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1. Introduction

Biological neural networks are large systems of complex elements interacting through
a complex array of connections. Individual neurons express a large number of active con-
ductances (Connors et al., 1982; Adams & Gavin, 1986; Llinás, 1988; McCormick, 1990;
Hille, 1992) and exhibit a wide variety of dynamic behaviors on time scales ranging from
milliseconds to many minutes (Llinás, 1988; Harris-Warrick & Marder, 1991; Churchland &
Sejnowski, 1992; Turrigiano et al., 1994). Neurons in cortical circuits are typically coupled
to thousands of other neurons (Stevens, 1989) and very little is known about the strengths
of these synapses (although see Rosenmund et al., 1993; Hessler et al., 1993; Smetters &
Nelson, 1993). The complex firing patterns of large neuronal populations are difficult to
describe let alone understand. There is little point in accurately modeling each membrane
potential in a large neural circuit unless we have an effective method for interpreting (or
even visualizing) the enormous numerical output of such a model. Thus, major issues in
modeling biological circuits are: i) How do we describe and interpret the activity of a large
population of neurons and how do we model neural circuits when ii) individual neurons are
such complex elements and iii) our knowledge of the synaptic connections is so incomplete.
This review covers some of the approaches and techniques that have been developed to try
to deal with these problems. Although they cannot be considered solved, progress has been
made and, by combining a number of different techniques, we can put together a fairly
comprehensive description of at least some aspects of how neural systems function. In this
review, I will concentrate on mathematical and computational methods with applications
provided primarily to illustrate the methods. The reader can consult the references for
applications to specific neural systems.

Four general techniques have proven particularly valuable for analyzing complex neural
systems and dealing with the problems mention above:

1. Patterns of activity in neural networks only gain functional and behavioral significance
when they are interpreted correctly. This is a two step process. First, the spike trains
of individual neurons must be considered and then the activity of an entire population



of neurons must be interpreted collectively. The second step is described in 2) below.
The spike train produced by a single neuron can be extremely complex, reflecting in
part the complexity of the underlying neuronal dynamics, problem ii). A method for
analyzing neuronal spike trains based on a linear filter (Bialek 1989; Bialek et al.,
1991; Reike, 1991) has been developed and applied to the problem of decoding the
information contained in the spike trains of single neurons (Bialek 1989; Bialek et al.,
1991; Reike, 1991; Warland et al., 1991, Theunnisen, 1993). This approach is reviewed
in section 3.

In the vast majority of cases, neuronal spike trains are characterized by a firing rate.
This characterization is often thought to eliminate all information arising from spike
timing and to be quite distinct from the linear filter approach, but this is not the
case. As shown in section 3, precisely defined firing rate variables are a special case of
decoding schemes based on linear filters. Firing rates that can be generated by linear
filters (see section 3) provide a concise description of the output of a single neuron
that often contains enough information, either individually or in conjunction with
population decoding methods discussed in sections 5 and 6, to describe and interpret
neuronal activity.

2. In many cases, information is represented by the activity of an ensemble of neurons in
a collective and distributed manner (Knudsen et al., 1987; Konishi, 1987, Sejnowski,
1988; Konishi, 1991; Eichenbaum, 1993) as discussed in section 4. Various methods for
decoding the information represented by neural ensembles have been developed and
applied to a number of systems (Georgopolous et al., 1986; Wilson & McNaughton,
1993; Salinas & Abbott, 1994). These are reviewed in sections 5 and 6. The ability to
decode the activity of a neural network is a tremendous advantage both for experimen-
talists and modelers. In addition to providing a functional interpretation of neuronal
output, decoding allows the complex activity of a neural circuit to be described much
more concisely without loss of functionally relevant information. The impact that
various neuronal and synaptic properties have on the activity of a large network is
typically both complex and subtle. However, the effect of these same properties on the
value of a coded quantity can sometimes be understood and interpreted quite easily
and clearly (Abbott & Blum, 1996). Examples are given in section 9. In cases where
it can be applied, decoding provides an effective solution to problem i). By combining
the optimal linear filter with efficient methods for decoding populations of neurons, it
is possible to extract the maximum amount of information from a neural circuit.

It should be stressed that decoding is considered to be a tool for analyzing what a
neural network is doing. The methods used by the nervous system to interpret and
respond to patterns of neuronal firing do not necessarily have any relationship to the
decoding methods used here. However, we do assume that the result of the decoding
procedure provides an accurate measure of the information being represented by a
neural network (for a cautionary note see Salzman and Newsome, 1994).

