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Semiclassical and inverse scattering methods, previously restricted to two-dimensional models, are extended to
four-dimensional scalar field theories. The necessary trace identities are derived, mode sums are carried out,
and renormalization is explicitly demonstrated. The four-dimensional O(N) model is used to illustrate these
techniques. A renormalized expression for bound-state energies of this model, parametrized by the scattering
data of a three-dimensional Schrodinger equation, is obtained. This expression contains nontrivial quantum
fluctuation effects, and corresponds to the leading-order term of a 1/N expansion. In this model, stable n-
body bound states do not seem to appear, even though a two-body bound state has been found in a 1/N
expansion of the Green’s functions. Possible reasons for this failure to bind are discussed.

I. INTRODUCTION

Semiclassical methods, introduced into quantum
field theory by Dashen, Hasslacher, and Neveu
(DHN),! provide a powerful formalism for comput-
ing bound-state spectra in field theory. Such com-
putations have previously been performed for sev-
eral models in two-dimensional space-time!™3
where the simplicity of the sum over normal
modes® and the existence of trace identities* allow
one to express the bound-state energies in terms
of the scattering data of a one-dimensional Schro-
dinger equation. Until now, the extension of the
DHN formalism to more realistic models has been
hampered by the absence of analogous technical
tools for four-dimensional theories.®

In this paper, we derive the trace identities and
perform the mode sums needed to apply semi-
classical methods to four-dimensional scalar field
theories. These results are presented within the
context of the O(N) model for which the semi-
classical method corresponds to a leading order
in 1/N or Hartree approximation. We obtain a re-
normalized expression for the bound-state ener-
gies parametrized by the scattering data of a _
three-dimensional Schrddinger equation. This ex-
pression contains quantum fluctuation effects
which correspond to an infinite set of Feynman di-
agrams of ¢* theory and demonstrates the renor-
malization program in anontrivial way. The bound-
state energies must be minimized with respect to
the independent Schrodinger equation scattering
data to determine the bound-state spectrum. Here
we meet with failure, finding no stable n-body
bound states in the four-dimensional O(N) model
even though a two-body bound state appears, to
leading order in 1/N, in the Green’s functions of
the theory.® In spite of this, we present our re-
sults as a demonstration of techniques required for
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the extention of semiclassical methods to four-
dimensional quantum field theories. It is hoped
that this will provide a basis for further insight
into this subject.

The O(N) model, evaluated in the Hartree ap-
proximation, has an interesting ground-state
structure® which is reflected throughout our cal-
culations. The effective potential has two local
minima, one corresponding to the true stable
ground state and the other representing an unstable
vacuum of higher energy. A remarkable feature
of this model is that the stable Hartree vacuum
does not permit spontaneous symmetry breaking
to occur. This double-valued structure of the ef-
fective potential is also relevant to the bound-state
spectrum of the model as has already been demon-
strated for the two-dimensional O(N) model.?

We begin with a presentation of the DHN formal-
ism as applied to the four-dimensional O(N) mod-
el. Renormalization is then discussed, followed by
a review of the structure of the vacuum state for
this model. In Sec. V, we derive the trace identi-
ties and mode sums needed to obtain a renormal-
ized expression for the bound-state energies,
which is given in Sec. VI. We analyze the bound-
state spectrum in Sec. VII, and conclude with a
discussion of our results. Various technical cal-
culations are left to the Appendixes.

II. UNRENORMALIZED BOUND-STATE ENERGIES

The O(N) model is given by the Lagrangian
Y
£230,00"0,~ 3 Lo’ 0,a— 71y (Pa®d” s (2.1)
where a sum over the repeated index a from 1 to
N is implied throughout. For our purposes a more

convenient Lagrangian to consider is

1977
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. 3N By solving the field equation for y we see that this
£=30 ,0,0“0,— 2 X0, +—7‘_o_ =5 Mo X Lagrangian is equivalent to (2.1).
In the DHN approach,’ we identify bound-state
(2.2) energies by considering
iHT “ 3N - 3N
Tre™) = § olo,Jolx] exp|s dtfd 7(30,0,0%0,~ ¥ xPub,* S B X (2.3)

where the integration is over all periodic fields
04(F,0)=¢,(F, T), (2.4)
X(F,0)=x(F, 7). (2.5)

