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CHAPTER 2
A simple growth model constructs critical avalanche
networks
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Abstract: Neurons recorded from electrode arrays show a remarkable scaling property in their bursts of
spontaneous activity, referred to as ‘‘avalanches’’ (Beggs and Plenz, 2003, 2004). Such scaling suggests a
critical property in the coupling of these circuits. We show that similar scaling laws can arise in a simple
model for the growth of neuronal processes. In the model (Van Ooyen and Van Pelt, 1994, 1996), the spatial
range of the processes extending from each neuron is represented by a circle that grows or shrinks as a
function of the average intracellular calcium concentration. Neurons interact when the circles correspond-
ing to their processes intersect, with a strength proportional to the area of overlap.
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Introduction

Theoretical (also known as computational) neuro-
science seeks to use mathematical analysis and
computer simulation to link the anatomical and
physiological properties of neural circuits to be-
havioral and cognitive functions. Often, research-
ers working in this field have a general principle of
circuit design or a computational mechanism in
mind when they start to work on a project. For
the project to be described here, the general issue
concerns the connectivity of neural circuits. For all
but the smallest of neural circuits, we typically do
not have a circuit diagram of synaptic connectivity
or a list of synaptic strengths. How can we model a
circuit when we are ignorant of such basic facts
about its structure? One answer is to approach the
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problem statistically, put in as much as we know
and essentially average over the rest. Another
approach, and the one that inspires this work, is to
hope that we can uncover properties of a neural
circuit from basic principles of synapse formation
and plasticity. In other words, if we knew the rules
by which neural circuits develop, maintain them-
selves, and change in response to activity, we could
work out their architecture on the basis of that
knowledge. To this end, we need to uncover the
basic rules and principles by which neural circuits
construct themselves.

When neurons are removed from the brain and
grown in culture, they change from disassociated
neurons into reconnected networks or, in the case
of slice cultures, from brain slices to essentially two-
dimensional neural circuits. These re-development
processes provide an excellent opportunity for ex-
ploring basic principles of circuit formation. Using
slice cultures from rat cortex (and also acute slices),
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Beggs and Plenz (2003, 2004) uncovered an intrigu-
ing property of networks of neurons developed in
this way. By growing neural circuits on electrode
arrays, they were able to record activity over long
periods of time and accumulate a lot of data on
the statistical properties of the activity patterns
that arise spontaneously in such networks. Of
particular interest are the observations of scaling
behavior and criticality. These results provide
the inspiration for the model we construct and
study here.

The networks recorded by Beggs and Plenz
(2003, 2004) are often silent, but silent periods are
punctuated by spontaneous bursts of activity ob-
served on variable numbers of electrodes for
different periods of time. Beggs and Plenz called
these bursts avalanches. To define and parameter-
ize neural avalanches, they divided time into bins
of size tbin through a procedure that selects an op-
timal size. Here, we simply use tbin ¼ 10ms, typical
of the values they used. An avalanche is defined as
an event in which activity is observed on at least
one electrode for a contiguous sequence of time
bins, bracketed before and after by at least one bin
of silence on all electrodes. We use an identical
definition here, except that electrode activity is re-
placed by neuronal activity, because our model has
no electrodes and we can easily monitor each
neuron we simulate.

The results of Beggs and Plenz (2003, 2004) of
particular importance for our study are histograms
characterizing both the durations and sizes of the
Fig. 1. Results of Beggs and Plenz on avalanche distributions. Left: pr

corresponds to a �3/2 power. Right: probability of avalanches of di

(Adapted with permission from Beggs and Plenz, 2004).
avalanches they recorded. Duration was deter-
mined by counting the number of consecutive bins
within an avalanche. Size was measured either in
terms of the number of electrodes on which activ-
ity was recorded during an avalanche, or by a
measure of the total signal seen on all electrodes
during the course of an avalanche. In our mode-
ling work, we measure the size of an avalanche by
counting the total number of action potentials
generated during its time course.

