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Possible supersymmetry breaking by pseudoparticles
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The effects of pseudoparticles in a supersymmetric SU(2) gauge theory are discussed. The possibility of a
nonperturbative breakdown of supersymmetry due to the pseudoparticles is suggested and explored, and the
pseudoparticle contribution to the fermion 8-point function is explicitly calculated. Implications for
supergravity and extended supergravity are briefly discussed.

I. INTRODUCTION

Although supersymmetry provides several de-
sirable features when incorporated into a quantum
field theory,'™ it is certainly not a symmetry ob-
served in nature Thus, if supersymmetry is pro-
posed as an underlying symmetry of field theory,
a mechanism must be provided for its breakdown ® 7
Further, since the only known massless fermions,
the neutrinos, do not have couplings appropriate
to a Goldstone fermion,® the supersymmetry-
breaking mechanism should not introduce Goldstone
fermions. A similar problem exists in the case of
the strong interactionswhere chiral U(1) symmetry
is apparently broken without the appearance of a
corresponding Goldstone boson.

Recently, 't Hooft?'° has proposed a solution to
this U(1) problem based on the pseudoparticle of
Belavin, Polyakov, Schwartz, and Tyupkin.!' The
pseudoparticle makes nonperturbative contribu-
tions to certain Green’s functions,®*? which break
chiral U(1) invariance, apparently without intro-
ducing a Goldstone boson The pseudoparticle al-
so leads to a fundamental change in the vacuum
structure of the gauge theory, which is the origin
of the chiral U(1) breaking.’®* Here we will study
an analogous mechanism in the case of supersym-
metry and explore the possibility that pseudopar-
ticles induce a nonperturbative breakdown of super-
symmetry.

The pseudoparticle contribution in a Minkowski-
space field theory is computed by continuing the
theory to Euclidean space.'®!* In order to avoid
difficulties in continuing the Majorana condition to
Euclidean space, we will choose from among the
various supersymmetric gaugetheories!*™'" a mod-
el with one vector supermultiplet and one scalar
supermultiplet For the SU(2) gauge theory the
particle content is a gauge field A%, a Divac spin-
or field ¥,, a real scalar field 8,, and a real
pseudoscalar field C,, all transforming as the

adjoint representation of SU(2). The Lagrangian
. 15=17
is

L == §(F)?+id,y *DPY, +3(DPB,)? +3(D?C,)?
- Z‘g€ab¢$a(‘6b+)/Scb) ch - %gz(eachch)z ’

(1.1)
where
F‘:‘U= BMAS_ BVA‘:‘+g€abCAZA5 (1‘2)
and
D=9 ,0,,+g €, AS. (1.3

The action of this theory is invariant under the
complex supersymmetry transformation!®~1?

bAs=iey i, —id,y € ,

0y, =F% 0*e +iD(B, - v,C,)r e

—i€, B,C.vse (1.4)
0B, =i, - iT,¢,
8C, = i€ s, — i,7s€

where € is a complex anticommuting spinor.

In addition to the supersymmetry, this model
has a chiral symmetry which is generated by the
axial-vector current

J° =i,y s, + 2B DUC, - 2C D®B, . (1.5)

The divergence of this axial-vector current is
anomalous,!® as is the divergence of the super-
current for this model.'* We find

gz
5_ ~
04 = g PPl (1.6)
where
F':w=%€ uuaBthB' (1'7)

The model also possesses pseudoparticle and anti-
pseudoparticle solutions with unit Pontryagin in-
dex !

2

£ [atxpeFo, =1 (1.8)

Thus, it would appear from integrating Eq. (1.6)
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over space-time andusing Eq. (1.8) that the pseudo-
particle or antipseudoparticle will contribute to
processes for which the change of chirality satis-
fies

AQR%=418. (1.9)

This will lead to chiral-symmetry breaking as has
previously been discussed.®#'%!? We will now in-
vestigate its effect on supersymmetry.