3. Problem iii), the lack of knowledge of synaptic strengths, is the most severe of the
three problems being addressed. The difficulty of measuring the strength of even a
single synapse and the enormous number of synapses severely limit the amount of
information that can be obtained about connections in large neural networks. How-
ever, a great deal of information is available about how synaptic strengths can change
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due to activity through long-term potentiation (LTP) (Bliss & Collingridge, 1993;
Malenka & Nicoll, 1993) and depression (LTD) (Artola & Singer; 1993). Thus, it
makes more sense to study the effect of synaptic changes than of synaptic values.
Synaptic learning rules (see section 8) based on or inspired by LTP and LTD data can
be used to compute the changes in synaptic strengths that arise from specific training
experiences. The effect of these changes can be studied by looking at the resulting
modifications in network activity and decoding them. This allows us to examine the
impact of training experience and learning on network function, as shown in section
9. If these changes are small, we have the added advantage that their impact can be
determined by a linear computation which resolves many of the problems associated
with intrinsic neuronal complexity, problem ii). If the changes are larger, calculating
their effects is more ambiguous but the linear approximation can still serve as a basic
guideline. This approach is taken in sections 10 and 11.

4. Describing and decoding neuronal activity is only one aspect of the problem of mod-
eling a neural network. Another challenge is to build a model that accounts for that
activity and describes how it changes with time. In cases where firing rates are used to
describe activity, it is tempting to try to build a dynamic model based purely on firing
rates, as is frequently done (Wilson & Cowan, 1972 & 1973; Hopfield, 1984; Frolov
& Medvedev, 1986; Abbott, 1991a; Amit & Tsodyks, 1991a & 1991b; Ermentrout,
1994). The firing of a neuron is affected by a large number of variables such as the
state of activation and inactivation of numerous ion channels and the concentration
of calcium and various other second messenger molecules inside the cell, that cannot
be described purely in terms of the firing rate itself. However, a firing rate model
does not have to compute rates from first principles on the basis of ion channels and
other fundamental neuronal characteristics. Instead, mathematical fits of measured
rates can be incorporated into these models phenomenologically and augmented with
various approximations for unmeasured elements of the model. This is the approach
used in sections 7-13. The dynamics describing how the firing rate changes over time
is greatly simplified if the integration time used to define the firing rate is longer than
any intrinsic neuronal time scale affecting firing, as discussed in section 13. In this
case, measured and calculated static properties can be used to construct a dynamic
model. Although firing-rate models are often highly simplified, this is not an essential
feature. It is possible to calculate and include nonlinear effects, some of which are
considered in section 12.

It is difficult to interpret results from modeling studies of neural networks unless the
patterns of firing that they produce can be decoded in some behaviorally relevant way. For
this reason, I will consider cases where the firing of a single neuron or a population of neurons
can be correlated with some external variable x which may be a sensory input, the coded
value of an input from or an output to another network, or a motor output. The quantity
x can be a single number or it can be a vector array of numbers. I will mainly consider
the case of a single coded quantity, leaving the discussion of coded vectors to section 6. A
classic experimental procedure in neuroscience is to find a neuron with a firing pattern that
is related to some sensory stimulus and then to study the response properties of that neuron
while varying the stimulus. The same paradigm can be carried out replacing the sensory
stimulus with a motor output. Experiments of this sort have built up a large catalog of
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neuronal responses and their external correlates, discussed in section 4. For clarity, I will
refer to the quantity x being coded as the stimulus or stimulus value. However, it should
be kept in mind that x could equally well represent a motor output.

Although this review will concentrate on methods, some results will be given to illustrate
these methods. Section 9 considers the effect that training has on the coded value of a
stimulus. This phenomenon has applications to memory and learning. Section 10 provides
a simple example of the activity-dependent development of a neuronal response tuning
curve. In sections 11 and 13, a resonance phenomenon that may be used as an amplification
mechanism for recognition of an input is analyzed.

2. Spike Coding

The fundamental unit of information and signaling in the nervous system is the action
potential. Because an action potential is a stereotyped response, its shape and amplitude
do not convey information. Instead, all information is carried by action potential timing.
The response of a single neuron can be specified by listing the times t1, t2, t3, . . . when it
fires action potentials. The spiking output of a neuron can be characterized as a series of
delta functions at the times when action potentials occur,

s(t) =
∑

i

δ(t− ti) . (2.1)

This representation of neuronal firing is complete but awkward to work with because s(t)
is not a well-behaved function and because a complete listing of individual spike times may
be more information than can be handled practically or computationally. These problems
are resolved by spike decoding.