The histograms of duration and size constructed
from the data revealed a fascinating property
(Beggs and Plenz, 2003, 2004; Fig. 1); both were of
a power-law form. The number of events of a
given size fell as the size to the �3/2 power, and
the number of events of a given duration fell as the
duration to the �2 power. Power-law distributions
are interesting because they contain no natural
scale. For example, in this context we might expect
the typical size of a neuronal dendritic tree or
axonal arbor (around 100 mm) to set the spatial
scale for avalanches. Similarly, we might expect a
typical membrane time constant of around 10 ms
to set the scale for avalanche durations. If this
were true, the distributions should be exponential
rather than power-law. Power-law distributions
indicate that these networks can, at least occa-
sionally, produce activity patterns that are much
larger and much long-lasting that we would have
expected. This is what makes power-law distribu-
tions so interesting. Another intriguing feature is
that power-law behavior typically arises in systems
obability of avalanches of different spatial sizes. The dashed line

fferent durations. The dashed line corresponds to a �2 power.
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when they are critical, meaning that they are close
to a transition in behavior. Thus, power laws arise
when systems are specially configured.

Beggs and Plenz (2003, 2004) went on to note
that the powers they observed, �3/2 and �2, are
the same as those that arise in a very simple model
(Zapperi et al., 1995). In this model, each neuron
connects to n other neurons and, if it fires an ac-
tion potential, causes each of its targets to fire with
probability p. If po1/n, activity in this model
tends to die out, and if p41/n it tends to blow up.
If p ¼ 1/n, on the other hand, this simple model
produces distributions with the same power-law
dependence and same powers as those observed in
the data. The condition p ¼ 1/n implies that every
neuron that fires an action potential causes, on
average, one other neuron to fire. This is critical in
the sense discussed above that smaller values of p
tend to induce patterns of activity that die out over
time, and larger values of p tend to produce
exploding bursts of activity. Thus, the results from
these array recordings lead to the puzzle of how
networks develop and maintain patterns of con-
nectivity that satisfy this criticality condition. Do
neurons somehow count the number of other
neurons they project to and adjust the strengths of
their synapses in inverse proportion to this
number? If so, what would be the biophysical
substrate for such a computation and adjustment
(Teramae and Fukai, 2007)?

To address these questions, we made use of
a model of neuronal circuit growth due to Van
Ooyen and Van Pelt (1994, 1996). The model is
simple, but here simplicity is exactly the point. We
ask, in place of the above questions, whether a
simple, biophysically plausible mechanism could
account for the power-law behavior seen in the
avalanche histograms without requiring any
counting of synapses or criticality calculations.
We are not proposing that the model we present is
realistic, but rather use it to show that adjusting a
network to be critical may not be as difficult as it
would first appear.

The model

Following the work of (Van Ooyen and Van Pelt
(1994, 1996); for reviews, see Van Ooyen, 2001,
2003), our model consists of N neurons positioned
at random locations within a square region. The
length and width of this square defines 1 unit of
length. We can think of each location as the
position of the soma of a neuron. The axonal and
dendritic processes of each neuron are character-
ized by a circle drawn around its location. The size
of this circle represents the extent of the processes
projecting from the centrally located soma. Neu-
rons interact synaptically when the circles repre-
senting their processes overlap, and the strength of
the coupling is proportional to the area of overlap
between these two circles. This is reasonable
because synapses form in areas where neuronal
processes intersect, and more intersections
are likely to result in more synapses. All synaptic
connections are excitatory.

The critical component of the model is the
growth rule that determines how the process-
defining circles expand or contract as a function of
neuronal activity. The rule is simple: high levels of
activity, which signify excessively strong excita-
tion, cause the neuronal circle to contract, and low
levels of activity, signifying insufficient excitation,
cause it to grow. The initial sizes of the circles are
chosen randomly and uniformly over the range
from 0 to 0.05, in the units defined by the size of
the square ‘‘plating’’ region.

Each neuron in the model is characterized by a
firing rate and a radius, which is the radius of the
circle defining the extent of its processes. Neuronal
activity is generated by a Poisson spiking model on
the basis of a computed firing rate. The firing rate
for neuron i, where i ¼ 1, 2, 3,y, N, relaxes
exponentially to a background rate r0 with a time
constant tr according to

tr
dri

dt
¼ r0 � ri. (1)

We took r0 ¼ 0.1 Hz and tr ¼ 5ms. The low
background firing rate of 0.1Hz is important to
prevent the network from simply remaining silent.
At every time step Dt, neuron i fires an action po-
tential with probability riDt. We took Dt ¼ 1ms.
After a neuron fires an action potential, it is held in
a refractory state in which it cannot fire for 20ms.

