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Using the experimental value of the K, -Ks mass difference, we derive constraints on charged-Higgs-boson
couplings in gauge theories of the weak and electromagnetic interactions. These bounds severely restrict the
possible magnitude of charged-Higgs-boson effects in K and D meson decays. Our results are based on the
observation that charged-Higgs-boson-exchange contributions to K °-K ° mixing are of order 1/M, > whereas
the corresponding W-boson contribution is only of order m,%/M,, *.

1. INTRODUCTION -

The extremely small value of the K, -K ¢ mass
difference’ imposes severe constraints on gauge
theories of the weak and electromagnetic interac-
tions. The small K°-K° mixing implied by this
mass difference (as well as the absence of strange-
ness-changing neutral-current decays) led Glas-
how, Iliopoulos, and Maiani® (GIM) to introduce a
fourth (charmed) quark which, when incorporated
into the original Weinberg-Salam model,?® cancels
unwanted strangness-changing neutral currents
due to Z° exchange. Gaillard and Lee* then com-
puted the contribution to K°-K° mixing coming
from the two-W-boson-exchange graph of Fig. 1
to estimate the mass of the charmed quark. In a
six-quark model, the analogous calculation limits
the size of the mixing angles through which the ¢
quark couples to s and d quarks.® The quantum-
chromodynamics (QCD) corrections to the Gail-
lard-Lee calculation have been computed in the
leading-logarithm approximation®*” and are quite
small.

It is our purpose to examine the constraints
imposed on the Higgs sector of a weak and elec-
tromagnetic gauge theory by the small measured
value of the K; -K ¢ mass difference. In the stan-
dard Weinberg-Salam model with one Higgs
doublet, only a single physical scalar remains
after spontaneous symmetry breakdown, the
neutral Higgs particles. Since the neutral Higgs
field is the same field which gives the quarks
their masses (through a nonvanishing vacuum ex-
pectation value), the redefinition of quark fields
which diagonalizes the quark mass matrix will
also diagonalize the couplings of the neutral Higgs
boson. Hence, the neutral-Higgs-boson couplings
will be flavor conserving. However, in a model
with more than one Higgs doublet, Higgs-boson-
mediated neutral-current interactions can change
flavor and so can contribute to K°-K° mixing.

~Since we seem to have at least three doublets of
quarks and leptons, it is perhaps not unreason-

able to consider multiple doublets in the scalar
sector as well. L

The first constraint imposed on models with
two or more Higgs doublets by the small K; -K
mass difference is that strangeness-changing in-
teractions due to neutral-Higgs-boson exchange
must be suppressed. This can be done by requir-
ing that certain Higgs-boson Yukawa couplings
vanish. One can impose this “naturally”® by in-
voking some kind of discrete symmetry. We will
consider two such models. For simplicity we
will restrict our discussion to models with two
Higgs doublets. It is straightforward to extend
our results to other models and to cases in which
there are three or more Higgs doublets.

We have already noted that when one scalar field
gives the quarks their masses, then the trans-
formation which diagonalizes the quark mass
matrix will also diagonalize the couplings of the
neutral component of that scalar field. Glashow
and Weinberg® noted that this argument can be
made separately for charge % quarks and for
charge —% quarks, since by charge conservation
the mass matrix can never mix these two types of
quarks. They thus pointed out that strangeness-
changing neutral-Higgs -boson exchange can be
avoided in a model with more than one Higgs
doublet if the neutral component of one scalar
field is coupled to charge % quarks and the neutral
component of one other scalar field is coupled to
the charge —% quarks. The coupling of the charged
components is then determined by SU(2)® U(1)
symmetry. Weinberg has discussed Higgs-boson-
induced CP violation in this model when three or
more Higgs doublets are present.’® Since we are
interested in the magnitude of Higgs-boson cou-
plings we will, for simplicity, restrict our atten-
tion to the model with only two Higgs doublets in
which case there is no CP violation coming from
charged-Higgs-boson propagators. (However, as
usual CP violation can still arise in the six-quark
version of this model from a complex phase in the
Kobayashi-Maskawa matrix.!!) In any case, as
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FIG. 1. The two-W exchange contribution to the effec-
tive Hamiltonian for K%-K° mixing.

mentioned above, the extension of our results to
the case discussed by Weinberg is straightforward.

In the second model which we will consider,
flavor-changing neutral-Higgs-boson exchange is
avoided by requiring that only one of the two Higgs
doublets couples to the quarks. Since this one
scalar field must give the quarks their masses,
nondiagonal neutral Higgs-boson couplings are
eliminated in the standard way. This model has
been discussed by Haber, Kane, and Sterling.*?
The two models we are considering are described
in more detail in Sec. II

Although flavor-changing neutral Higgs-boson
couplings have been eliminated in these two models
at the tree level, there can still be significant
flavor-changing interactions from charged-Higgs-
boson exchange. To lowest order, these will con-
tribute to K°-K° mixing through the diagrams of
Figs. 2 and 3. Both of the scalar doublets in these
models can have nonvanishing vacuum expectation
values and we will label the magnitudes of these
by &£ and 7. Then the charged-Higgs-boson cou-
plings to quarks will be of order g(m,/My) (¢£/n)
where m, is a quark mass and M, is the W-boson
mass. Clearly, large values of (¢£/n) would be
required to produce significant charged-Higgs-

boson exchange effects for “light” (u,d, s, ¢) quarks.

