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CHAPTER 11

Drivers and modulators from push-pull and
balanced synaptic input

L.F. Abbott1,* and Frances S. Chance2
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Abstract: In 1998, Sherman and Guillery proposed that there are two types of inputs to cortical neurons; drivers and
modulators. These two forms of input are required to explain how, for example, sensory driven responses are controlled
and modified by attention and other internally generated gating signals. One might imagine that driver signals are
carried by fast ionotropic receptors, whereas modulators correspond to slower metabotropic receptors. Instead, we
have proposed a novel mechanism by which both driver and modulator inputs could be carried by transmission through
the same types of ionotropic receptors. In this scheme, the distinction between driver and modulator inputs is functional
and changeable rather than anatomical and fixed. Driver inputs are carried by excitation and inhibition acting in a
push-pull manner. This means that increases in excitation are accompanied by decreases in inhibition and vice versa.
Modulators correspond to excitation and inhibition that covary so that they increase or decrease together. Theoretical
and experimental work has shown that such an arrangement modulates the gain of a neuron, rather than driving it to
respond. Constructing drivers and modulators in this manner allows individual excitatory synaptic inputs to play either
role, and indeed to switch between roles, depending on how they are linked with inhibition.

Introduction

Cognitive processing often relies on one region of
the brain controlling and modulating the actions of
another. One mechanism for such control is gain
modulation, a prominent feature of neural activity
recorded in behaving animals (Salinas and Thier,
2000). Gain modulation is a multiplicative (or divi-
sive) scaling effect on neuronal responses, equivalent
to a change in slope of the firing rate versus current
(f-I) curve, that is distinct from the additive (or
subtractive) shifts in the firing rate produced by

pure excitation or inhibition acting as a driving
input (Gabbiani et al., 1994; Holt and Koch, 1997).

The distinction between driver and modulator
inputs (Sherman and Guillery, 1998), is illustrated in
Fig. 1. Figure 1A shows the well-known effect of
increasing either the excitatory or inhibitory compo-
nent of the total synaptic input to a model neuron,
which is a left- or rightward shift of the f-I curve. This
additive or subtractive effect of excitation or inhibi-
tion corresponds to a driving input. In contrast, Fig.
1B illustrates a multiplicative alteration in the f-I
curve (the curves are approximate multiples of each
other), the signature characteristic of gain modula-
tion. It is important to appreciate that gain modula-
tion is a change in the sensitivity of a neuron, similar
to adjusting the volume control on an amplifier, not
simply an additive enhancement or subtractive
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diminution of its response. This change of sensitivity
is the key to its usefulness as a mechanism for
switching and modifying neural circuits.

Gain modulation appears to be a primary mecha-
nism by which cortical neurons non-linearly combine
input signals. It shows up in a wide range of contexts
including the gaze-direction dependence of visual
neurons in posterior parietal cortex (Andersen and
Mountcastle, 1983; Andersen et al., 1985, Murphy
and Miller, 2003), the effects of attention on visually
responsive neurons (Connor et al., 1996, 1997;
McAdams and Maunsell, 1999a,b; Treue and
Martı́nez-Trujillo, 1999), auditory processing in
birds (Peña and Konishi, 2001), and visual escape
responses in locusts (Gabbiani et al., 1999). Gain
modulation is seen in early visual processing
(Weyland and Malpeli, 1993; Pouget and Sejnowski,
1994, 1997; Trotter and Celebrini, 1999), and it has
been proposed as a mechanism for generating a
variety of non-classical receptive field effects for
neurons in primary visual cortex (Heeger, 1992,
1993; Carandini and Heeger, 1994; Carrandini et al.,
1997; Tolhurst and Heeger, 1997) and for the
decorrelation of natural images (Simoncelli and
Schwartz, 1999; Schwartz and Simoncelli, 2001a,b).
The neural computations required for coordinate

transformations during reaching tasks (Zipser and
Andersen, 1988; Salinas and Abbott, 1995; Pouget
and Sejnowski, 1997) and for object recognition
(Salinas and Abbott, 1997) also appear to involve
gain modulation.