Whenever another neuron, neuron j, fires an
action potential, the firing rate of neuron i is
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incremented by

ri ! ri þ gAij (2)

where Aij is the overlap area between the two cir-
cles characterizing the processes of neurons i and j.
In our simulations, the constant g, which sets the
scale of synaptic strength in the model, is set to
g ¼ 500Hz. This number is large because the
overlap areas between the neurons are quite small
in the units we are using.

The average level of activity of neuron i is mon-
itored by a variable Ci that represents the internal
calcium concentration in that neuron. Ci decays to
zero exponentially,

tC
dCi

dt
¼ �Ci (3)

and is incremented by one unit ðCi ! Ci þ 1Þ
whenever neuron i fires an action potential. This
step size defines the unit of calcium concentration.
The value of the time constant tC is not critical in
what follows, but we took it to be 100ms.

Two features make calcium a useful indicator of
neuronal activity. First, resting calcium concen-
trations inside neurons are very small, but calcium
enters the cell whenever the neuron fires an action
potential. Because of this, the calcium concentra-
tion acts as an integrator of the action potential
response and, for this reason, imaging calcium
concentrations is a common way to monitor
neuronal activity. Second, many molecules in a
neuron are sensitive to the internal calcium con-
centrations, so this indicator can activate numer-
ous biochemical cascades, including those
responsible for growth.

The remaining equation in the model is the one
that determines the contraction or growth of the
radius ai characterizing neuron i. This is

dai

dt
¼ kðCtarget � CiÞ (4)

where k determines the rate of growth. We used a
variety of values for k, but growth was always slow
on the time scale of neuronal activity. We often
started a run with a larger value of k (k ¼ 0.02 s�1)
to speed up growth, but as an equilibrium state
was reached we lowered this to k ¼ 0.002 s�1. The
parameter Ctarget plays the dominant role in
determining the behavior of the model. This sets
a target level of calcium, and therefore a target
level of activity, for the neurons. If activity is low
so that CioCtarget, the above equation causes the
processes from neuron i to grow (ai increases)
leading to more excitatory connections with other
neurons and hence more activity. If activity is high
so that Ci4Ctarget, the processes will retract (ai
decreases) lowering the amount of excitation
reaching neuron i. In this way, each neuron grows
or contracts in an attempt to maintain the target
level of calcium concentration (Ci ¼ Ctarget),
which implies a certain target level of activity.
We discuss the value of Ctarget more fully below,
but Ctarget ¼ 0.08 was used to obtain the results in
the figures we show.
Results

The left panel of Fig. 2 shows a typical configu-
ration at the beginning of a run. In this case, 100
neurons have been located randomly with various
radii, also chosen randomly. At this initial point,
many of the neurons are disconnected or, at most,
connected together in small clusters. Each neuron
has a spontaneous firing rate of 0.1 Hz, even when
isolated, so this network exhibits activity, but at a
low level. Fig. 2 (left) shows a typical initial state
of the model, but the results of running a model
simulation are independent of the initial state
unless a highly unlikely initial configuration (such
as many neurons at the same position) limits
the possibilities for developing connections
through growth. The target calcium level we use,
Ctarget ¼ 0.08, is larger than the average calcium
level attained by the neurons in this initial config-
uration. Thus, when the simulation starts, the
neurons (the circles in Fig. 2, left) grow larger.

As the neurons grow, they begin to form more
and stronger connections, which causes the level of
activity in the network to increase. Growth con-
tinues until the neurons are active enough to bring
their average calcium concentrations near to the
value Ctarget. At this point, the average rate of
growth of the network goes to zero, but there are
still small adjustments in the sizes of individual
neurons. As neurons adjust their own radii, and



Fig. 2. Configuration of the model network before (left) and after (right) activity-dependent growth. Each circle represents the extent

of the processes for one neuron. Neurons with overlapping circles are connected. Initially (left), the neurons are either uncoupled or

coupled in small clusters. At equilibrium (right), the network is highly connected.
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react to the adjustments of their neighbors, they
eventually achieve a quasi-equilibrium point in
which their time-averaged calcium concentrations
remain close to Ctarget, with small fluctuations in
their radii over time. From this point on, the net-
work will remain in the particular configuration
it has achieved indefinitely. This growth process
has been described previously (Van Ooyen and
Van Pelt, 1994, 1996; Abbott and Jensen, 1997).
Our only modification on the original growth
model of Van Ooyen and Van Pelt (1994, 1996)
was to add Poisson spikes to their firing-rate
model. The right panel of Fig. 2 shows the equi-
librium configuration that arose from the initial
configuration shown in the left panel.