Our study of pseudoparticle effects will be ¢en-
tered around the fermion 8-point function,

Gy = (0| T[T, )P, Pl ) P(x,) Ploxs) h(e) ¥, P (x5)] | O) -
(1.10)

In agreement with Eq. (1.9) this 8-point function
receives contributions from the pseudoparticle
and antipseudoparticle. In the following two sec-
tions, we will explicitly calculate the pseudopar-
ticle and antipseudoparticle contributions to the
fermion generating functional and to this 8-point
Green’s function. Our results can be summarized
as follows:

(1) The pseudoparticle and antipseudoparticle do
not contribute to any Green’s function involving
less than four ¥’s and/or four ¥’s.

(2) The pseudoparticle and antipseudoparticle do
make a nonvanishing contribution to G,.

In order to study the possibility of supersym-
metry breaking of pseudoparticles we can investi-
gate the validity of various Ward identities implied
by supersymmetry. The Ward identities obtained
from the divergence of the supercurrent are un-
fortunately complicated by the fact that the custom-
ary gauge-fixing term added to the Lagrangian
(1.1) is not supersymmetric. This leads to addi-
tional ghost terms in the Ward identities which
would not naively be expected.!” A consequence
of the Ward identities (see Ref. 17) is the schemat-
ic relation

Gy +G goet =terms involving six fermion fields

and two boson fields, (1.11)

where G, stands for a Green’s function involving
four §’s,four ¥’s, a boson field, and two ghost
fields. On the mass shell of the physical states,
the terms in Eq. (1.11) involving ghost fields will
drop out, and one finds supersymmetry relations
between an 8-fermion S -matrix element and a 6-
fermion, 2-boson S-matrix element.?® Equation
(1.11) must be satisfied by the zero pseudoparticle
sector and by the pseudoparticle contributions sep-
arately since the latter are nonperturbative. As
remarked above, the Green’s functions involving
six fermion fields and two boson fields receive no
contribution from the pseudoparticle or antipseudo-
particle solutions. Thus, if supersymmetry is

unbroken, Eq. (1.11) implies in the presence of
pseudoparticles that

(1.12)

(G 8 +G most) pseudoparticle + antipseudoparticle =0 )

which is to be compared with (1.11). As empha-
sized above, the pseudoparticle and antipseudo-
particle do make a contribution to G;. We have no
reason to believe that the pseudoparticle contribu-
tions to G 4, vanish; however, we do have reason
to believe that Eq. (1.12) cannot be satisfied. This
is because, in principle, G, contributes to a phys-
ical amplitude whereas G, does not. Although
the usual infrared problems in the pseudoparticle
sector associated with asymptotically free theories
prevent us from making an actual on-shell evalua-
tion of (1.12), we expect that in the neighborhood
of a physical point G4 and G, , Will have different
external-line pole structures and Eq. (1.12) will
not be satisfied, signaling the breakdown of super-
symmetry. If an actual S-matrix element could be
extracted from G4, the equality between the fer-
mion 8-particle amplitude and a 6-fermion, 2-bo-
son amplitude would certainly be destroyed by
pseudoparticle effects and we would see a break-
down of supersymmetry in the S matrix. Unfor-
tunately the infrared divergences prevent us from
going to the mass shell.

The mechanism for possible supersymmetry
breaking of pseudoparticles can be summarized
as follows. In a purely boson theory, without fer-
mions, the pseudoparticles will contribute to vac-
uum tuneling® and to various boson processes.*
However, when fermions are introduced, there is
a complete suppression of pseudoparticle effects
in the purely bosonic Green’s functions. Neverthe-
less, there is a change in the vacuum structure
due to requirements of cluster decomposition.t®
Pseudoparticle contributions only survive for cer-
tain fermion Green’s functions. This highly un-
symmetric situation seems to lead to a violation
of the relations between fermion and boson Green's
functions implied by supersymmetry and hence to
a breakdown of supersymmetry itself.

