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Local supersymmetry transformations are used to generate solutions of the Dirac equation in the presence
of instantons. We show that all spin-1/2 zero-eigenvalue modes for an isovector fermion in an N -instanton
field can be obtained by spacetime-dependent supersymmetry transformations, and that through additional
supersymmetry operations these can be used to generate zero-eigenvalue solutions to the small-fluctuations
problem for the Yang-Mills field. Similar problems for supergravity theories with a gravitational instanton

are also- discussed.

I. INTRODUCTION

Recently, considerable attention has been given
to the problem of constructing zero-eigenvalue
modes of the Dirac operator'™ in the presence
|of an instanton field.>® In particular, Jackiw
and Rebbi! have constructed the 4N zero-eigenvalue
modes for an isovector fermion in an N-instanton
field. It has been noted that four of these modes
can be obtained by global supersymmetry trans- ’
formations of the N-instanton solution itself':?
and this has been further discussed by Zumino.”
As we shall show in Sec. II below, all 4N zero-
eigenvalue solutions can be obtained by suitable
local supersymmetry transformations. Although
this technique does not lead to any simplification
in obtaining the solutions, it does provide an
interesting interpretation of them and suggests
that in a supersymmetric model all zero-eigen-
value solutions can be obtained by local super-
symmetry transformations.

Brown, Carlitz, and Lee? have linked the small-
fluctuations problem for the Yang-Mills field to
the Dirac problem discussed here. The 4N fer-
mion zero-eigenvalue modes provide 8N zero-
eigenvalue fluctuations of the Yang-Mills field
and indicate that the complete N-instanton solution
depends on 8N-3 parameters.*® In Sec. III, we
derive this fermion-boson correspondence by

supersymmetry arguments. Finally, in Sec. IV,
we discuss aspects of the zero-eigenvalue problem
for boson and fermion fields in supergravity the-
ories.

Throughout this work, we start with solutions
¢, to the field equations of a.supersymmetric
theory and by infinitesimal supersymmetry trans-
formations obtain solutions 5¢; to the linearized
equations in the presence of the background fields

“¢,;.° Inprinciple, supersymmetry requires that

all spinors be Majorana and anticommuting. How-
ever, when we deal with infinitesimal transfor-
mations and linearized equations, these require-
ments may often be dropped.” In each case, one
can explicitly verify that our solutions are valid
when the spinors are complex c-number fields. In
the following we shall use such spinors and work -
exclusively in Euclidean space.

1L THE DIRAC EQUATION IN AN N-INSTANTON FIELD.

The theory of SU(2) gauge bosons coupled to
isovector spin-3 (Majorana) fermions is globally
supersymmetric.’® Since we wish to obtain so-
lutions to the Dirac equation by local supersym-
metry transformations, we begin by coupling the
theory to supergravity which gauges the original
supersymmetry.'’ The system now contains the
gravitational field £,, (or vierbein field &%), a
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spin-$ field §,, the gauge field A%, and the iso-

~ 34
vector spin-3 field ¥°. We begin with the following

solution to the classical field equations:

Euv="Nuvs

9,=0, @.1)
A‘:L=A‘L,
ZLa=O’

where Aj, is an N-instanton solution.>® Performing
an infinitesimal local supersymmetry transfor-
mation on this solution gives'!

éguv=0 ’
6$u= $,=2k"0 €(x) ,
6AZ=0 R
5Zza= zpa: F‘fw'Ewe(x) ’

2.2)

where F{ , is the N-instanton field tensor and
Z,,= Yl Because of the local supersym-
metry of the system, 6y°%= 2 will satisfy the
linearized field equation for J* which, due to the
supergravity coupling is now'!

