]
(3.13)
from (3.9) so that
E(ny)=E(n,) - (3.14)
The w;2[X] are just the eigenvalues of Eq. (3.4)
with x(x)=X. Thus, from (3.9) and (3.13) we have

E(no)=N{f_:dx [——(x XP+3 (P-o =X = x)}

+3 <}:w —Zw. ) +_0'"-’o x]}

(3.15)

with x = x(x) determined by

OE (ny)
ox
Our problem is to solve (3.16). This is done in
Sec. IV.

Equation (3.12) tells us that the bound states of
energy E(n,) form a degenerate reducible repre-
sentation of the O(N) group consisting of a sym-
metric tensor of rank n,. In terms of irreducible
representations, the supermultiplet of energy
E(n,) is formed from multiplets which are sym-
metric traceless O(N) tensors of rank n), where

nt=0,2,4, .. (3.17)
nl=1,3,5,... (3.18)

=0. (3.16)

.,n, for n, even,
,n, for n, odd.

This degeneracy in the spectrum is much greater
than what would be required by O(N) symmetry
alone.

IV. THE BOUND-STATE CALCULATION

It is convenient to use the vacuum energy (3.13)
to determine the renormalization of ., All di-
vergent momentum integrals will be regulated
with a cutoff A. When x(x)=X Eq. (3.4) becomes a
free-particle equation, so, recalling (2.4),

— Ad w
Solil= [T R emyt [Tax. @)
7 o T el
The condition

2@1:0. (4.2)
0x

determines the mass renormalization,

/\dk 1/2
X =m? /—LQ 6 f <k2+m ) . (4,3)

Now consider the Schriodinger-type equation

a2
[ Fe] +(x=Xx) ] Y =Ry . (4.4)
Comparison with Eq. (3.4) using (2.4) gives

B2=w?-nf . (4.5)

The program for solving Eq. (3.16) is to rewrite
the bound-state energy (3.15) in terms of the re-
flection coefficient and bound-state energies of
Eq. (4.4) using the trace identities of the one-di-
mensional Schrédinger equation.® '© To simplify
our calculations we will use two results of DHN?
They have shown how the functional derivative with
respect to the reflection coefficient implied in
(3.16) leads to functions [x(x) - X] which act as re-
flectionless potentials in Eq. (4.4). Furthermore,
since the bound-state energies of (4.4) enter
additively into (3.15) we need only consider a sin-
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gle bound state of (4.4). Thus, we will take our
solution x = x(x) to form a reflectionless potential
in Eq. (4.4) with a single bound state given by

k,=ik (4.6)
or
wo = (m? = k2)'2, (4.7
Under these restrictions we have the simple

trace identities

f"dx<x_;)= - 4x, (4.8)

A kdk 2tan'1(K/k) _Z _2_ 2 2\1/2 -1 [(’n_z_x_z)liz IAEIE_ (___1__ 12
,/(; T (B2 +m?)1"™2 =7 m+ﬁ(m K*)*tan K J+4K b 21\ k% +m? ’

[ axtx-xr=ge. (4.9)

-0

These permit us to write the first two terms of
(3.15) solely in terms of the unknown k. Using the
DHN results for summing over modes, !~* we find

Z‘(wi[x]—w;[i]) = wo[x]-m-[/\% [-(%] ,
(4.10)
where (k) is the phase shift of Eq. (4.4) given by
d(k)=2tan"'(x/k). (4.11)
Finally,

(4.12)

Then, combining (4.7), (4.8), (4.9), (4.10), and (4.12) into (3.15) we can write the bound-state energy as a

function of «,

' 12
E(n,) =N{—§x3—7 (o2 = m2)K +3(m? = 2)V2

Adk( 1 >1/2}
—2Kf s lm—= .
o 2m\E*+m

1 n,
- % (2 —
K+N(m

2)1/2

xz)l/z-(mz—K tan"[(mz_'(z)l/z}
7 K

(4.13a)

Recalling (4.3) we see that the divergent integrals cancel, and the result is, after renormalization,

oS8 o (m AN 2 s Kk (mP—k
E(no)—N)—AK +<N +2>(m - K- -
It is convenient to write
K=m sinf (4.14)
for
0< esg ) (4.15)
Then, in terms of 6,
2
E(n,) =Nm [_S_m_ sin®6+ 2 cosp +l(ecose— sin@)}
A N m
(4.16)
and Eq. (3.16) becomes simply
dE(n,)
Lx\n,) _
a0 0, (4.17)
giving
i ; A Lo _
siné [sme cosé Ay P <9+N 1r) ] =0. (4.18)
The solution sing =0 corresponds to the vacuum
state x =x. Nontrivial solutions must satisfy
. A n
= - —Q—
sin26 2 (241rm2) <6 N n) . (4.19)

For 7n,=0 we have the solution 6§ =0, which again
gives the vacuum state. If A>0 there are no solu-

tan"[(—mj——?ﬂ} ( . (4.13b)

f

-
tions to (4.19) in the allowed range (4.15) for non-
zero n,. Thus, we must take A negative, but in
the allowed range of (2.15), to get bound states.
For negative A we define

(Al
i <1 (4.20)

Then, (4.19) becomes for A<0

sin29=2g<0+%°— 1r> s (4.21)

and subject to (4.21) the bound-state energy (4.16)
is

E(ng) =gN—7’:¢ sind(1-g-2 sin%g). (4.22)

