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terms do not appear in (£) 0( 2) , but the presence of
such terms would not alter the argument for the cal-
culability of 8. In noncompact manifolds there can be
Iorentz scalars other than R which contribute (I wish
to thank S. M. Christensen for this remark), but again
these do not alter the argument given for the R term.
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When expanded in powers of & where @ is chosen to satisfy &(Q,% =41/8,In(Q,%/A?
=am(Q02) with QOZN 10 GeV?, the quantum chromodynamics (QCD) perturbation series
seems to be extremely well behaved. In particular, the large third-order corrections
discussed recently by Moshe do not appear when this @ is used as the QCD expansion

parameter.

PACS numbers: 12.20.Hx, 12.40.Bb

The behavior of the perturbation expansion in
quantum chromodynamics (QCD) depends critical-
ly on the choice of the expansion parameter used
to define the perturbation series. It has been
noted previously that nonleading corrections to
QCD predictions for deep-inelastic scattering!?
and for e *e~ annihilation,® calculated in the min-
imal-subtraction (MS) scheme,? are significantly
reduced if one expands in powers of an « defined
by momentum-space subtraction® (o o) or by
the MS scheme? (afg) in which factors of y,
—1n47 are removed along with the divergences.

This suggests that in QCD, as in quantum electro-

dynamics (QED), a “physically” defined coupling
constant like a0y Or the closely related ayg
makes a good expansion parameter for the per-
turbation series. However, recently Moshe® has
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presented an interesting estimate of the third-
order corrections to the QCD predictions for
moments of deep-inelastic structure functions.
He finds that even if the MS definition of « is
used, third-order corrections seem to be enor-
mous for @*=< 10 GeV? Although this result is
speculative, a close examination shows that large
contributions to the third-order corrections come
from terms like C, ,"(a/47)*1n*(a/47), where
the constant C, ," is completely known, and it
seems unlikely that the unknown constant terms
would conspire to cancel this large known term.
Moshe’s work seems to indicate a disaster in
QCD perturbation theory., What has gone wrong ?
Consider a perturbative QCD calculation for the
moments of the nonsinglet structure function” ¥ F,,
performed with the MS scheme.* The B function
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and relevant anomalous dimensions and Wilson coefficients are expanded as

B=- gMS[:Bo(aMS/‘ln) + Bl(a Ms/477)2 + Bz(ams/477)3 +.

. (1)

Y(N) =70(N)(0MS/4”) +)’1(N)(QMS/4”)2 +7’2(N)(a ms/4M% +. .., (2)

CW=14+C, " (ays/4m2+. ..,
where

Qs = &vs™/4T .

(3)

(4)

One then obtains predictions for the moments (in the leading-twist approximation),

M@ =Aylays(@) 107280 {14 D W[ s(Q%) /47] + D, ™) [ \s(Q%) /4T]% +. .. }. (5)

A, is an undetermined constant. The constants

D, and D, are given® in terms of the g8, v;,*)

and C,™ of Egs. (1)-(3). D, depends on the
unknown parameters B,, v,(*’, and C,'"). How-
ever, it turns out that in the expansion for D,"),
B,, and y,¥ are multiplied by small numbers so
that their values have little effect on determining
D,®, Furthermore, known terms contribute a
sizable amount to D,*) so that the impact of the
uncertainty in estimating C," is somewhat re-
duced as well, The reliability of the third-order
estimate is further discussed in Ref. 6.

As discussed above, the perturbation expan-
sion in Eq. (5) can be improved by reexpanding®°®
in terms of a different «. In Table I, the known

avs = aysll +aBy(ays/4m) +(a?B,2 + aBy)(avs/41)?],

where

a=1n4m - y;=1.95,

| values® of D,™) for N=4 and the analogous con-

stant® multiplying the (a/4m? term in R,+,- are
compared for various definitions of the coupling
constant

a=aysll+k(ays/4m]. (6)

The table shows how the magnitudes of these
higher-order corrections are reduced by use of
the MS or MOM definitions of @. The results
suggest that the best o to use for third-order
calculations might be oy in Feynman gauge.
However, the relationship between o om and a g
at the order as® is not presently known., There-
fore, I will use the MS definition of « which is
related to a g at this order by®

(7

(8)

The expression in Eq. (5) is now reexpanded in terms of the aj; at this order to obtain'®
My(@) =Alams(@)] 0™ 72811+ D M a55(Q2/47)+ D, ok (@) /47)2+... }. (9)

The values of El(”) are known to be fairly small® (see for example Table I) except at large values of N.
Estimates!! of D,") indicate that they too are not unreasonably large. The large third-order terms

TABLE I. Coefficients of (a/4r)? corrections in deep-

inelastic scattering (M,) and e*e” scattering (R +,-) for
various definitions of o related by a=aygl1+k(ays/
4r)]. Numerical values are from Refs. 1-3 and 5.

Coefficient of {%)?

D.L.S.

Scheme R N=4 R+,

MS 0 20.6 89.3

™S 16.2 6.9 24.3
MOM,

Landau gauge 29.2 -3.9 —-27.4
MOM,

Feynman gauge 26.0 -1.2 —-14.7
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found in Moshe’s analysis,® therefore, have not
yet made their appearance.