YD =5k Flpy, Top?,, 2.3)
where
D=9, 6%+ A5 € (2.4)

the spin connection term is absent since §,,=17,,.
Therefore, y*=F% %, €(x) will be a solution to
the Dirac equation in the presence of the N-in-
stanton field F¢,, provided that we choose €(x)

so that the right-hand side of Eq. (2.3) vanishes,

Fy,Tasd, €(x)=0 (2.5)

where we have substituted ¢, =2«"8, €(x) into Eq.
(2.3). It can easily be verified directly that the
ansatz

Y =F% g €(x) ‘ (2.6)
satisfies the Dirac equation
7. DY ¥=0, 2.7)

provided €(x) satisfied (2.5). The introduction of
supergravity fields was just a device to lead us
to this result

Two obvious solutions to Eq. (2.5) are

e(x)=u and e(x)=y - xu, (2.8)

where « is a constant spinor. When substituted
into Eq. (2.6) they give the four solutions which
have previously been generated by global super-
symmetry transformations.?

Since the tensor F$, is self-dual for the N-
instanton solution, I, , F4 , acts as a left-handed
chiral projection operator. For this reason it is

convenient to introduce a two-component notation.
We define!

Y= (l/):) )
Yl

€= <€+> 3 (2.9)
€.
o ()
1’24 b
0 o

pv

and we find that Eq. (2.6) gives left-handed solu-
tions to the Dirac equation

W=F%, 0,,¢e(x). (2.10)

Furthermore, this relation can be.inverted to
give

e ()= LurOur?t

oy (2.11)

so that for every ¥ which solves the Dirac equa-
tion an €_(x) can be found. [We have used the fact
that for self-dual fields (0, ,F%,)%=(F% )% ] We

can write, for an N-instanton solution,

4 o (11,2)_ v (1,2)
e_(x)=2[ fw"‘"g;* 2_?"‘;‘”&* :]u (2.12)
234 e

where « is an arbitrary two-component spinor,

1
fuu'_‘auav (B) ’
1 .
g§¥’2’=3u<57M‘:1'2’> ;
and @,, p, and M ?) are as given in Ref. 1.

Substituting Eq. (2.12) into (2.10) then gives the
4N solutions of Jackiw and Rebbi.!

(2.13)

MI. SMALL FLUCTUATIONS OF THE YANG-MILLS FIELD

The instanton field A} and the zero-eigenvalue
mode y” that we have found in the previous section
form a solution to the full, coupled SU(2) field
equations. The spinor ¥° is a chiral eigenstate
ys9%=—9* and in Euclidean space § =¢%. Asa
result, the isovector current for ¥* vanishes,

Eazb<:ab )'ull)c = eabt: ib 757’;;,754}0

=—€® Py, yY°=0, 3.1)
and the coupled Yang-Mills field equation
D®F® =ge®qly, =0 (3.2)

is satisfied. In addition, y* satisfies the Dirac
equation !in the presence of the field A}. Thus
we may take the solution ﬁ‘;:A‘L, %=y and per-
form a global supersymmetry transformation (it
is not possible now to find a local transformation



for which the supergravity fields decoupie) to
obtain

~ —

5 Ag = iy ¢

©

69°=F3,%, 1.

(3.3)

By our usual supersymmetry arguments, the
expression for 6.4‘,’, in Eq. (3.3) generates solutions
to the linearized Yang-Mills field equations. In
particular, A% +8A% (to first order in 64¢) gives

a self-dual solution to the sourceless Yang-Mills
equations. The argument is due to Zumino’ and

is based on the identity

YwDy,-v,D,= 3 evu'rp'ys('yer’i;Yp Dr)
+ 3NV u = Yu¥e) V. Dy (3.4)

applied to A%+ 6A4%. Therefore, if €(x) is chosen
to satisfy Eq. (2.5),

6A% =Ty, 4ee(x) F2, (3.5)

gives the zero-eigenvalue solutions to the small-
fluctuations problem for the Yang-Mills field about
an N-instanton solution. Note that since

T s F %4€(x) is pure left-handed only the right-
handed components of n will enter into Eq. (3.5).
Then there are two independent choices for 7 and
the 4N solutions to the Dirac equation generate
8N small fluctuations for the Yang-Mills field.
Furthermore, again since y° satisfies the Dirac
equation, 5A% automatically satisfied the back-
ground gauge condition

D (A)5AL =0, (3.6)

IV. SUPERGRAVITY

We consider now a theory of supergravity'? (or
extended supergravity'®*—but for simplicity we
discuss here the pure supergravity case). We
begin with a solution to the classical field equa-
tions

(4.1)

where ef could represent an instanton-type solu-
tion to the gravitational field equations.'* Per-
forming an infinitesimal local supersymmetry
transformation on these fields gives!'?