In Sec. II we will compute the one-pseudoparticle
contributions to the fermion generating functional
and derive the above results. Multipseudoparticle
solutions®? will also contribute to the fermion gen-
erating functional, but only to Green’s functions
involving more than eight Fermi fields. Thus,
they will not affect our results and will be ignored.
Likewise, the contributions of ordinary perturba-
tion theory need not be considered since they will
not produce supersymmetry-violating effects. (We
assume the absence of spontaneous supersymmetry
breaking.) Along with the possible breakdown of
supersymmetry, the calculation exhibits a com-
plete cancellation of pseudoparticle contributions
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to vacuum bubbles. This cancellation is known to
occur for ordinary perturbation-theory contribu-
tions in supersymmetric models.?® In Sec. III we
discuss the fermion 8-point function in more de-
tail and finally in Sec. IV we briefly discuss im-
plications for supergravity and extended super-
gravity.

1. PSEUDOPARTICLE CONTRIBUTION TO THE FERMION
GENERATING FUNCTIONAL

In order to define the fermion generating func-
tional we add a source term

Lopurce =Kol + UK, (2.1)

to the Lagrangian (1.1). The pseudoparticle con-
tribution is evaluated by continuing to Euclidean
space and evaluating quadratic functional integrals
after expanding around the classical solution,

$,=B,=C,=0,

. . (2.2)
Au=Au(c1) ,

where A% is the pseudoparticle solution. We be-
gin by computing the pseudoparticle contribution
and then consider the antipseudoparticle. Since
detailed calculations appear elsewhere!®!* we will
not go into excessive detail here.

The integration over gauge and ghost fields has
been performed by ’t Hooft!° in the background
field gauge

9,A% +ge€,, AMDAC =0 (2.3)

abc

resulting in a multiplicative factor in the generat-
ing functional of

[H(l)]-le-Bﬂ'z /8% 2157578 83 dpd’z (2.4)
where
H(l) = (#Op)2/3€°'443 307 , (2'5)

i, is the renormalization mass, and p and z are
collective coordinates representing the size and
position of the pseudoparticle. The coupling con-
stant is defined by its value at the renormalization
point, g=g(k,). The integration over the scalar
and pseudoscalar fields has also been done by

’t Hooft!° resulting in an additional multiplicative
factor

(™. (2.6)

Finally, we must perform the integration over
the Dirac spinor field after continuing the Dirac
Lagrangian to Euclidean space. This continuation
has been discussed carefully by Peccei and Quinn
inRef. 14. The Euclidean-space functional integral
to be evaluated is'*

[ owsuness( [ vl st + 0250
PRgK)), @

where
Moy =7, (9,05 +8€, AYY) (2.8)

The integral can be evaluated by defining a set of
normal modes as appropriately normalized solu-
tions to the eigenvalue equation

My =Xy - (2.9)

An important feature of this equation is that for
i=1, 2, 3, and 4, X;=0.2#2> These zero-frequency
mode solutions play a key role in our analysis and
will be explicitly displayed in Sec. III. They are

Y s eigenstates, right-handed for the antipseudo-
particle and left-handed for the pseudoparticle. It
is interesting to note that these zero-frequency
mode solutions are the supersymmetry partners
of the gauge field zero-frequency modes.}" 242
However, the gauge field zero-frequency modes
are eliminated by the introduction of collective
coordinates, while these Dirac modes remain. We
do not consider the possibility of a family of solu-
tions related by supersymmetry and parametrized
by an anticommuting collective coordinate. It is
this difference in interpretation which results in
the breakdown of supersymmetry.

The functional integral of Eq. (2.7) is evaluated
by expanding the field ¢, in normal modes assign-
ing one anticommuting parameter per normal
mode.'® The integration over these anticommuting
parameters is then performed using the usual in-
tegration rules for such variables.?® The result is

( fshga?a%)w:zzfa)(1?“¢,,2)<¢;1Ka)

X(E 4 bas) (01K ) (B g bas) (01K ,) + O(KX)
(2.11)
where
(K—a¢ui)=fd"xl?a(x)¢ai(x—z,p), (2.12)
and likewise for (¢! K ), with O(K') indicating

atra
terms which will only contribute to Green’s func-
tions with ten or more Fermi fields. Such terms
will not interest us here.