The size of the small fluctuations in neuronal
size about the equilibrium configuration is deter-
mined by the magnitude of the growth rate, k.
Because growth processes are much slower than
the processes generating activity in a network, we
chose k to be as small as we could without requir-
ing undue amounts of computer time to achieve
equilibrium. The results we report are insensitive
to the exact value of k.

Once the network has achieved an equilibrium
configuration, we analyze its patterns of activity
using the same approach as Beggs and Plenz (2003,
2004). In other words, we constructed histograms
of the duration and total number of action poten-
tials in periods of activity that were bracketed by
10 ms time bins in which no activity was observed.
To assure that the resulting histograms reflect the
dynamics of the network and not of the growth
process, we shut off growth (set k ¼ 0) while we
accumulated data for the histograms, although for
the small growth rate we use, this did not make
any noticeable difference to the results.

Histograms of the durations and number of ac-
tion potentials for the avalanches seen in the
model at equilibrium are shown in Fig. 3. These
are log-log plots, and the straight lines drawn in-
dicate �3/2 (Fig. 3, left) and �2 (Fig. 3, right)
power-law dependences. Over the range shown,
the histograms follow the power-law dependences
of a critical cascade model. As in the data (Beggs
and Plenz, 2003, 2004), there are deviations for
large, rare events due to finite-size effects.

Changing the initial size of the circles represent-
ing the neuronal processes in these simulations has
no effect, because the growth rule simply expands
small circles or shrinks large circles until they are
in the equilibrium range. The model is, however,
sensitive to the value of the target calcium
concentration. The most sensitive result is the
exponent of the power function describing the
distribution of spike counts, as shown in the left
panels of Figs. 1 and 3. The exponent for the dis-
tribution of durations is less sensitive. Fig. 4 shows
how the spike count distribution exponent de-
pends on Ctarget over a range of values from 0.04 to
1.2, with the value used for the previous figures,
0.08, in the middle of this range.
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Fig. 3. Histograms of the fraction of avalanches with different numbers of spikes (left) and different durations (right). The plots are

log-log and the lines indicate �3/2 (left) and �2 (right) powers.
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describing the spike count distribution as a function of the

target calcium concentration. The value seen in the experi-
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Discussion

In our network model, the spontaneous level of
activity for each neuron, 0.1Hz, is insufficient to
allow the internal calcium concentration to ap-
proach the target level we set. Therefore, discon-
nected neurons grow, and they can only reach an
equilibrium size if they ‘‘borrow’’ activity from
other neurons. Even the activity in small clusters is
insufficient to halt growth. However, the target
calcium concentration was set so that all-to-all
connections or excessive large-scale firing over the
entire network would produce internal calcium
concentrations that exceed the target level and
therefore induce process withdrawal. Therefore,
the network is forced to find a middle ground in
which individual neurons share activity in varia-
ble-sized groups, drawing excitation from both
nearby and faraway neurons. This is what provides
the potential for critical, power-law behavior.

The power-laws shown in Figs. 3 and 4 occur
over a range of values of Ctarget, but they are not
an inevitable consequence in the model. Values of
Ctarget significantly higher than those we have
used lead to an essentially flat distribution (over
the finite range) of event sizes and durations.
Smaller values lead to a shortage of large, long-
lasting events.

The model we have considered warrants study-
ing in more depth, and it can be extended in a
number of ways. Obviously, inhibitory neurons
should be added. In addition, it would be of in-
terest to provide each neuron with two circles, one
representing the extent of dendritic outgrowth and
the other axonal. Separate growth rules would be
needed for the two circles in this case. Finally,
the axonal projections could be given both local
extension, represented by a circle around the so-
matic location, and distal projections, represented
by additional circles located away from the soma.

The fact that a simple growth rule can generate
circuits with critical, power-law behavior suggests
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that it could be the basis for developing interesting
network models. We have only explored uncon-
trolled spontaneous activity, but the fact that this
can occur over such a large range of sizes and
durations makes the functional implications of
these networks quite intriguing. If we can learn to
grow circuits like this in which we can control
the size and time scale of the activity, this could
form a basis for building functional circuits that
go beyond spontaneous activity to perform useful
tasks.
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