There is no a priori reason why Higgs-boson
couplings cannot be large in models with multiple
Higgs doublets, and it has been shown?® that large
Higgs-boson couplings are not in contradiction
with data on particle decays. Naively, one would
expect that W and Higgs-boson exchange processes
would be comparable when

gz gz m.2 <5>2
2 —a| 2 1.1
MM\ ) oy
or equivalently, when
(§>2 My (1.2)
n/ - mg
However, in the case of K°-K° mixing the Higgs-
H
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FIG. 2. The two-Higgs-boson exchange contribution
to the effective Hamiltonian for X °~K ® mixing.

boson-exchange diagrams of Figs. 2 and 3 are in
fact much more important relative to the two-Ww-
exchange process (Fig. 1) than this simple dis-
cussion would indicate. Let us compare, for ex-
ample, Figs. 1 and 2 in the four-quark model.
Individual diagrams such as Fig. 1 are of order
1/M,?; however, when contributions from c¢ and
u quarks are added, there is a cancellation re-
lated to the GIM cancellation of flavor-changing
Z° couplings and the final result for two-W ex-
change is of order m2/M,*. In Fig. 2, on the
other hand, this cancellation is spoiled by the
presence of quark masses at the Higgs-boson
vertices, so the result for two-Higgs-boson ex-
change is of order (&/n)*(m./M,)*(1/M,?), not of
order (&/n)*(m, /M) (m2/M,*). Thus, the Higgs-
boson diagram is a factor M,?/m? larger than one
might naively have expected. This fact enables
us, in Sec. III, to derive a bound for (£/n)? which
indicates that (£/1)? must be smaller than Eq.
(1.2) by an order of magnitude or more for a
large range of Higgs-boson masses. We should
point out that a large Higgs-boson contribution to
K°-K° mixing such as we have found is a general
feature of any model in which the order 1/M 2
contributions to the charged-Higgs-boson exchange
graphs (Figs. 2 and 3) do not cancel. Thus, the
small K; -K¢ mass difference will impose severe
constraints on the parameters of any such model.

The QCD corrections to the Higgs-boson-ex-
change contribution to K°-K° mixing, which are
discussed in Sec. IV, are much larger than those
for the W-exchange graph of Fig. 1. This is due
to the different structure of the Higgs-boson ver-
tices. Although the QCD corrections to our bound
on (£/n)? are fairly large, their effects on its
phenomenological implications are small because
similar QCD corrections affect all Higgs~-boson
exchange processes involving quarks. 'Some
phenomenological implications of our bound are
discussed in Sec. V.

II. MODELS WITH TWO HIGGS DOUBLETS

We consider models with two Higgs doublets

] (&‘:) B
¢1_ &")1- ’ d’z“ J’Z- . (2-1)

For a general Higgs-boson potential, the vacuum
is characterized by two vacuum expectation
values®?

L AN £
<¢1>=<0>, (o) =€’ 0), (2.2)

where 7, £, and € are real and positive. In order
to identify the Goldstone bosons of these models
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FIG. 3. The mixed Higgs-boson—W exchange contribu-
tion to the effective Hamiltonian for K-K° mixing. (The
diagram with Higgs-boson and W propagators exchanged
is not considered separately as it is automatically taken
into account in the effective-operator formalism.)

we define rotated fields

$,=cosad, +e **sinad,,

¢, = —sinap, +e"**cosa d,, @.3)
where
sin -t
Q _(,‘72 TR
2.4)
cosa =

n
(,,’2 + £2)1/2 M
Then we find that only ¢, has a nonvanishing vacu-
um expectation value

(P + g2
@o=\ o, ) (=0, (2.5)

In the language of Georgi and Nanopoulos,'* ¢, is
the “true” Higgs field. The charged components of
¢, are the charged Goldstone bosons which join
with the charged gauge bosons to make the mas-
sive W*. One of the neutral components of ¢,,
Im(¢?), is the neutral Goldstone boson which be-
comes part of the massive Z°. The remaining
physical scalar particles are the charged com-
ponents of ¢, and three neutral scalars which are
formed from linear combinations of Re(¢?), Re(¢3),
and Im(¢3). Note that the charged components of
¢,, which are the charged Higgs particles we
are intérested in, are necessarily mass eigen-
states’® since the only fields they could mix with
¢; are the Goldstone bosons and would not even
appear in the Lagrangian in unitary gauge. Be-
cause of this absence of mixing, the charged-
Higgs-boson propagator when only two doublets
are present can have no complex phase factors,
and CP violation will not occur through charged-
Higgs-boson exchange (except for the phase factor
in the Kobayashi-Maskawa matrix!').