Although the importance of gain modulation (and
multiplicative interactions in general) in neurons has
been appreciated for many years (Mel and Koch,
1990; Koch and Poggio, 1992; Pouget et al., 1993,
Pouget and Sejnowski, 1994, 1997; Salinas and
Abbott, 1995, 1997), it has proven difficult to uncover
a realistic biophysical mechanism by which it can
occur. (It is important to note that, despite comments
in the literature to the contrary, divisive inhibition
of neuronal responses cannot arise from so called
shunting inhibition. As has been shown both theor-
etically (Gabbiani et al., 1994; Holt and Koch, 1997)
and experimentally (Chance et al., 2002), inhibition
has the same subtractive effect on firing rates whether
it is of the shunting or hyperpolarizing variety. Thus,
shunting inhibition does not provide a plausible
mechanism for neuronal gain modulation.) In partic-
ular, it has not been known how restrictive gain
modulation might be; for example, whether it requires
relatively non-specific neuromodulatory systems
(Marder and Calabrese, 1996), relies on slow
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Fig. 1. Effects of excitatory and inhibitory input on the firing rate versus input current (f-I) curve of an integrate and fire model
neuron. Input current is plotted in terms of the equivalent amount of depolarization produced in the resting neuron with spiking
blocked, a convenient measure. (A) The effect of increased excitation is a leftward shift of the f-I curve, while increased inhibition
produces a rightward shift. (B) Modifying levels of both excitation and inhibition in a balanced manner produces a multiplicative
enhancement (reduced excitation and inhibition) or a divisive reduction (increased excitation and inhibition) in the firing rate. In both
figures, dots are simulation results and solid curves are a fit using Eq. 3.
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metabotropic receptors (Sherman and Guillery,
1998), or requires blocks of neurons to be modulated
together (Salinas and Abbott, 1996; Hahnloser et al.,
2000). Despite a number of attempts (Srinivasan and
Bernard, 1976; Koch and Ullman, 1985; Koch and
Poggio, 1992; Mel, 1993; Salinas and Abbott, 1996;
Koch, 1998; Hahnloser et al., 2000), no really
satisfactory proposal existed until recently (Doiron
et al., 2001; Chance et al., 2002; Prescott and De
Koninck, 2003; Mitchell and Silver, 2003).

Gain modulation from balanced synaptic input

Neurons typically receive a massive barrage of
excitatory and inhibitory synaptic input. The func-
tional role of this noisy background activity has been
a long-standing puzzle in neuroscience. Background
activity dramatically affects neuronal response prop-
erties (Bernander et al., 1991; Douglass et al., 1993;
Collins et al., 1996; Levin and Miller, 1996; Nozaki et
al., 1999; Destexhe and Paré, 1999; Hô and Destexhe,
2000; Anderson et al., 2000a; Tiesinga et al., 2001;
Destexhe et al., 2001) in part by increasing overall
conductance (Rapp et al., 1992; Borg-Graham, 1998;
Hirsch et al., 1998; Destexhe and Paré, 1999; Shelley
et al., 2002).

Cortical neurons exhibit a remarkably high level of
response variability (Burns and Webb, 1976; Dean,
1981; Softky and Koch, 1992, 1994; Holt et al., 1996;
Anderson et al., 2000a). This led to the suggestion
that, in addition to the push-pull excitation and
inhibition (Anderson et al., 2000b) that drives or
suppresses their responses, cortical neurons receive
a high degree of parallel excitation and inhibition
(Shadlen and Newsome, 1994, 1998; Tsodyks and
Sejnowski, 1995; van Vreeswijk and Sompolinsky,
1996; Troyer and Miller, 1997, Stevens and Zador,
1998). Although this so-called balanced synaptic
input generates little mean overall current, due to
the cancellation of excitatory and inhibitory compo-
nents, it produces a highly fluctuating input that
contributes to response variability.

Previous work has treated the balanced compo-
nent of synaptic input as a constant source of noise
that continuously underlies the stimulus-evoked
increases in excitation that drive neuronal responses.
However, when the overall level of background

activity is varied, an interesting thing happens. The
example of gain modulation shown in Fig. 1B was
obtained from an integrate-and-fire model neuron
receiving large amounts of excitation and inhibition in
a balanced configuration. The responsiveness of the
model neuron was investigated by plotting the firing
rate evoked by various levels of injected current (the
f-I curve). The difference between the three curves
lies in the different levels of balanced excitation
and inhibition that the neuron received.

The gain modulating effect of balanced synaptic
input has also been seen in neurons in layer 5 of rat
somatosensory cortex (Chance et al., 2002). In these
experiments, the dynamic clamp was used to simulate,
within in the normally quiescent slice preparation,
the high conductance changes and fluctuations in
membrane potential that are characteristic of in vivo
cortex. For the parameters that achieved realistic
conductance changes and levels of noise, the synaptic
inputs were in a configuration in which excitation
approximately balanced inhibition. In particular, to
simulate typical in vivo conditions, excitatory inputs
were generated at a rate of 7000 Hz and inhibitory
inputs at a rate of 3000 Hz, representing the summed
effects of many simulated afferents. The arrival times
of these synaptic inputs were randomly generated
with Poisson statistics. The unitary synaptic conduc-
tance for each synaptic input was calculated as a
difference of exponentials, with time constants of 0.1
ms for the rising phase and either 5 ms (excitatory) or
10 ms (inhibitory) for the falling phase. The peak
unitary synaptic conductances were set to 2% (exci-
tatory) or 6% (inhibitory) of the measured resting
membrane conductance.