6e?=0,
N @.2)
60,=9,=2«" D, e(),

where D, is the covariant derivative for the vier-
bein field ef. Because of the supersymmetry of
the model, ¥, will satisfy the linearized spin-%
field equation which is just the covariant Rarita-
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Schwingér equation
€*" vy, D,,=0. 4.3)

We have thus generated zero-eigenvalue modes
of the Rarita-Schwinger equation in the background
gravitational field given by ej, by local super-
symmetry transformation in analogy with our
treatment of the Dirac equation in Sec. II. How-
ever, an important difference between the two
cases is that supersymmetry is a gauge sym-
metry of the Rarita-Schwinger equation. As a
result, even if we fix a gauge for the Rarita-
Schwinger field (such as y*y,=0), we find that
the solutions of Eq. (4.2) are pure gauges and are

‘not physically relevant.

A similar problem arises when we treat small
fluctuations of the gravitational field around the
background field e9. Suppose we have a physical
solution to Eq. (4.3) (not a pure gauge), ¢,. Re-
call that in Sec. III we noted that our Dirac solu-
tions had zero isocurrent and so they formed along
with the instantion field a solution to the coupled
Yang-Mills-Dirac system. We then generated
zero-eigenvalue modes of the Yang-Mills field
by supersymmetry transformation. In the present
case, we note that the fields

240 = @
€,=¢€,,

b=9,
form a solution to the coupled Rarita-Schwinger-
Einstein equations [the supergravity equations
without the quartic (J¢)® term in the Lagrangian].
This is because we can always choose ¥, to be
a y, eigenstate. Then, if we choose such eigen-
states the energy-momentum tensor for the Rari-
ta-Schwinger field vanishes:

Toyp=32€" P, y5va D% =0, (4.5)

since ¥, =9, in Euclidean space. This is in com-
plete analogy with the vanishing of the Dirac:
isocurrent in Sec. III. Consider now an infinites-
imal supersymmetry transformation

(4.4)

68% = kv, , (.6)
6$u= 2k D (ef)n

-around the previous solution. It is known (see

the first paper in Ref. 12) that in general the
Rarita-Schwinger-Einstein Lagrangian is not
invariant under supersymmetry transformations
unless one adds a quartic (J%)? term to it and a
quadratic (J3) term to the transformation law

for ,. However, we observe that this additional
term [AL,,, of Eq. (10) in the first paper of Ref.
12] contains an overall factor ¥,y¥, which will
vanish in Euclidean space since we choose 9, to
be'a chiral eigenstate v, =%y, . Therefore for
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variations around such solutions we have invari-
ance of the Rarita-Schwinger-Einstein system
itself. Note that just as in the Yang-Mills case,
for a ¢, of one chirality only those components of
n having opposite chirality will enter into Eq.
(4.6) for des.

The variation

o8 = K-ﬁ'y“wu , (4.7)

where ¢, is a solution of the Rarita-Schwinger
equation, produces a variation in the metric

6§MV=K”_7 (Yuzl)u"'}’vztbu) ’ . (4'8)
which satisfies the linearized field equations. The
corresponding variation in the spin connection is'?

0wy = =€ MYs¥ u€anoa Dol - ' (4.9)

Note that additional terms usually found in w0
(see Ref. 12) are absent here because », satisfies
the Rarita-Schwinger equation. Now for any 9,
which satisfies the Rarita-Schwinger equation we
have the identity

EabcaDclPﬁvs(Da%—.Db d)a) . (4.10)

Then since ¢, is a chiral eigenstate we can easily
show that 6w, , of Eq. (4.9) is self-dual (or anti-
self-dual). A self-dual spin connection will in
fturn generate a self-dual curvature R, ,,,.
However, we now run into the problem of iso-
lating from the zero-eigenvalue modes of Eq.
(4.8) those which are physical and not just pure
gauges. We have no general procedure for doing
this and so have been unable to establish a gauge
invariant method for counting these modes.
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