Let us define quark fields which are weak-inter-
action eigenstates by

ul dl
w= ), D=5 |. (2.6)
t! b

The first model which we mentioned in the Intro-
duction is obtained by imposing the discrete sym-
metry

"12-""2, D;,":D; ’

b1~ 2y o~ P, 2.7

U~ Up, Dp=Dg,
where

U =‘;‘(1,—75)¢;

Yp =31 +y5)Y.

The most general Higgs-boson—quark interaction
Lagrangian consistent with this discrete symme-
try, and of course with SU(2)® U(1) invariance, is

Lint =ULN, B +Dp N, prug
+AUg X, 3D — D N, ($9)*Dy, +H.cC. | (2.9)

‘ (2.8)

where X, and ), are three-by-three coupling-
constant matrices. From Eq. (2.2) we see that

the quark mass matrices are
My=-\m7, Mp=xe . (2.10)

These are diagonalized by defining mass eigen-
states

u
U r € =T1 2Uz &>
$/L R
d
D e S =V, 207 z>» (2.11)
b/ .»
so that
m, 0 O
My 0 m, 0 |eT M,
0 0 m,
mg 0 0 (2.12)
Mg={ 0 m, O =V, MV,
0 0 m,
The combination
K=T,V,™ !
¢, —8,Cy —8,5;
=[ s,6, €,1€,C5 — 5,85€'% €,Cy54+ 85,0560 8 (2.13)

8

$1S, €18,C5 +Cp85€' % €,8,85 — cycq€t

is the usual Kobayashi-Maskawa matrix!'* where
s and c refer to the sine and cosine of the respec-
tive angles. Since the lowest-order contribu\tio‘n
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to K°-K° mixing does not involve the neutral Higgs
particle, we will only write down the Yukawa in-
teractions of the charged components of ¢,.
Identifying the eigenvalues of the quark mass ma-
trix with the quark masses and noting that

A4W=7%rm2+gzyﬂ, (2.14)
we find
Lot =5 oAU S M K(1 = v,) + L KM (1+'y)fD\
=57 aTy %) Uy MuK (=) KMy (14ye
+H.c., (2.15)
where Mq and Mgare given by Eq. (2.12), and K by
Eq. (2.13).

The second model discussed in the Introduction
is obtained by imposing the discrete symmetry

U ~U;, D -D7,
b1~ b1, P2~ =5,
14 ’ U 4
Up - Up, Dp—-Dg.

(2.16)

This excludes Yukawa couplings of J)z to the quarks
and gives the Higgs-boson-quark interaction La-
grangian

o e ? o7 T =
Line =W N, GRUR +D N, GUR

+AULN, T DR — DN, (¢2)*D, +H.c. 2.17)

This is evaluated in exactly the same way as for
model one above. The charged-Higgs-boson inter-
action Lagrangian is

o =g O[S Mkt =) - Koty 17, ‘D}

+H.c. (2.18)

In both of these models, significant Higgs-boson
couplings to light quarks can occur for &/n> 1.
In model one, there is also the possibility n/&> 1.
In this case, charged-Higgs-boson couplings are
suppressed by factors of m,/M,, and m,/M, in
light-quark processes, while on the other hand,
when £/n7>1, there are Higgs-boson couplings
proportional to (m,/M,). At any rate, the K,-Kg
mass difference does not provide a good upper
bound for (n/£). For these reasons we will focus
our attention in the text on the possibility that
£/n>1. Then, the dominant contributions to
K°-K° mixing come from the couplings which are
the first terms in Egs. (2.15) and (2.18). Thus,
for the purposes of the next section, the two
models are in fact identical and the bounds derived
are equally valid for both models. The experi-
mental upper 1limit on D°-D° mixing can be used
to obtain an upper bound for n/&. This is dis-
cussed in Appendix B.

Finally, we note that charged-Higgs-boson cou-
plings similar to Egs. (2.15) and (2.18) will also
appear in the lepton sector. If £/n> 1 (or n/£>1)
these can produce significant charged-Higgs-
boson effects involving leptons. However, even
if large charged-Higgs-boson couplings occur in
the quark sector, they can be virtually eliminated
from the leptons by interchanging the roles of ¢,
and (;32 for leptons. Thus, significant charged-
Higgs-boson couplings to quarks can be considered
either with or without the analogous “large” cou-
plings to leptons.

HI. K9-K9 MIXING

We will begin by discussing K°-K° mixing in the
four -quark model and then extend our results to
include b and ¢ quarks. Thus, at first we will use
the couplings of Egs. (2.15) and (2.18) with s, =5,
=0. As we mentioned in the Introduction, Gail-
lard and Lee calculated* the effect of two-W-
boson exchange (Fig. 1) on K°-K° mixing. Their
result is expressed in terms of an effective Ham-
iltonian

g4 m.2 _ _
29772 _Mf‘?[s‘yu(l —Vs)d][s'yu(l —ys)d] .