The balanced background synaptic activity intro-
duced with the dynamic clamp was not very effective
at driving the recorded neuron. Instead, the dominant
effect of this background activity was to introduce
noise into the neuronal response, as illustrated in
Fig. 2. The level of variability matched quite well
with levels seen in vivo (Fig. 2).

Varying the level of background activity had a
significant effect on the gain of the neuron as
measured by driving it with different levels of
constant injected current (the driving current) in
addition to the simulated background synaptic activ-
ity. In other words, the firing rate was measured as
a function of driving current for different levels of
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background activity. The dominant effect of changing
the level of background activity was to multiplica-
tively scale the curve of firing-rate versus input
current for the neuron (Fig. 3). This effect is
equivalent to changing the gain of the neuron,
where gain is defined as the slope of the firing rate
curve.

Through this mechanism, gain modulation occurs
without a corresponding change in firing rate vari-
ability (measured as the coefficient of variation of the
interspike intervals). The multiplicative effect is not
simply a result of the increased conductance induced
by the dynamic clamp simulated input (see Chance et
al., 2002 for more details). Briefly, two fundamental
components of synaptic input increase when back-
ground synaptic activity is increased: the overall
conductance and the variance of the synaptic current
entering the neuron. The increase in conductance has
a subtractive effect on the firing rate curve of the
neuron (Gabbiani et al., 1994; Holt and Koch, 1997,
Chance et al., 2002) while the increase in synaptic
current variance leads to a decrease in gain, along
with an additive effect (Chance et al., 2002). When the
rate of background synaptic input is increased, these
effects combine. For a certain parameter range, the

subtractive effect of the conductance increase cancels
the additive effect of the current variance increase,
leaving the divisive gain change.

Of relevance for the connection with the idea of
driver and modulator inputs (Sherman and Guillery,
1998) is the fact that mixed multiplicative/divisive
and additive/subtractive effects are obtained if the
levels of excitation and inhibition in the back-
ground synaptic activity is not completely balanced.
For example, in the right panel of Fig. 3, inhibition
was slightly stronger than excitation. As background
synaptic activity was increased, this produced a
subtractive effect (shifting of the curve to the right
along the input axis) as well as a divisive effect.
Therefore, mixed multiplicative and additive effects
can arise from this mechanism through non-balanced
synaptic input.

A firing-rate description of gain modulation

Many network models in neuroscience are con-
structed by using firing rates to characterize neuronal
activity. The use of firing-rate descriptions (Wilson
and Cowan, 1972; Dayan and Abbott, 2001) is

Fig. 2. Top panels: (adapted from Chance et al., 2002) Intracellular recordings from a layer 5 pyramidal neuron in a slice of rat
somatosensory cortex. Constant current was injected to drive the neuron at approximately 5 Hz. The two traces represent the firing of
the neuron with (right) and without (left) simulated background activity. For comparison, the bottom traces (adapted from Holt et al.,
1996) are intracellular recordings from pyramidal neurons of cat visual cortex driven with constant current in slice (left) or in vivo
(middle), and when driven by visual activity in vivo (right).
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standard practice in network modeling because it
greatly accelerates the construction of networks and
facilitates our understanding of what they are doing.
By having an accurate expression for the firing rate
of a spiking neuron, it is possible to build network
models rapidly, analyze their behavior and then, if the
network seems interesting, build the corresponding
spiking network model. The latter is obviously more
realistic and more interesting from a biological
standpoint, but more difficult to construct from
scratch. A commonly used form for the f-I curve in
such models is the threshold-linear function. It is
actually easier for what follows to express the firing
rate r in terms of the steady-state membrane potential,
Vss, that the neuron would obtain in response to the
given input current if it was held constant and the
spiking mechanisms of the neuron was inactivated. In
terms of this steady-state voltage, which is typically
related in a linear manner to the input current, and
a threshold potential Vth,

r ¼ ðVss # VthÞ!ðVss # VthÞ
!ðVth # VresetÞ

; (1)

where ! is an arbitrary constant, although in many
models it corresponds to the membrane time

constant, and !(x) is a step function that takes the
value 1 if x>0 and zero otherwise.