For stability we must require
d?E(n,) >0,

de?
which gives the condition

(4.23)

(4.24)

Combined with (4.15) this means that we must
solve (4.21) in the range

cos26>g,

(4.25)

u
0s<é< Gmu<z,
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where
cos20,,, =g. (4.26)

In the range (4.25), (4.22) is never negative.
When bound states are present, Eq. (4.21) will
have two solutions and condition (4.25) tells us al-
ways to take the smaller one. These features are

displayed in Fig. 2, where we have taken

n
]—VQ =0.1, (4.27)

and we find bound states for g=0.1 and g=0.5 but
none for g=0.9.
For

1, 8T< N(1 -g) (4.28)
we have the approximate solution to (4.21)
_ mogm 2 [ngﬂ]" ([ngnjr)
0= (+]: 0 O 0
N(i-g) "30-9 N1 -g)] " \LN1-2)

(4.29)

with the energy

E(ng) =ngm —ingm [N-—'?ig_%] : + O( [J—V%%ﬂ‘) .

(4.30)
This clearly shows the presence of an n-body
bound state.

Once « has been computed from Eqs. (4.21) and
(4.14) we can reconstruct the functions x(x) and
¥(x) by inverse scattering methods.'®! We form
the kernel

F(x,y)=c,e*e*’ (4.31)
[}

and solve the Gel’fand-Levitan equation

K(,9)+Fi,9)+ [ deK(x, 2)F(z,3) =0,

(4.32)
9=.9 g= 5
Ny -
N - |
sin28
A g=.1
bound states
i
/e
e 8

FIG. 2. Graphical solutions to Eq. (4.21) for n,/N=0.1
and g=0.1, 0.5, and 0.9,

obtaining
-C, el‘xekﬂ
K 3)= 1oz e (4.33)
Now'!
K(x,y) < iy(x)e*, (4.34)

and this determines the bound-state normalization
factor

Co=2kK (4.35)
and the bound-state eigenfunction

(%)l (4.36)

Yolx) = cosh(kx)

x(x) is determined by

x(x)=m2+2£-K(x, x), (4.37)
giving
X(%) = m? — 262 + 2k® tanh?(kx). (4.38)

These functions are sketched in Fig. 3.

V. SUMMARY AND CONCLUSIONS

We have found a rich bound-state spectrum in
the two-dimensional O(N) model with negative ¢*
coupling. It consists of supermultiplets which
are reducible symmetric tensor representations
of the O(N) group. These are ordinary n-body
bound states and not what is referred to in the
physics literature as solitons. A soliton would
have appeared in our model as a solution to Eq.
(4.21) with 6=7/2, which is forbidden by Eq.
(4.25). The absence of such a solution is no doubt
connected to the absence of spontaneous symmetry
breaking in our model. We note therefore that
semiclassical bound states and solitons are not
necessarily related, although computational meth-
ods may be similar for the two.

VI. NOTE ADDED: THE STABILITY PROBLEM

For the reader who is justifiably concerned
about the stability problem for negatively coupled
¢* theory (discussed in Sec. II) we make the fol-
lowing comments. Consider the general O(N)-sym-

N R N
. + -+
-0 1.0 KX -1.0 1.0 xX

FIG. 3. Sketches of x(x) and ¥,(x) versus «kx.
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metric Lagrangian

£=38,¢,0"¢, - NV (.‘&NEL) (6.1)

Townsend'? and Schnitzer® have shown that a sub-
stitute Lagrangian equivalent to (6.1) to leading
order in 1/N is

£=30,0,0",~ N [V(x)- <x—9‘1;,£"-> V“’(x)] ,

(6.2)
where we use the notation
d
Vo0 -G (6.3)

Using this substitute Lagrangian we can proceed,
as in Sec. III, to write down the bound-state en-
ergies in terms of y(x) and the eigenvalues of a
one-dimensional Schridinger equation [the gen-
eralization of (3.4)],

< 'de_zz+2V(1)(X(x»)¢4(x)=“’12[X]¢1(x) . (6.4)

In the general case, the elementary meson mass
=5
is

m?=2V0(y), (6.5)

with ¥ determined by the gap equation® [the gen-
eralization of (2.5)]

_ 1 pAAt
——n 1,,(—_‘;42(”) _ (6.6)

The analysis of Sec. IV cannot be extended to
the general O(N)-symmetric interaction because

of the lack of appropriate trace identities. How- .
ever, if the effective ¢* coupling constant,5 which
determines the behavior of the meson four-point
function,

Aetr=12VEA(Y) | (6.7)

is negative, it is easy to see that the results of
Sec. IV are just the approximate bound-state en-
ergies calculated to zeroth order in the coupling
constants appropriate to the interactions ¢?" with
n=3.

We can therefore add a term like

ST (990, with 1>0,

to the Lagrangian (2.1), which guarantees a stable
ground state in our model [as established in Eq.
(5.2) of Ref. 5] even for small 7. Then, provided
that

Aer =L +4nX <0, (6.8)

the bound-state spectrum is given to zeroth order
in n by the results of Sec. IV, Egs. (4.21) and
(4.22). Thus, our computation can be viewed as an
approximation to a stable theory, with n¢® cou-
pling, for small but positive 7.
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