— 2.2
Hyw=51"Cy

(3.1)

The matrix element of this effective Hamiltonian
between K° and K° states is evaluated to deter-
mine the K°-K° mixing from two-W exchange.
Since the estimated matrix element of Eq. (3.1)
[ calculated by inserting the vacuum in all pos-
sible ways] is close to the experimental value for
K°-K° mixing,* we will require that the contribu-
tions to K°-K° mixing coming from charged-
Higgs-boson exchange be no larger than the two-
W -boson contribution of Eq. (3.1). Since the
Higgs-boson and W contributions will add together
we are in the end allowing the total K°-K° mixing
to be twice as large as that given by Eq. (3.1)
alone. Of course, the estimate of the matrix ele-
ment of Eq. (3.1) is only approximate so our bound
for (£/n)? will not be exact. However, since the
Higgs-boson contribution of Fig. 2 is proportional
to (¢/m)* we will find that an error of a factor of
x in the estimate of the K°-K° matrix element of
Eq. (3.1) will only be reflected by an error of
roughly vx in our bound. Our bound is severe
enough so that such factors will not appreciably
change the phenomenological implications we will
discuss.

The effective Hamiltonian for K°-K° mixing due
to Higgs-boson exchange is calculated from the

“diagrams of Figs. 2 and 3. As we mentioned in

the previous section, we will not consider here
the possibility n/£> 1 which we discuss, however,
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in Appendix B. We will neglect terms proportion-
al to m,, m,, and m  relative to those proportion-
al to m, (current quark masses are to be used for
these parameters). The results are then identical
for the two models we are considering. For the
diagram of Fig. 2 we find

_s’¢’ 4 * L (E\?
=25 avdiry) 7 () 1m0
x[3y,(1 —y,)dl[sy#(1 -y,)d], 3.2)

where

[ odk K
Lm,) _,[E @m)* (B +m 2P (K +M 2)?

1 m 2
= Me_
167°M 2 +O<M,,‘*> ’ (3.3)

The complete expression for I, is given in Appen-
dix A. Thus for M,*>>m2? we have

4 4 1 4
MPHES e
X[3y,(1 —ys)dl[3y#(1 - v,)d]. (3.4)

If we require that this effective Hamiltonian be no
larger than the two-W exchange contribution of
Eq. (3.1) we obtain the bound

(£ ).

Of course, we must still add in the contribution
from the mixed diagram of Fig. 3. However, as
we will see, this will give a stricter but not very
different bound than Eq. (3.5), so Eq. (3.5) is a
good approximation to the actual bound derived
below.

We now turn to the mixed diagram of Fig. 3. In
the two models of Sec. II we find (when n/£3% 1)

HCyw= 312¢312<§Tg2__>4 _M"ﬂ;; <§>2 [412(”%) +Ml—w2 13(mc)]
x [3y,(1 -y )al[syH1 - y,)d]. (3.6)

Expressions for I, and I; are given in Appendix A.
To leading order in 1/M,? and 1/M,?, the effec-
tive Hamiltonian is then

o2 zﬁ_ m,\* 1 £ 2
Hyw =81"Cy Q12 <MW> W(n) (24)
x[5y,(1 —yo)dl[syH(1 - y)d], 3.1

where

2 2
A=~—¥—”——2-ln<1‘—4”§
(MH "Mw) MW

M} M 2 M, M/
)2
,:(Mﬂz_sz) mz2 +(MW2_MH2)1n mpr +

(3.8)

Note that A is a positive quantity. Adding together
Eqgs. (3.4) and (3.7), we obtain the total result

for charged-Higgs-boson K°-K° mixing in the

four -quark model

. 2 4 4 1 4 2
Kéig)gs =8 012 2§ﬂ2 (%) IW_HZ [(7%> +2A<§> ]
x[5y,(1=ys)d][5y*(1 —y5)d]. (3.9)

If we now require that the complete expression
(3.9) be no larger than the W-exchange term of
Eq. (3.1) we find the bound
2\172
(§>2 <A+ <A2 +ﬂ"—§—> . (3.10)
n me

This bound is plotted as a function of M, for M,
=85 GeV and m_,=1.5 GeV in Fig. 4. The shaded
area of this plot shows the values of (¢£/n)? allowed
by the bound. Also shown by the dashed line in
this figure is the approximate bound of Eq. (3.5).
It can be seen that the result of Eq. (3.5) is a
fairly good approximation to the complete bound
of Eq. (3.10).