The result (2.11) must, of course, be renormal-
ized and evaluated. This has been done by ’t Hooft
with the result that after renormalization,
- ‘71-;[11(1)12. (2.13)

1=5

Combing (2.4), (2.6), (2.11), and (2.13) gives us
the fermion generating functional,
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Z[R,, K, =2"1° | p%dpdize=™/ € g o {(R ;0o DK NE b 5) 0K ) (B, 000) (01K ) K0, (01K,) ] +0 (K2°) .

We have completed the gauge field integration by
integrating over pseudoparticle size and position.
The one-loop B function for this model is'?

3

Blg)=- 5, (2.15)
so we see that the result (2.14) obeys the renor-
malization-group equation which is a good check
of our calculation. Notle that the vavious factors
(1) have canceled indicating the cancellation of
vacuum bubbles in the presence of the pseudopar-
ticle. This cancellation occurs due to the super-
symmetry of the model and has previously been
noted in conventional perturbative calculations as
well.?

The antipseudoparticle contribution to the gen-
erating function is identical to that of Eq. (2.14)
except that the modes ¢,,, ¢,, ¢,, and ¢, with
negative chirality are replaced by corresponding
right-handed modes. Since the pseudoparticle and
antipseudoparticle contributions are identical ex-
cept for opposite chirality we will focus our atten-
tion in the next section just on the pseudoparticle
contribution of Eq. (2.14).

Equation (2.14) and the corresponding contribu-
tion from the antipseudoparticle discussed above
verify the results stated in Sec. I. Since the gen-
erating functional involves at least four factors of
K, and four factors of K, the pseudoparticle con-
tribution will only survive, after the fermion
sources are set equal to zero, for Green’s func-
tions involving at least four ¢’s and four ¥’s. The
introduction of boson sources obviously does not
modify this argument which only depends on the
number of fermion zero-frequency modes. Final-
ly, the nonvanishing pseudoparticle contribution
to G4 discussed in Sec. I is clearly present in Eq.
(2.14) and will be displayed in more detail in the
next section.

III. THE FERMION 8-POINT FUNCTION

The first term of Eq. (2.14) gives us the pseudo-
particle contribution to the fermion generating
functional from which we can read off the fermion
8-point function. In order to simplify our notation
we will work in a representation in which 7, is
diagonal, i.e.

,=f1 0
o _1 (3.1)

and

(2.14)
0
vo= [0 M, (3.2)
@, o0
where
a,=(-ig,1) @,=(5,1). (3.3)

The zero-frequency modes of the preceding section

can now be written in terms of 7 ; eigenstates
3.824’25

¢ai=<0 >’ i=172)3,4 (3.4)
nai

with
nal={2np2 m ou, (3.5)
T)¢2=%Emoav, (3.6)
Tas =§ moaﬁ “(x—2)u, (3.7)
and
’7a4=—£[(x_—21)2;7)2—]20ﬁ'(x—z)v, (3.8)

where u and v are arbitrary orthogonal two-com-
ponent spinors normalized to

t, =, =1
wu=0vtv=1, (3.9)
u'v=0.

Actually the » and v spinors appearing in Egs. (3.5)
and (3.6) could be different from those in Egs. (3.7)
and (3.8), but since our final result will be inde-
pendent of any particular choice for these constant
spinors, we will leave them the same for notation-
al simplicity. Note that in agreement with pre-
vious statements the zero-frequency modes (3.4)
are purely left-handed.

Let us also write the source K, in terms of its
chiral components,

K,=[ R\, (3.10)
La

Then, using the anticommuting property of the
sources, the orthonormal properties of the # and
v constant spinors, and Egs. (2.12), (2.14), (3.4)-
(3.8), and (3.10), we can write the first term of
Eq. (2.12) which expresses the pseudoparticle con-
tribution to the fermion 8-point function as
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215 d o/
Z,[R, K, pPELe-s- /2 fdz <£Id“xj> {[R}(xs)oa,ozoaLa(xl)J[RZ,(xe)ob,azobLb(xz)J

X [RL(e,)a (7 = 2)0,, 0,00 * (x; = x)L (x,)]

X [RI(x) 0 (g = 2)040 0,0, * (x4 = 2) L y(x,) ]
=2\ (=2 (x,-2) (x,-2 -

w(52) (2 ) (552) asz) (22
Xe=2\ (%—2\  (x5-2

Xf( P >f<7p >f<8p )} (3.11)

where

f(t)=1/(2+1)2.