Since the ¢, fields enter Eq. (2.3) only quadratical-
ly, the ¢ functional integral can be carried out
exactly. In the semiclassical method we then eval-
uate the y functional integral by stationary-phase
approximation. Here we will only consider those
contributions to the trace (2.3) which come from
stationary-phase points involving time-independent
spherically symmetric y fields:

X(T, 1) =x() (2.6)

with » = ['f| . In this case we introduce eigenfunc-
tions and eigenvalues of the three-dimensional
Schrédinger equation

[" v+ X('V)]‘I’at m(F) = wazz[ X]‘I’a,m(f) ’ (2.7)

where we have explicitly displayed the functional
dependence of the w,, on the field (). The qua-
dratic functional integral can easily be evaluated
by expanding the ¢, in the normal modes ¥, ..
Then, applying the stationary-phase approximation,
we find?

Tr(e t4T) = Z cl

{n}
where the sum is over all sets of non-negative in-

fflemEumary . on (2.8)

tegers n,,,,, and
N+ngim=—1)!
clil= TT [(NO)‘+]’ (2.9)
aylym Raim

3
2,9 2
X +7\o Mo X>

Bl -] [ (-

1
+ JT[ Z nalm wal[xj

Gylym

Y (zz+1)wa,[x]} , (2.10)

oyl

with y=x(») determined by the stationary-phase
condition

oF [{n}] _

ox () 0. (2.11)

r

In order to obtain the bound-state energies from
(2.10) and (2.11) we must eliminate all unbound ex-
citations by setting all n,,,, =0 unless

wolxl<m , (2.12)

where m is the physical mass of the elementary
meson, and we must subtract out the vacuum ener-
gy which is given by

3 3
sl [ oo doenos)
0 2X X XO 0 X
+3y (Zl+1)wal[y]] ,
ol

where ¥ is the vacuum expectation value of the field
x. The physical meson mass and the vacuum value
of y are related by®

Y:/yﬂ2 . (2.14)

In all of the following, we will indicate with a
prime restricted sums over those bound excitations
satisfying (2.12). Using this notation, the unre-
normalized bound-state energies are

(2.13)

E[{n}]= N{fd r[ > (x=%)? fo( Ko —Y)(x—?(')]'
+5 2 (21 +1)(wg,[x] - @y, [X])
ayl
1 ’
+ITT Z nalmwal[x]}, (2,15)
Qylym
with y=x(») determined by
GE—[{"}—LO. (2.16)

ox(7)

The combinatoric factor C[{r}], which in this
case is .

? (N+ alm ™ 1)!
clin}l = H [TN“-"lT]

gives the number of degenerate bound states with
quantum numbers #n,,,. This degeneracy is due

to the O(N) group structure of .the bound-state mul-
tiplets. There is a further degeneracy due to the
various orbital angular momentum states of the

(2.17)
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bound excitations. This arises because the bound-
state energies (2.15) do not depend on all of the
quantum numbers #%,,,, but only on the partial
sums, 2! __,n,,,.. The complete bound-state
multiplet structure can be determined from a
knowledge of these degeneracies taking into account
both the O(N) group and the rotation group repre-
sentations which are “occupied.”