In the six-quark model, the bounds of Egs. (3.5)
and (3.10) would still apply unless an unlikely
cancellation takes place between c- and f-quark
contributions. However, the contributions of
Figs. 2 and 3 with ¢ quarks in the loops are en-
hanced by factors of m,* so even with modest
mixing angles one can obtain bounds for (£/n)?
in the six-quark model which are even more
restrictive than those of Egs. (3.5) and (3.10). Of
course, in the six-quark case our bound will in-
volve mixing angles which are not known at pres-
ent, so actual numerical values can only be given
by assuming values for these mixing angles and
also for the mass of the { quark. The complete
expression for the effective Hamiltonian coming
from Figs. 2 and 3 with both ¢ and ¢ quarks in the
loops is

200

(&/2)2 100

0o 50 100 150
My (GeV)

FIG. 4. The shaded region shows allowed values for
&/n )% in the four-quark model coming from our bound
of Eq. (3.10). The dashed line shows the upper limit for
(¢ /m)? given by the approximate bound of Eq. (3.5).
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3el6) =—1~( g )4—1—<§>2 (c,8,¢4 +Cy8,C088)%s,2s, 2[—1—1 (m,) g 2+8I (m )+—2——I(m Wom 2
Higgs 2m szn 19203 T €353 12MW21 t_n 2 thzs ¢ t

1

' NS 2
+(€105C3 = S, 84 cosﬁ)zslzczz[sz Il(mc)<ﬁ> +8I,(m,) TR Lm )| m2

2
w

2 K
+2(€1€,C4 — 555 C088)S, 8, 8,C,(C, 5,05+, S, cosb)[—l—— 14@) +8I, +Mi2 Is]mfmf}
w

X[3y (1 -y dl[syH(1 - y,)d].

The integrals I,-I; are given in Appendix A. Since
we are not concerned here with small CP-violating
effects we have set e!®=coss. Equation (3.11) is
quite complicated but it has simpler forms for
various values of the angles and #-quark mass.
For example, if

(€;8,¢4 +C,y85 CO88)8,°m ,*
< (€,6,C5 = S,85c088)%¢c,>m*, (3.12)

c

then the terms involving the # quark are negligible
and our bound is just given by the four-quark
bound of Egs. (3.5) and (3.10). If

J

sz n

(3.11)

I
(cy85€5 +Cy 85 CO80)2s,%m 2
> (€,€,¢3 — $,8;c088)°¢,m,?, (3.13)

then the term proportional to m,* will completely
dominate the effective Hamiltonian. In the six-
quark model two-W-exchange graphs also contain
the heavy ¢ quark. This has been used to derive
bounds on the mixing angles® for a given m,.
When s, < s,, for example, those bounds have the
simple form'® tan®6, sm,/m,. Thus, Eq. (3.13)
can be satisfied without violating these bounds on
the angles coming from two-W exchange.

When Eq. (3.13) is satisfied we obtain the follow-
ing bound” on (£ /n)?:

E 2 1 I (m )m 2\ 172
<E> SIl(mt) —4M L, (m,) - I(m,) + ([szlz(mz) +13(mt)]2 +“i,’r27‘m'% ’ (3.14)
I
where fied] one can also use the bound
2 2
- S £V 2 (Mym,

@ =(C,S;C5 +C5 S, OSD) oz (3.15) (11) 75 ( aime) (3.16)

The results of this bound for m,=15 GeV and where

m,=30 GeV are shown in Figs. 5 and 6, respec-
tively. Various values of the angular factor aq are
chosen.'® Note that the bound in the six-quark
case is extremely restrictive. For quick order-
of-magnitude estimates [when Eq. (3.13) is satis-

80

(&/m)% a0~

0 1 1 | L
o 50 100 150
My (Gev)

FIG. 5. The upper limits for (¢ /7)? in the six-quark
model for m,=15 GeV. Various values of the angular
factor a = (cis3c3+¢2s3¢086) sp/cy are shown.

B

MZ(M2+m2) 2m 2M 2 m.2
= (I;W”zlimtz)‘z +(MH2:_ ,,ftz)aln<M_;2>' (3.17)

Since the right-hand side of Eq. (3.16) is always
larger than the right-hand side of Eq. (3.14) this

40 T

(ém)? 20 - .

My (Gev)

FIG. 6. Same as Fig. 5 but for m ;=30 GeV.
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expression gives a valid bound for (£/9)? but it is
not as restrictive as expression (3.14). Note that
for M>>m/j?, B~1.

Finally, if the parameters of the six-quark
model satisfy neither condition (3.12) nor condi-
tion (3.13) the entire expression for the effective
Hamiltonian (3.11) must be considered. Note that
in this regime, if cos6<0, it is possible for the
last term in Eq. (3.11) to be negative®; so for
certain values of the parameters a cancellation
between c- and {-quark contributions could occur.
However, in most cases, the intermediate region
between conditions (3.12) and (3.13) would lead
to bounds more restrictive than Eq. (3.10) but not
as restrictive as Eq. (3.14).

The case 7§/£> 1 is considered in Appendix B
where a bound is derived from D°-D° mixing.