Note the chiral structure of the sources in our result (3.11) in agreement with the chirality violation pre-
dicted by Eq. (1.9).
We can also express our result in momentum space by writing the sources as

(3.12)

Ri(x)= [ d'petr=ri(p) (3.13)
and
=fd4peiP-xla(p) i (314)
Then we find
Za[Xg;K 227 18_/ dpp15 -8'2/3 f<Hd4 ) {64< p]> [’VI,(I)S)O'Q, Uzoala(plu[yg'(pﬁ)gb' CZOblb(PZ)J
X [ L (p)a 5%_0 0,0,0° ;:—)—alc(ps)}
["’d'(Pa Ud' 00,2 ° qla(.b‘;)jl
x [F( }PJP)F( ]pz|p)F('P3 “))F( lp4 !p)
X F(|ps |0)F(|ps|0)F(|p, |0) F(ps]p)] } , (3.15)
where
s 2], (s
F()= zf ds oo (3.16)

Note that off the mass shell ([p,|#0 fori=1,2,...
finite.

,8) the integration over the pseudoparticle size is

IV. SUPERGRAVITY AND EXTENDED SUPERGRAVITY

It is interesting to speculate that gravitational
pseudoparticles may induce supersymmetry break-

the field of a gravitational pseudoparticle. If such

solutions exist, they could well provide a mechan-
ism for chiral and supersymmetry breaking in

ing in supergravity and extended supergravity.
Hawking?” has noted that the Taub-Newman-Unti-
Tamburino solution of general relativity, when
continued to Euclidean space, provides a pseudo-
particle solution with Pontryagin index two. In
order to find zero-frequency modes for spin-3
fermion fields, one must have a gravitational
pseudoparticle with Pontryagin index 24. In super-
gravity the appropriate starting point would be
zero-frequency solutions of a spin-3 fermion in

models of supergravity.?®
Note added in proof. In background field gauge
the ghost contribution to Eq. (1.12) vanishes.

ACKNOWLEDGMENTS

The authors wish to thank Professor H. Pendelton
and Dr. E. Poggio for helpful discussions, and the
Aspen Center for Physics where this work was
completed.



*Research supported by ERDA under Contract No.
E(11-1)3230.

tAddress Sept. 1, 1977: SLAC, Stanford, California
943054.

fResearch supported by the NSF under Grant No. PHY-
76-02054.

§Address Sept. 1, 1977: CERN, Geneva, Switzerland.

13. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974).

%S. Ferrara, Riv. Nuovo Cimento 6, 105 (1976); P. Fayet
and S. Ferrara, Phys. Rep. 32C, 249 (1977).

3D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara,
Phys. Rev. D 13, 3214 (1976); S. Deser and B. Zumino,
Phys. Lett. 62B, 335 (1976).

S. Ferrara and P. van Nieuwenhuizen, Phys. Rev. Lett.
37, 1669 (1976); D. Freedman, #bid. 38, 105 (1977);

S. Ferrara, J. Scherk, and B. Zumino, Phys. Lett.
66B, 35 (1977).

SM.T. Grisaru, P. van Nieuwenhuizen, and J. A. M.
Vermaseren, Phys. Rev. Lett. 37, 1662 (1976); M. T.
Grisaru, Phys. Lett. 66B, 75 (1977); S. Deser, J. Kay,
and K. Stelle, Phys. Rev. Lett. 38, 527 (1977); E. Tom-
boulis, Phys. Lett. 67B, 417 (1977)

SA. Salam and J. Strathdee, Phys. Lett. 49B, 465 (1974);
J.Iliopoulos and B. Zumino, Nucl. Phys B76, 310 (1974).

P. K. Townsend, Phys. Rev. D 15, 2795 (1977) 15,

2802 (1977); S. Deser and B. Zummo Phys. Rev. Lett.
38, 1433 (1977); B. Zumino, CERN Report No. CERN-
TH-2327 (unpublished).

8W. Bardeen (unpublished).

%G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976).