It is convenient at this point to introduce the
following two Schrédinger equations:

V=R Y arm

VX - B Y= e Yo -
Comparison with (2.7), using (2.14), shows that

W, [x]= ()2 +m?) /2 (2.20)
and

wo [X]= (ko2 +m®) /2. (2.21)
The bound excitations of (2.7) satisfying (2.12) cor-

J

(2.18)
(2.19)

respond to solutions of (2.19) with negative &7, 2,
which we will denote by

1Ty, Kop>0 (2.22)
so that for bound excitations
Wy [x]= (m® = k22 (2.23)
Finally, we introduce the notation
I =f a3rlx(@) - ¥l (2.24)
and
1= f a*r[x() -xF. (2.25)

The sum over zero-point energies in Eq. (2.15)
can be split into a sum over bound excitations plus
a contribution from the continuum sum, which we
denote by a superscript ¢c. Then, using the nota-
tion of (2.20), (2.21), and (2.23), we have'

3 Y @r1)(wylx]- g lxD =3 D@ D[m? = k2 2= m] w5 Y @+ D[(RGE+mP M = (kg 2 +mP)H 2],
a,l

o,l @, 1
(2.26)
Combining this result with (2.24) and (2.25) we can write the bound-state energies (2.15) as
E[fn}]=N __:_3_.1 +_§_(u 2_ ), +4 Z'(2l+1) [m? = K, 22— m]
2)02 % o — Xy za, «l
+1 ¢ 21+1[k'2 2)1/2 _ 2 2)1/2 _1_ ’ 2 _ 2\1/2
3 Y QUHD[(RLZH+m 2= (k2 +m?) l+% Rogym(m? = k225 (2.27)
a,l a,l,m
I
Of course, the free Schrédinger Eq. (2.18) has mediately

no bound excitations, so the sum over zero-point
energies for the total energy of the vacuum, (2.13),
only has a continuum contribution. Then, from
(2.21) and (2.13), we can write the vacuum energy
as

3 _, 3
= s f_ 9 —2.9 2o
E, N[fdr( o, Xt o x)

307 @Dyt ).

a,l

(2.28)

Equation (2.28) will be useful for purposes of
renormalization. Our program is to investigate
(2.27) using properties of the Schrddinger equa-
tion (2.19) in an attempt to find the minima de-
scribed by (2.16), and thus determine the semi-
classical bound-state spectrum.

III. RENORMALIZATION

The density of states for the free Schrddinger
equation (2.18) is well known so we may write im-

% Z:c (2l+1)(k¢”2 +m2)1/2
a,l

=1 3 a’k 2 2)1/2
2fd7f(2”)3(k+m) .
(3.1)
This allows us to express the vacuum energy
(2.28) in terms of an effective potential V, defined
by

E,=v [ asr, (3.2)
with
V=—2—?;;>"<2 +,% Ho' X +-‘2-f é;—’;(k“mz)‘/z.
(3.3)
¥ is determined by the condition
0. (3.4)

oX
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Recalling that ¥ =m? we get
3. ., . 1 A g
* (#0 —X)‘-S_n_zfo W (3.5)

All divergent momentum integrals will be regulat-
ed, as above, with a cutoff A. We renormalize
by defining

(3.6)

1 1 M 1
X —§+481r21n<2A> T 967 (3.7)
where M is an arbitrary renormalization mass.
Then (3.5) becomes the renormalized gap equation,

X=ui+ 8X m(—Yg) (3.8)

9672 \M

IV. THE VACUUM

We now review some result from a previous
analysis of the vacuum state of the four-dimension-
al O(N) model.® First, as stated in the Introduc-
tion, there can be no spontaneous symmetry break-
ing, and all the fields ¢ , have zero vacuum ex-
pectation values. The vacuum value of the y field
is then determined by the gap equation, (3.8).

This equation has been studied by defining a re-
normalization-invariant parameter with dimen-
sions of mass squared,

9672
XD=M2exp< T > , (4.1)
g
and a dimensionless parameter p by
X=PXo (4.2)
so that the gap equation (3.8) becomes®
9672 p?
lnp=-— —. (4.3)
pIne Xo &
A stable vacuum exists for
2 2
(9@—> LV (4.4)
Xo g

D(k) =det(l — K)eT¥

0 K12 K13 *
Ky 0
K, 0
L3 (_l)n 3 .
=1+ 3 = [atneeat,
n=1 *

Knl

and requires that
pir>e™. (4.5)

There is also an unstable vacuum given by the
other solution to (4.3) satisfying

pr<e™. (4.6)
These determine

X= X1 = P11Xo” X1= P1Xo (4.7

Finally, the y propagator exhibits a two-body
bound state and a resonance when®

—1<Inp,<1, (4.8)

with the binding energy increasing as lnp;; de-
creases to —1. (If Inp;;<~1 a tachyon appears.)
This led to the hope that, as in the two-dimension-
al case,?” a single bound state in the y propagator
would signal the presence of a rich bound-state
spectrum. However, the existence of an accom-
panying resonance and the two-valued vacuum
structure may be relevant features (as discussed
in Sec. VINO) for the failure of this expected spec-
trum to appear in the semiclassical approximation.