IV. STRONG-INTERACTION CORRECTIONS

The bounds derived in the previous section were
based on a consideration of the lowest-order dia-
grams in Figs. 2 and 3. It is the purpose of this
section to discuss briefly the effects of strong-
interaction corrections which we assume are des-
cribed by quantum chromodynamics (QCD). Let
us consider Fig. 2 in the four-quark model with
massless up, down, and strange quarks. We
have shown that the amplitude for the lowest-order
diagram in Fig. 2 is reproduced by the tree ap-
proximation to the matrix elements of the local
four-fermion operator given in Eq. (3.4). QCD
corrections to this diagram can be included, to
leading order in 1/M,,2, by using a modified effec-
tive Hamiltonian density®®

M & (m, ¥ 1 [£\*
s =a (e o) oo () a3

X[y, (1 =y ][syH(1 -y Md]. (4.1)

Roughly speaking, the effect of QCD corrections
will be to change the parameter m, in Eq. (3.4)
to a running charm mass evaluated at the Higgs-
boson mass scale and to multiply the entire ex-
pression (3.4) by a factor coming from the an-
omalous dimension of the four-quark operator
[Sy,(1 =v.)d][sy*1 -y,)d]. This latter factor is
the product of a term coming from loop momenta
P? satisfying M, 2 < p?*<m? where all four quarks
are relevant, and a term coming from loop mo-
menta smaller than m 2 where only three-quark
flavors act.

(l[g')’u(l —')’s)d] SyM(1 "")’s)d”): [a (2

In the mass-independent minimal-subtraction
scheme?! A(M,/u.,g,) obeys the renormalization-
group equation®

[u% +B(gs>;f,s -7.(gy) +4m(gs)]A(%“,gs> =0.

(4.2)

The quantities y (g,) and y,(g,) are the anomalous
dimensions for the operator [y (1 -y;)d]

x[3y*(1 ~vy,)d] and the quark mass operator, re-
spectively. They have the perturbative expansions

g 2
7+(gs) =T17$§ +O(g:) ) (4.38)
valgs) =~ 55 +0(g,"). (4.3b)

The g function g(g,) has the perturbation expan-
sion®®

Blg.) =-(33 - 2N,) s +0(g.), (4.4)

where Ny (which equals 4 here) is the number of
quark flavors. Using the running coupling constant
Z.(»,g,) defined by

o (Eyveg)
1ny=j; Bdey (4.5)

the solution to Eq. (4.2) is

M M
() 2.)
m g g " I4

FlMyrp £y M—_‘})f_ﬂ(_x_)]
f‘s TP

s

xexp[—

(4.6)

In a leading-logarithm calculation A(1,8(M,/u,g,))
may be replaced by its free-field value of 1 since
a,=g2/4r is assumed small at the mass of the
Higgs boson. Using the perturbation expansions in
Eqgs. (4.3) and (4.4) gives

There is another large mass scale in the prob-
lem—the charm-quark mass. The matrix ele-
ments of [Sy,(1 —y;)d][Sy#1 -y,)d] have a hidden
dependence on the “heavy” charm-quark mass
coming from loops involving virtual charmed
quarks. This dependence was calculated in Ref.
6, and in the leading-logarithmic approximation,
it has the form

] sy -voalisyrea vl 4.8)
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The primed matrix elements are evaluated in an effective theory of strong interactions?* with three quark
flavors (#, d, and s), so virtual charmed quarks will no longer appear. a; is the strong-coupling param-

eter appropriate to this theory.

Introducing a renormalization-group-invariant running charm-quark mass 7y, g,, m,) defined by

B Fs(y.eg) .),m(x)
mc(y,gs,me)‘mvexpus e ] ’

so that in leading-logarithm approximation

_ M o (M 2)] 12725
My ~ as\My )
mc( M ,gs7mc> mc[ as(uz) ’

our QCD-corrected effective Hamiltonian density becomes

211,",2

4 " M 4 1 4
SC;IQ:D)z s,%¢? g [mc( H/U-’gs’mc)] ___(é) [

My, Mll2 n

The matrix elements of this effective Hamiltonian
density are to be evaluated to all orders in the ef-
fective theory of strong interactions with three -
quark flavors.

Unlike the case of the two-W-boson exchange
graph®”’ in Fig. 1 the QCD corrections to Fig. 2
are not negligible. This happens mostly because
the effective Hamiltonian density in Eq. (4.11)
contains four factors of the running charm-quark
mass which is small at the scale of the Higgs-
boson mass. The net result of this is an increase
in the value of our upper bound for (£/9)?. How-
ever, in any weak hadronic process involving
Higgs-boson exchange, the QCD corrections will
change the quark mass parameters in the couplings
to running masses at the scale of the Higgs-boson
mass. Thus a corresponding increase in (¢£/7)?,
from the value estimated in the absence of strong
interactions, will be required to make Higgs-
boson exchange comparable to W exchange in any
weak hadronic process.