G, %t Hooft, Phys. Rev. D 14, 3432 (1976); see also
F. R. Ore, ibid. 15, 470 (1977) and A. Belavin and
A. Polyakov, Nucl. Phys. B123, 429 (1977).

1A, A. Belavin, A. M. Polyakov, A.S. Schwartz, and
Yu S. Tyupkin, Phys. Lett. 59B, 85 (1975).

125, Hietarinta, W. Palmer, and S. Pinsky, Phys. Rev.
Lett. 38, 103 (1977); J. Hietarinta and W. Palmer,
follow'_mg paper, Phys. Rev. D 16, 3008 (1977); Ohio
State University Report No. COO-1545-214 (unpub-
lished); J. Kiskis, Phys. Rev. D 15, 2329 (1977); N. K.
Nielsen and B. Schroer, CERN R.é;ort No. CERN-TH-
2317 (unpublished); S. Coleman (unpublished).

3R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172
(1976); C. G. Callan, Jr., R. F. Dashen, and D. J.

16 POSSIBLE SUPERSYMMETRY BREAKING BY PSEUDOPARTICLES 3007

Gross, Phys. Lett. 63B, 334 (1976).

14R. D. Peccei and H. R. Qul.nn Stanford University Re-
port No. ITP-555 (unpublished).

5A. Salam and J. Strathdee, Nucl. Phys. B76, 477
(1974), S. Ferrara, J. Wess, and B. Zumino, Phys.
Lett. 51B, 239 (1974); S. Ferrara and B. Zumino,
Nucl. Phys. B79, 413 (1974).

1B, Zumino, Phys. Lett. 69B, 369 (1977).

"B. De Wit and D. Z. Freedman, Phys. Rev. D 12,

2286 (1975).

Bpor reviews see S. L. Adler, in Lectures on Elementary
tary Particles and Quantum Field Theory, 1970 Brand-
eis Summer Institute in Theoretical Physics, edited
by S. Deser, M. T. Grisaru, and H. Pendleton (MIT
Press, Cambridge, Mass., 1970); R. Jackiw, in S. B.
Treiman, R. Jackiw, and D. J. Gross, Lectures on
Current Algebra and Its Applications (Princeton Univ.
Press, Princeton, New Jersey, 1972), pp. 97-230.

191, F. Abbott, M. T. Grisaru, and H. J. Schnitzer,
preceding paper, Phys. Rev. D 16, 2995 (1977); see
also T. Curtright, Univ. of Calif., Irvine Report No.
77-31 (unpublished).

®M. T. Grisaru and H. Pendleton, Nucl. Phys. B124,

81 (1077); M. T. Grisaru, H. Pendleton, and P. van
Nieuwenhuizen, Phys. Rev. D 15, 996 (1977).

Ap, Ccarruthers, S.S. Pinsky, and F. Zachariasen,
CalTech. Report No. CALT-68-598 (unpublished).

22E . Witten, Phys. Rev. Lett. 38, 121 (1977); E. Corrigan
and D. B. Fairlie, Phys. Lett. 67B, 69 (1977); G. ’t
Hooft (unpublished); F. Wilczek, Princeton University
report (unpublished); R. Jackiw, C. Nohl, and C. Rebbi,
Phys. Rev. D 15, 1642 (1977); R. Jackiw and C. Rebbi,
Phys. Lett. 67B, 189 (1977); B. Grossmann, Phys.
Lett. 61B, 86 (1977)

B, Zumino, Nucl. Phys. B83, 269 (1974); S. Ferrara
and O. Piguet, ibid. B93, 261 (1975).

%R. Jackiw and C. Rebbi, MIT report (unpublished).

%3, Chadha, A.D’Adda, P. DiVecchia, and F. Nicodemi,
Phys. Lett. 67B, 103 (1977); ‘L. S. Brown, R. D. Carlitz,
and C. Lee, Phys. Rev. D 15, 417 (1977).

®F.A. Berezin, The Method of Second Quantization
(Academic, New York, 1966).

#S. W. Hawking, Phys. Lett. 60A, 81 (1977).

BCompare with the mechanisms [ proposed in Ref. 7.