V. TRACE IDENTITY AND MODE SUM

The Schrodinger equation (2.19) defines a scat-
tering problem which we now discuss. The out-
going Green'’s function for the three-dimensional
Schridinger equation (2.18) is

o d3p [gid 1 -F2)
G(rl"rz,k)=f _—(2753[_k2—P2+i€:I

1 eikl?;-izl>
=l == . 5.1
<41r>( T, -7, (5.1)
We define the kernel
K”(k)=G(-I=i—-f,,k)[X(1’j)— Y] . (5-2)

Then the modified Fredholm determinant for the
scattering problem described by Eq. (2.19) is®

(5.3)




14 SEMICLASSICAL BOUND-STATE METHODS IN... 1981

One must consider a modified Fredholm deter-
minant to avoid ill-defined expressions. This
corresponds to separating the first Born approxi-
mation from the S matrix.

The scattering operator, S(k), for fixed %, is an
operator on the unit sphere in momentum space
with matrix elements expressed in terms of the
partial-wave phase shifts 5,(k) by

506 | By =5 ICENICDESTS

(5.4)

The S operator, taken between angular momentum
eigenstates, gives

<l,m, |S(k) |lm> = 61' lﬁm’me
As a result of (5.5) we find
In detS(k) =Tr InS(k)

o

Z (21+1)5,(%) . (5.6)

2465 (k) . (55)

The modified Fredholm determinant and the S
operator are related by®

_l_)i(_@ = i(k/2m)I

D) [detS(%)]e 1, (5.7)
with I, defined as in (2.24). Thus,

argD(k) =37 IndetS(k) —4—'sz1 . (5.8)

Equations (5.7) and (5.8) take into account the well-
known result that the Born approximation gives

the high-energy limit of the scattering amplitude
for potential scattering. That is,

In dets(k) ~ Z—’jnle (5.9)
since

Jim D(R)=1 (5.10)
and

I%ilrpmargD(k)=O. (5.11)
Thus, we find the trace identity

I, =£i‘12 [%lndets(k)]

- lim [Iﬁl’ » (2l+1)6,(k)} . (5.12)
r-w| R

1=0

It will also be recognized that I, is given directly
in terms of the Born scattering amplitude at zero
momentum transfer. However, note that the
coefficient of I, vanishes identically in the 7e-
normalized expression for the bound-state energies
as shown in Egs. (6.1) and (6.3) below.

In Appendix A, we calculate the leading terms
as k- « of the modified Fredholm determinant
(5.3) under the assumption that x(r) — ¥ can be
written as a superposition of Yukawa potentials

x(r)=-x= f dp C(u)——
“min
with u_, >0, for an arbitrary weight function
C(u).. This is what one would expect of a potential
arising from particle exchanges. The Fredholm
series (5.3) allows us to present an expansion for
large &, whose leading term is

1 1
i-"T16 k’2+0< ) ’

with I, defined by (2.25). In Appendix B we derive
the following dispersion relation for argD(%):

argD(k)=_{2 2 I[(2l+1)arctan <'%ﬂ
. pf dp(m'D(” '2>}.