V. CONCLUSIONS

In this paper, we have derived bounds on
charged-Higgs-boson couplings using the small
experimental value for the K; -K¢ mass difference.
We were able to get a good bound because the dia-
grams in Figs. 2 and 3, which give the charged-
Higgs-boson contribution to K°-K° mixing, are
dominated by loop momenta of order M, or M,
while, due to a cancellation between the contribu-
tions of different quark flavors, Fig. 1 is domina-
ted by loop momenta only of order m, or m,.

For simplicity we have restricted our attention
to the models which after spontaneous symmetry
breakdown contain only a single physical charged-
Higgs boson. The bounds derived can easily be
applied to possible phenomenological applications

(4.9)

(4.10)
2 6/25 2y} 6/27

(4.11)

I

of these models.

Consider, for example, the possibility of
charged-Higgs-boson exchange making a signifi-
cant contribution to the decay amplitude for K
- 27. At the tree level charged-Higgs-boson and
W -boson exchange contribute through the diagrams
shown in Fig. 7. In the second model where all
the couplings are proportional to £/x, the ratio of
charged-Higgs-boson to W-boson exchange ampli-
tudes arising from the tree-level diagrams in
Fig. 7 is given by Z(¢/n)* (mgm,/M,?), where Z is
a ratio of matrix elements

@[3 -y ul[a +y,)d]iK)
@uilsy (1 -yullay (1 -y d]IK)"

It has been argued® that Z could possibly be as
large as about 10%. Using this and the bound in
Eq. (3.5) we have that the magnitude of the ratio
of charged-Higgs-boson to W-boson exchange is
less than about 10? times (mm,/M m_). For rea-
sonable current quark and Higgs-boson masses’
this is negligible. At the one-loop level we focus
our attention on the contribution to K~27 coming
from the diagrams in Fig. 8 (sometimes called
“penguin” diagrams). The amplitudes arising
from these diagrams are pure A7 =3, and Fig.
8(a) has been proposed to explain the AI =3 en-
hancement of weak |AS|=1 nonleptonic decays.?®
The amplitude corresponding to the Higgs-boson

Z= (5.1)

(a) (b)

FIG. 7. Tree-level contributions to K decay coming
from W (a) and charged-Higgs-boson (b) exchange.
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s w d s H d
u,d u,d
u,d u,d
(a) (b)

FIG. 8. “Penguin” diagrams contributing to K decay
through W (a) and charged-Higgs-boson (b) exchange.
The cycloidlike line represents a gluon.

contribution in Fig. 8(b) can easily be related to
the amplitude for the W-boson contribution®® in
Fig. 8(a) using the Fierz identity

[§(1 +’}’5)C][E(1 - Ys)d]

= "%[3")’”(1 _Ys)d][-éyu(l +‘)/5)C] . (6.2)

We then find that the ratio of charged-Higgs-
boson to W-boson contributions, R, is given by

_1(EY m2un0a,2/m )
RN_Z(n) M 2 In(m2/u?) ’ (5.3)

where p is a typical light hadronic mass of order
0.5 GeV. The bound of Eq. (3.5) gives

m_\ In(M,2/m 2)
ms(ﬁf’)-——&—e—m(mcz e, , (5.4)

Thus for a Higgs-boson mass above 25 GeV the
W -boson contribution certainly dominates. A
similar analysis can be performed with a ¢ quark
in the loop using the six-quark bounds of Sec. III.
Higher-order QCD corrections are not expected
to change our conclusions since they contribute.to
the bound on (£/n)? and to the Higgs-boson contri-
butions to the K- 27 decay amplitude in roughly
the same way.

As a second example we consider nonleptonic
Cabibbo-allowed D decays. Here we would not
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expect that the scalar-pseudoscalar matrix ele-
ments would be greatly enhanced over the vector—
axial-vector matrix elements. In model two (or

in model one when /& >* 1) the ratio of Higgs-
boson to W contributions in non-Cabibbo-sup-
pressed D decays [from diagrams analogous to
Figs. 7(a) and 7(b)] is about (mm,/M *)(£/1)? and
using our bound (3.5), we find that the Higgs-boson
contribution can only be about m,/M, times the W
contribution.

In model one, a similar analysis can be applied
to the case (y/£)> 1. The present experimental
upper limit for D°-D° mixing gives rise to the
bound in Eq. (B6) of Appendix B and rules out (for
a large range of Higgs-boson masses) significant
Higgs-boson effects in Cabibbo-allowed nonlepton-
ic D decays, but not in K decays.