In order to obtain a definite prediction for the
@* dependence of the moments from Eq. (9) one
must specify the @* dependence of a3E(@?%). In
almost all analyses, this is done by expanding
ajf itself in powers of a parameter

a=41/8,1n(@*/A?%. (10)

When this expansion for afg in powers of « is
substituted into Eq. (9), one reexpands to QCD
perturbation series this time in powers of a. We
have noted that the perturbation series of Eq. (9)
for My in powers of ay;g seems well behaved, If
this good behavior is to be retained when M, is
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reexpanded in powers of @ one must require that
a and ajg be as close to equal as possible. This
can be done by choosing A in Eq. (10) so that

Q) = as(Q”) (11)

at some value @, which is in the middle of the @?
range over which the QCD prediction is to be ap-
plied. In this analysis, I will take @,*=10 GeV?
although the precise value is not too critical.
Equation (11) requires that we define A by

A%= Q.2 exp[-47/Bar5(@,2)]. (12)

In other analyses, A is not defined as in Eq. (12)
but rather is defined in such a way that it is in-
dependent of @,%. However, this definition of A
does not allow Eq. (11) to be satisfied at any rea-
sonable value of %, and thus the good behavior
of the perturbation series of Eq. (9) is destroyed
when it is reexpanded in terms of @, For exam-
ple, using the estimated! value of B, with A=0.5

0.2 (v T T T T T T T T

0 1 Lol 1 L1111
| 10 100

Q2 (Gev?)

FIG. 1. The lower solid curve is the lowest-order
QCD prediction for the N=4 moment of xF3; with arbi-
trary overall normalization. The upper solid curve is
the QCD prediction including known second-order terms
as well. The shaded area indicates the estimated third-
order prediction including a 50% error on all unknown
constants. For these curves A=0.5 GeV and four quark
flavors have been used.

GeV and four quark flavors, I find that the a used in Ref. 6 did not satisfy Eq. (11) but rather was re-

lated to agg at @*=10 GeV? by

a=aypsll+2L.1(ayE/4m) + 575.0( ays /47)2).

(13)

The introduction of large numbers like 21.1 and 575.0 into the perturbation expansion was then what

produced the large third-order corrections in Moshe’s analysis.®

that Eq. (11) is satisfied, we have

am(Qz)wﬂQZ){l [511 Eg?)][&(QZ}

When A is chosen as in Eq. (12) so

T R

By examining this expression, one can again see the importance of imposing condition (11).

In Moshe’s

analysis,® factors of {(3,/B,)In[a(Q?/47] {2~450 (at @*=10 GeV?) appeared at third order and led to the

large terms C,

{(B,/B,) ln[a(Qz)/a Qo)

.M In? [E(Qz)/4n] discussed above. When condition (11) is applied these are replaced by
]}2=0. However, the most important point is that Eq, (11) is a natural conse-

quence of the assumption that ajg is a reasonable expansion parameter for QCD.
The final QCD predcition for My(Q?) is obtained by substituting a3 of Eq. (14) into Eq. (9). The re-

sults for the N =4 moment with A=0.5 GeV and four quark flavors are shown in Fig. 1.

The lower

solid curve is the lowest-order QCD prediction where the arbitrary normalization A, =1 has been
chosen. The upper solid curve shows the result of adding in the known second-order corrections. Fi-
nally, the shaded region indicates the estimated QCD prediction including first-, second-, and third-
order terms., A 50% error has been included for all unknown parameters. The perturbation series

seems remarkably well behaved.'?

My conclusion is that, although disastrous results can be obtained by use of arbitrary choices of the
expansion parameter, the QCD perturbation series'® in powers of @ where « is chosen to satisfy

a(Qy") = 41/ B, In(Qy*/A%) = aiis(Qy”)

(15)

with @, ~10 GeV? shows'® no anomalously large terms at least up to order o®.

I thank M. Grisaru and M. Wise for helpful discussions. This research was supported in part by the
U. S. Department of Energy under Contract No, E(11-1)3230. Some work on this paper was done at the
Stanford Linear Accelerator Center, and I thank the theory group there for their hospitality.
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I chose the nonsinglet moment to avoid the complication of operator mixing and take xF5 just for definiteness.
The results are only changed slightly for other nonsinglet structure functions like Fy? — F," .,

SExplicity,
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%J. Collins and A. Macfarlane, Phys. Rev. D 10, 1201 (1974). For a discussion of this result in a simply calculable
model see L. F. Abbott and M. T. Grisaru, to be published.

VExplicitly,

D, M =D, M _ gy, (W

)

() ") (N) (N2
= Y Y Y Y
D2(N)=D2(N)_a{__ﬂﬁr;§_l +Bn(1+—"2§0“)01(”) }+a2[_m_zén +_n_8_]

] estimate the parameters B, )’2“” , and C2(N’ by assuming that the ratio between first- and second-order coef-
ficients is equal to that between second- and third-order terms. Thus, I take as my estimated values 8,= (/31//30)[31,
Y W) = [y Wy W]y ) and €, M =M /e 0

LZFigure 1 should be compared with Fig. 2 of Ref. 6.

Bpphe problem of choosing an expansion parameter is not unique to QCD. For example, in QED if one choosed to
reexpand the usual perturbation series for the magnetic moment of the electron in terms of aMSQED one also finds
anomalously large third-order corrections.

4The choice Q02=10 GeV? is not crucial. Various values of Qoz are acceptable provided that they lie in a region of
@° in which perturbation theory is applicable.

Search for Narrow pp States
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We have searched for narrow states of the pp system in the mass range from 2000 to
2400 MeV/c? in the inclusive channel 7~ + (p or C)—pp +X°. No statistically significant
enhancements in the data have been observed.

PACS numbers: 14.40.—n, 13.75.Cs

High-mass baryon-antibaryon resonances with quark confinement.® Despite confusing and even
narrow widths have been predicted by theories contradictory evidence**® concerning such reso-
based on nuclear potential models,! duality,? or nances, the importance of these ideas warrants
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