The primed sum is again over only bound excita-
tions of (2.19), and P indicates the principal value
of the integral. Thus,

(5.13)

[argD(p)] ~ (5.14)

(5.15)

[arg D(%)]

1 ? 1 o
kf:;;[—2§ (2l+1)"°"+7r,[, dpln]D(p)|2}

+o(;1?> :

Comparing this with (5.14) we obtain the trace
identity

’
I,= 327{ Do QU+, -

a,l

(5.16)

1 oo

% [ awlpm)f].
(5.17)

In addition, from (5.6), (5.8), and (5.15) we find

S (21+1)8,(k) =221,
47
1=0
+2 E ’ (21+1 tan (Ko
)arc an<k>

. Pf dpnIDl;zi

Note that the leading term as k-~ « gives I, in
terms of the high-energy limit of 1ndetS(2), which
is simply related to the Born approximation for the
forward scattering amplitude as discussed above.
[See Egs. (5.8)-(5.12).] Having obtained a trace
identity for the first term in (2.27), we now con-

(5.18)
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sider the continuum part of the mode sum for the
zero-point energy. Since the potential y(»)- ¥ is,
by assumption, spherically symmetric, the solu-
tions of the Schrddinger equation (2.19) can be
written

alm(r) = Ylm(;') *
For convenience, we have dropped the subscripts

on %’. The scattering states satisfy'

7
Wk ,7) ~ I'k(f‘;) Sin(k"r+ 5, --’2-’z> . (5.20)
We now confine our system inside a large sphere
of radius R by requiring (5.20) to vanish at the
spherical boundary. Similarly, applying these
boundary conditions to the solutions of (2.18) we

must have, for sufficiently large R,

L. F. ABBOTT AND HOWARD J. SCHNITZER
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and
0;
S A i
k' =k (R > . (5.23)
For a fixed £, we must require
1<lays (5.24)
where
lmax PR (5.25)

in order to make the wave function vanish at »=R.
[Since (5.20) and (5.21) break down for I near L
we cannot simply use (5.21) to write I,,, = (2/m)kR.
However, the exact value of 7_,, will not be needed,
and errors from using (5.21) will vanish as R - .]
Then, as R -, we can write our sum over con-
tinuum modes as an integral. Using (5.22),

1
~dr '@
ey — [ rR3Y (+1).
R= T 1=0

@,1 0

(5.26)

Note that (5.25) and (5. 26) give the total number of

modes proportional to R® and f k?dE as they must.
Now using (5.23),

FR+8~5l=nn=kR-31. (5.21)
Thus, we find
an_R
Z_Zbﬂ. (5.22)
2 1/2
TSV R .

ot (%‘) d_ie (B* +m2)1/2'=—<%‘>w:fnﬁ)l'§ . (5.27)
Then, combining (5.26) and (5.27),
Imax
Z; (20 +1)[(R},2 +m?) /2 = (&, 2+m2)1/2]-_§f kdk[ﬁﬁ- > @I+1)6 (k):l (5.28)
Qe 1=0
However,
5,(k)~0 (5.29)
for
1> kR, (5.30)
where R_,, measures the effective size of the potential y(#)—%. Then, as R— o,
kR >ER,,, (5.31)
provided that!®
f:rdrlx(v)-yloo. (5.32)

This is satisifed by any potential of the form (5.13) provided that u_,,#0. As a result of (5.25), (5.29),
(5.30), and (5.31) we may extend the sum over / in (5.28) to infinity, and then use (5.18) to write

13

al

A BPdk
272

1

2
(204 D[ (ki? + DM = (kg +m?) /2] =1 f L% ]

_jo"‘ kdkl:

(B2 +m?)/?

(k2+m2)1

1

Z (21+1) arctan (";')]

Pfo dp[lnli)(p)l"‘

p-% ]}

1 (5.33)
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Again we have cut off all divergent integrals. A straightforward integration gives

fo A pdk [@Tgﬁ Z (21+1)arctan < :)]

- Z @1+1)Km 2, (r? — )2 arcta.n[(m2 — K“'z)”z] Sa 1n<2A
m 2 m ’

m Kul

(5.34)

and in Appendix C we show that

p (" Fdr 1
f [(kZ +m2)1rp k2

Then, from (5.33), (5.34), and (5.35),

} 2121“(21\) 1 <pp2 )"zm[w/p_ﬂ(p“mz)”z]. (5.35)

T 272 \p? + m? m

%Z S+ 1)[(RL2+mP) 2 = (B2 +m?)H /2]
a,

=4 f o [(k%m T

2y1/2 2 2\1/2 )
T 1){M _m, L@E_@L_arctan[(_&—_xgx_)_} . 5«_,1,,@4.) }
T 2 T K, m m

al

@l
0 dp pz 1/2 \/-p_2+(p2+m2)1/2 (Ell
- A Wlnln(.b)lz{<pz+mz) ln[ m J—ln m) .
(5.36)

This completes our calculation of the mode sum.