Many other applications are of course possible,
but we hope these simple examples are sufficient
to illustrate the usefulness of the constraints on
charged-Higgs-boson couplings which we have de-
rived. While, for simplicity, we have only con-
sidered two models for the Higgs sector in this
paper, it is clear that in any model (unless the
Higgs-boson couplings are arranged in such a
way that the leading contributions coming from the
diagrams in Figs. 2 and 3 cancel,?’*?® as in the
case of the two-W-boson-exchange graph in Fig.
1), the K; -Ks mass difference will impose severe
constraints on possible charged-Higgs-boson
couplings.?®
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APPENDIX A: USEFUL INTEGRALS

In this appendix we tabulate the integrals used in the text, giving both exact expressions and approxi-

mations for heavy boson masses when useful:

I(m) = j;. (CZi:S“ [(k2 +m)"{e(2k2 +M,,2)2]
1 M2 +m?
1642 [

d*k 1
Iz(m)=_£ @) [(k2 +mP R (12 + M 2) (P +MW2)]
1

1

. 2m*M 2 ln(—"i)] ———
Wﬂz - m2)2 (MHZ - m2)3 MHZ 16n2MH2

+O(I\T_—;> , (1)

B My In(m*/M*) My Inm®/My") 1 ]

1672 (MHZ — z)zwﬂz _MWZ) sz _ mZ)Z(MWZ _MHZ) (m? —MHZ)(WIZ __sz)

_ -1 M2 In(M,2/m?) M2 1In(M,?/m?) ][ <m2 m? ]

O e g U e LY | (RS Gt @®2)
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Iy(m) = fE éﬂ’; [(kz I +k;4,,2>(k2 M, ]

_1 [ M In(M 2 /m?) 41n(M w/m m? ]
“167° M2 ~ M) m® — M2 (M2 = M2) (2 — M2V (m? =M 2)(m? = M)
__1 [in(M,2*/My%) m m®
“ 1672 [(M,.,z -M,?) ][1 +0<M112,Mw2)] ’ (43)
| a a
L= L (27r)“[(k2 +m2) (R +m 2)(R? +MH2)2]
ok [ ] s
1672 (mtz__mcz)wﬂz_mtz)z (mca_mtz)(nlﬂz_mcz)z (M 2_m2)(MH -m, 5|
Lo [ 1
5= J. @2n)? [(k2 +m2) (B +m2) (K +M ) (& +MW2)]
1 [ M2 In(M 2 /M ?) m 2 1In(M,2/mj?)
167 (M2 - M2 M —m2) M —m2)  (mg — M) — M) ~m %)
m21n(My2/m2)
FTnE =M, 2 — M2 on 2 = mf)] ’ (a5)
_ a ¥
Iy -fE @) [(kz +m2) (I +m 2) (K +M )k +MW2)]
_1 [ M, In(M 2 /M,?) mg* In(m, /M2
167 (M7 — MM —m ) M7 —m2) " (m? =)\ = M) om” —m?)
LA ln(mz/sz)
TmZ =, 2)(m = M) (m;? = m?) ] (AB)

APPENDIX B: D0-D0 MIXING

In model one there is a possibility of significant
charged-Higgs-boson couplings when (n/£)> 1.
The K°-K° mass difference does not provide a
strict bound on (3/£)? since, for (n/&)> 1, the
leading contribution cancels out from the Higgs-
boson-exchange graphs in Figs. 2 and 3 when the
amplitudes corresponding to different quarks in
the loop are added together. A better bound can
be achieved by studying D°-D° mixing. We begin
by considering the four-quark model where s,
=s,=0.

Experimentally?

TD°-~D°~K™n")
T(D° - K7)

which implies that®°

<0.16, (B1)

Amp<0.6T,, (B2)

Estimating the total width for D decay by assuming
that the charm quark decays to free particles that
dress themselves into physical states with unit
probability gives

5G%m

FD-— T9—2~—g- 8.6x10713 GeV. (B3)

In the case (p/£)>1, the two-charged-Higgs-

r

boson exchange graph will dominate over the graph
with one Higgs boson and one W boson exchanged.
The usual box diagram with two W bosons in the
loop also contributes to D°-D° mixing. However,
since in this case the loop is dominated by small
momenta of order the strange-quark mass, there
is no justification for a local effective Hamiltonian
formulation. On the other hand, the two-Higgs-
boson-exchange diagram is dominated by large
loop momenta of order the Higgs mass and gives
rise to an effective Hamiltonian density

_ g4 m 4 1 n 4
s =sier s i) iz (1

X[y, (1 +yehul[EvH(L +yu) [1 +O(M 2)]

H

(B4)

The contribution to the D, -D¢ mass difference
given by the matrix elements of the effective
Hamiltonian in Eq. (B4), evaluated by inserting
the vacuum in all possible ways, is

1(n\* md -16 ‘
AmD~4<£> M‘;@'Xlo GeV. (B5)

Requiring that this contribution be no longer than
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the experimental upper limit gives the bound

(o) ()

In the six-quark model the box diagrams with a

virtual b quark in the loop will also contribute to
D°-D° mixing. Thenbounds on (n/£)? canbe derived
for a given value of the mixing angles much as
was done in the latter part of Sec. III where K°-K°
mixing was discussed.
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