Equation 1 gives the firing rate in terms of an input
current, or equivalently the effective steady-state
potential it produces. This formula is valid in the
absence of ‘‘noise’’, which means non-variable synap-
tic input. This result should be extended to the case
where this variable input causes fluctuations in the
membrane potential. The magnitude of these fluctua-
tions is characterized by their standard deviation
denoted by "V. It is well-known that such fluctuations
‘‘soften’’ the threshold present in Eq. 1. In other
words, when its membrane potential fluctuates, a
neuron can fire even when the steady-state potential
Vss is less than the threshold potential Vth. To account
for this effect, the ! function should be ‘‘softened’’ in
Eq. 1. The function required for this purpose must
satisfy a number of conditions. First, it should go to 0
when (Vss#Vth)/"V% 0 because in this limit the noise
level is insufficient to make the neuron fire. Second, it
should go to 1 when (Vss# Vth)/"V & 0 because over
this range the noise is irrelevant. Third, if the neuron
is to fire when Vss ¼ Vth, the factor that replaces the!
function in Eq. 1 must grow without bound propor-
tional to 1/(Vss # Vth) near the point where Vss ¼ Vth.
Finally, this function should approach a! function in
the limit of no noise, "V ! 0.
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Fig. 3. Gain modulation by background synaptic activity for two different neurons (adapted from Chance et al., 2002). Firing rate
plotted against driving current for different levels of background activity. Open inverted triangles represent the responses of the neuron
in the absence of any background synaptic activity. The filled circles represent the responses recorded in the standard condition (see
text and Chance et al., 2002). To produce the open squares and filled triangles, the input rates of the background excitatory and
inhibitory synaptic inputs were doubled and tripled, respectively.
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If one sticks to using standard functions, it is clear
that the replacement one wants to make in order to
satisfy these conditions is

!ðVss # VthÞ !
1

1# exp
!
# aðVss # VthÞ="V

" ;

(2)

where a is a constant parameter. Making this
replacement in Eq. 1 leads to the functional form
proposed for describing how the firing rate in the
presence of variable input depends on both the mean
steady-state potential and the standard deviation of
the membrane potential,

r ¼ ðVss # VthÞ

!ðVth # VresetÞ
!
1# expð#aðVss # VthÞ="VÞ

" :

(3)

This formula, suggested as a simpler alternative for an
exact expression for the firing rate of an integrate-
and-fire model neuron receiving a white noise input
(Ricciardi, 1977; Tuckwell, 1988), works quite well in
all the cases where it has been tried. For example,
the solid lines in Fig. 1 were generated using Eq. 3.
Figure 4, displays how the firing rate given by this
formula depends on the steady-state membrane
potential and membrane potential variance over a
range of values.

Discussion

High levels of highly variable synaptic input are a
distinctive and puzzling feature of cortical circuitry.
Previous work has treated this input purely as a
source of noise and response variance. The results
reported show that, in real cortical neurons, high
levels of synaptic input can produce a more interest-
ing effect, modulating the gain of neuronal responses.
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Given the high levels of synaptic activity in cortical
circuitry, modulatory effects are inevitable, so it is
important to characterize them fully and to under-
stand their roles in cortical processing. We suggest
Eq. 3 as one such compact and useful description.

We propose that the driving and modulatory
inputs that Sherman and Guillery (1998) suggested
neurons in cortical circuits receive are not distin-
guished anatomically, they are distinguished func-
tionally. In the present study both classes of inputs
operate through ordinary AMPA- and GABA-
mediated fast, ionotropic conductances, which
allows modulatory inputs to be as specific and rapid
as driving inputs. Driving inputs to the neuron are
carried along excitatory and inhibitory afferents that
operate in an opposing, push–pull manner (Anderson
et al., 2000b). Modulatory inputs consist of excitatory
and inhibitory afferents in a balanced configuration
(Shadlen and Newsome, 1994, 1998; Troyer and
Miller, 1997) that produces little net drive to the
neuron. If the balance between the excitatory and
inhibitory components is modified, this produces an
additive or subtractive shift in the responsiveness of
the neuron, corresponding to conventional excitation
and inhibition. If the excitatory and inhibitory
components are varied in parallel, maintaining the
balance between excitation and inhibition, this pro-
duces a multiplicative or divisive modulation in the
gain or sensitivity of the neuronal response. Together,
these two forms of response modulation provide a
powerful mechanism for modifying and switching
network function. Furthermore, specific excitatory
afferents can rapidly switch from one type to the
other by changing their correlation with associated
inhibitory inputs.
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