VI. RENORMALIZED BOUND-STATE ENERGIES
Inserting the results (5.17) and (5.36) into the unrenormalized bound-state energy (2.27) and using the

renormalization (3.7),

sl =n(-(2+ 5. {; e+ Dl-5: [ dpmwu»P}

g

11n<2A>{Z [(1+1)k ,J——f dplnlD(pl}
{ -0+ [ B e }}+-1ﬁm§l;m’n.m(m2_xaf)”2

, _ 2\1/2 _ 1/2
+% Z (21+1)(m2— Kalz)uz_ NZ, (2l+1){K" 5 (mz ;al ) arctan':(m K::;L) :l +%1n(%>}

asl
l) . (6.1)

[ o) o )

Two important features of this calculation now become apparent. First, by Eq. (3.5) we see that the term
proportional to I, vanishes identically. Second, collecting all of the divergent logarithms we see that the
result is renormalized and finite. Note that our trace identity (5.17) is the only result consistent with re-
normalizability, and that if we invoke renormalizability as a requirement this identity can be uniquely
determined. This is an independent check of the results of Sec. V. Recalling (2.14), (4.1), and (4.2) we see

that

(6.2)

4877 1 1
z 1n< ) E;lnpn.

Then the renormalized bound-state energy is
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1

Kal

E[{n}] =N( ZI 21+ 1){[57; (Inpg-1) - {I Ky + 3(m? = ko) /2 —L—;’ﬂ arctan[M]}

a,l

1 ’ = 4 '1 2 1/2 Nroy 2 4 1,21 /2 )
+'ﬁ¢;m nmm(mz_,{dz)l/z_fo 2—1)2-1n|D(p)|2{§(1npn-—1)+<pzf_m2> ln[ Pz“’(Pm = ]})

m

According to (2.16) we must choose |D(k)| and
the various k,; in (6.3) so as to minimize the total
bound-state energy. The function y(#) can then in
principle be reconstructed by three-dimensional
inverse-scattering methods.®

VII. BOUND-STATE CALCULATION

If the various k,, entering additively into the
bound-state energy (6.3) are independent, then we
can consider a single k= ky, with occupation num-
ber n=n,,, without loss of generality. Note that
with this assumption, all bound states are S states.
A boundary condition on the variation (2.16) is that
for n=0 we recover the vacuum state y =% which
satisfies

|D(R)|=1. (7.1)

However, the terms of (6.3) involving |D(k)| are.
all independent of ». Thus, if |D(k)| is independent
of the «,,, (7.1) must apply for all n. Under these
assumptions, the bound-state energy is just

E[n]=N{[-217T (Inpy - 1)-%'] K+<%+-;—> (m? = K2)H/2

_(m?— )M arctan[W - xz)”z]} .
T K

(7.2)

A convenient substitution is

Kk=m sinf . (7.3)
Since k=0 and w =0 we require

0=6=m/2. (7.4)

Then, in terms of 6,

1 X n
E[n]=Nm [—2—” (Inp;; — 1) siné +7V-cose

+ % (6 cosf - sine)J . (7.5)

To minimize this we set

dE[n] _
dé

obtaining

0, (7.6)

n
3(lnp;; - 1)‘COSG=<E1T+ 9) sinf. (7.7)

(6.3)

This would appear to have solutions in the allowed
range of (7.4) for

Inp;>1. (7.8)

This is paradoxical, since the binding energy of
the two-body bound state, as determined from the
Green’s functions,® increases as Inp;; decveases
from 1 to -1. Further, taking a second derivative
we find

d2E[n]
do®

1 . n
= -[2—7 (Inpy;—1)sing +ﬁ cosé

1
*- (sinf+ 6 cose)jl <0, (7.9)

so these solutions are unstable maxima not mini-
ma of the bound-state energy. Furthermore, if
we set n=0 in Eq. (7.7) we do not recover the vac-
uum state 6=x=0.

Equation (7.7) seems to suggest that a tower of
unstable bound states exists in the model. How-
ever, the fact that these solutions do not go over
into the stable vacuum y=%=%;; for n=0 suggests
that the bound states are being built on the unstable
vacuum, ¥=Y%;, discussed in Sec. IV. As a result,
for nonzero n we conjecture that the assumption
of a single bound excitation « = ,, together with
Eq. (7.1) imply that

X 7T Xr (7.10)

for these solutions, which is the wrong limit.
This clearly would give our apparent bound states
an infinite energy proportional to the volume of
space, and removes them completely from the
spectrum measured relative to the true, stable
vacuum, ¥;;. Why then does Eq. (7.5) predict a
finite energy for these states? We can find the
answer by going back to our basic Schrddinger
equation (2.19). In performing the mode sums

for this equation we have tacitly assumed that the
continuum excitations begin at 22=0. [See Eq.
(5.26) for example.] This is true only if

X0)7=% X=Xz - (1.11)

If instead (7.10) holds, the continuum actually

begins at £’2<0 since from (4.7)
X1 <Xr1- (7.12)

This means that for such states we have left out
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a piece of the continuum mode sum, which will
contribute an infinite term to the bound-state ener-
gies which is proportional to the volume of space.
Our conclusion then is that the solutions to Eq.
(7.7) are not in the spectrum at all either as stable
or unstable bound states.

VIII. DISCUSSION

At the end of Sec. VI, we noted that once the
]D(k)l and k,; have been determined by minimizing
the bound-state energy, the function x(») can in
principle be reconstructed by three-dimensional
inverse-scattering methods.” However, there is
an existence problem associated with this pro-
cedure.® All sets of scattering data do not neces-
sarily lead to local potentials y(#) - %. Thus, to
be self-consistent we cannot really vary |D(k)| and
Ky freely, but rather we must restrict our varia-
tions to sets of scattering data which give local
potentials upon inversion. The existence problem
for the three-dimensional inverse-scattering
method is not well understood, and it is not clear
how the locality condition should restrict our
variations.

Another problem is whether, given the locality
condition, we can still vary the |D(%)| and the
various k,, independently. Note that the assump-
tion of the independence of these parameters was
used extensively in Sec. VII. If the various bound
excitations k4, are not independent, the bound-state
spectrum would have to be reexamined with a knowl-
edge of their interdependence. However, it is not
clear what the relationships of the different «,
would be. Another possibility, suggested by our
previous study of the Green’s functions of this

model, as discussed in Sec. IV, is that for an S-
wave bound excitation « there is an associated
resonance (and possibly associated bound excita-
tions in other angular momentum states) making
|D(%)| different from unity and dependent on «.
Although the resolution of the above problems
rests on a more complete understanding of the
uniqueness and existence problem for the three-

dimensional inverse-scattering method, another
issue should be considered. It is well known that
time-independent soliton-like solutions to the
classical equations of motion for a scalar field
theory cannot be stable in four dimensions. In our
problem this result does not directly apply since
we have included time-dependent ¢, fields and
quantum corrections in our calculations. However,
it may be that our difficulties arise from a similar
sort of instability. If so, the ultimate success of
semiclassical methods in four dimensions must
await their application to field theories with spin.

APPENDIX A

The series expansion of the modified Fredholm
determinant allows us to obtain an expression
valid at large k. From (5.1)-(5.3) one can show
that

D(k) l—éf dPrd®rK Ky +- -, (A1)
with the omitted terms vanishing more rapidly
with 2. Then, from (5.1) and (5.2), using the form

(5.13), and performing the necessary Fourier
transforms,

1
D)o 1= [ dindiy[O(u)C M i, )],

(A2a)

where

1 1
I(“”“z)zf d’pld3p2(k2_p12+i€) <k2—ﬁ22+ie>

x[(ﬁl-ﬁi)“uf] [(51—§1)2+u22] :
(A2b)

We can perform the angular integrations by com-
bining the last two denominators. Then, defining

A=y la+pi(1-0a), (A3)

we have

_ 2 [° .2 ° o, 1 ) 1 ) 1 1
Ly IJZ)_j; dal6m -/0‘ Py dplj(; b2 dp2<kz“p12+i€ (kz_p22+i€ [(Pl-Pz)2+A2}[(P1+P2)2+A2]'

The remaining momentum integrals can be evalu-
ated by contour integration. The result is

I(p,, u2)=2n4f0 da[%%é‘fl—)]. (A5)

Thus, recalling (A3), we get

(A4)

it ! 1 2 1
ey, du 1\ _
(1, uz)kr:m fo da< |> % <u1+uz )

Then, from (A2),
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D(k) 1———f dulduz[c(ilclfz‘“)] +o(k2>.

(A7)

However, a potential of the form (5.13) used in con-

junction with (2.25) gives

I,= 4nfd du [sz ] (A8)
Thus
D(k) > 1_1—6%12\»0(512—) (A9)

and we recover Eq. (5.14). Parenthetically we
remark that because of the reality condition
D(k) = D*(—k), |D(k)| and arg D(k) are even and
odd functions of B, respectively.

APPENDIX B

The modified Fredholm determinant D(Z) is
analytic in the upper half of the complex & plane
and satisfies®*?

D(k): ~ 1. (B1)
lal-»e
It has simple zeros at the bound-state values &
=i Ky, SO We can write

o(R—ik ’
D(k) = J,Im(i:ﬁﬁ) D'(k) (B2a)
? k—iK 2I+1 ,
= H (mﬁ) D' (k) (B2b)
or

InD(k)=-2i E ’(21+1) arctan (ﬁk?i)

ol

+1nD’ (k). (B3)

Now because D’(k) is analytic in the upper half-
plane, satisfies (B1), and is free from zeros, we
can write

D’ (k)= [ap [p—}‘il,:;—(f)ié] . (B4)
But we further have the reality condition

D'(-k)=D"*(k), (B5)
and along the real % axis (B2) implies

ID(k)|* = |D’ (k) |2 (B6)

Then combining (B3)-(B6), we find

InD(k)=-2i E' (27+1) arctan (M>

o, 1

ko In|D(p)|?
+m ap [52 . ie} ' (B7)

Finally, noting that
1
argD(k) =3 [InD(R) - InD*(k)], (B8)
we obtain (5.15) of the text.

APPENDIX C
We wish to compute the principal-value integral

Agm_zk[ 1 1(1\

o (kz +m2)1/2_l Pz - kz’

b m/ 27°
(C1)
with
© dk 1
=2 [ Gt () 2
Now define
Vs= (R +m?)Y 2, (C3)
VE=(p* +m*)V? (c4)
and consider the integral
1 7 ds 1
I()= 2.[,,,2 [s(s-mz)]‘”(s—t—ie) : (C5)
Note that
Re[J(t)]=-1 (Cs)
and
Im[J(t)] = Lot 6t —m?) ()
T2 —mATE
J(t) then satisfies the dispersion relation
1
aw-3 [ —& —mJs). (c8)
m2 S =t~

It is related to the two-body phase-space integral
in two dimensions, and is given by

J(t) =

1 VI +(t =m?)V?]

‘[t(t—mz)]‘”l“[ m ]

+i1{ LI 21 for t>m?®. (C9)
2\t =mAF }

This gives upon changing back to the variables
(C3) and (C4) and using (C6)

1 VB (e
I_[pZ(p2+m2)]1/21n[ P J (C10)

Then from (C1) and (C10) we arrive at (5.35).
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