3. Spike Decoding

In the most general terms, spike decoding is a method for generating a time-dependent
variable r(t) that describes, in some useful way, the spike train being produced by a neuron.
One way to define r(t) is by using a linear filter (Bialek, 1989; Bialek et al., 1991; Reike,
1991). This expresses the variable r(t) characterizing the spike train s(t) as a convolution
of the spike train signal with a specific kernel,

r(t) =
∫ ∞

0
dt′ K(t′)s(t− t′) . (3.1)

The best kernel K to use in equation (3.1) depends on what information r(t) is suppose
to convey. Suppose that a neuron is firing in response to some stimulus x(t). It is common
for modeling studies to address the question: How does the stimulus produce the observed
spike train? However, decoding allows us to ask the question: How is information about
the stimulus encoded in the series of spikes being produced? To address this question we
can decode the spike train by constructing an estimate xest(t) of the stimulus value. One
method of decoding is to use r(t) itself as a direct estimate of the value of the stimulus
(Bialek, 1989; Bialek et al., 1991; Reike, 1991),

xest(t) = r(t) . (3.2)

The key is to find the kernel that generates the xest(t) providing the best possible direct
estimate of the value of the stimulus. To do this we demand that xest(t) be as close to the
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stimulus value x(t) as possible by minimizing the square of the difference between them
averaged over time, ∫

dt [xest(t)− x(t)]2 = minimum . (3.3)

Such an approach has been used with success to reconstruct coded stimuli from the spike
trains of movement-sensitive neurons in the blowfly (Bialek et al., 1991), as well as neurons
in other systems (Bialek, 1989; Warland et al., 1991; Reike, 1991; Theunnisen, 1993). The
kernel that accomplishes this task can be computed by the method of Fourier transforms
(Bialek, 1989; Bialek et al., 1991) or it can be constructed by applying a modification rule
that gradually changes the kernel to improve the match between the true stimulus and the
predicted value (Sen & Abbott, unpublished).

To describe the kernel it is easiest to divide time up into discrete intervals t = n∆t for
integer n and to define the kernel in terms of a discrete array by

K(n∆t) = Kn . (3.4)

For practical reasons, the kernel is defined to be nonzero over a finite time range so that
Kn = 0 for n > M with M some fixed value. The spike train is similarly defined by a
variable

Sn =
∫ n∆t

(n−1)∆t
dt s(t) (3.5)

that is equal to the number of action potentials occurring in the interval (n−1)∆t < t < n∆t.
If ∆t is small enough, Sn will be either zero or one. In terms of these variables, the response
function which is to provide the estimate can be written as

xest(n∆t) =
M∑

m=0

KmSn−m . (3.6)

The kernel modification rule is based on the minimization condition (3.3). Using the gra-
dient decent algorithm we find that the modification

Km → Km + ε [xest(n∆(t))− x(n∆t)]Sn−m (3.7)

for m = 0, . . . ,M , with ε a small parameter, will reduce the squared difference between
xest(t) and x(t).

The procedure for generating a kernel is to start with random elements Kn, to compute
the resulting estimate xest(t) corresponding to a stimulus x(t) and then to apply the mod-
ification rule (3.7) repeatedly until the difference between xest(t) and x(t) has decreased to
a desired level of accuracy. Figure 1 shows the results of such a process. A quasi-periodic
signal x(t) was generated and used as a current input to an integrate-and-fire model neuron.
The decoded signal xest(t) was then computed from the spike train produced by the model
neuron using equation (3.6). The kernel used initially in figure 1a was random, as shown
in figure 1b, and the resulting estimate does not match the input data. Figure 1c shows
a comparison of xest(t) and x(t) after the modification process constructed the kernel seen
in figure 1d. This kernel provides a good estimate of the signal for large positive values
that produce many spikes. For smaller or subthreshold inputs the reconstruction is not as
accurate. There is also a small delay in the reconstructed value caused by the latency to
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the first spike in response to an input. Because the modification rule develops the kernel
over an extended period, the final form of the kernel reflects both the firing properties of
the neuron and the statistics of the input data stream.

Generating a direct estimate of the stimulus signal, xest(t) = r(t), is not the only thing
that can be done with a linear filter. Other measures of the spike train given by r(t) may also
be useful. For example, the method can be used when the stimulus signal is unknown. In
such cases, K can be chosen so that the information content or entropy of r(t) is maximized
(Abbott & Salinas, unpublished). This is done by making the distribution of r values over
time as constant as possible. Alternately, the kernel can be chosen to generate an r(t) that
can be considered to be a measure of the firing rate of the neuron.

In many cases, the rate of action potential firing is the desired measure of neuronal re-
sponse to a stimulus, although additional information may be encoded in other characteris-
tics of the firing patterns (Optican & Richmond, 1987; Gozani & Miller, 1994; Middlebrooks
et al;, 1994). Despite the fact that firing rate is used in this way in most experimental and
theoretical papers, often little care is taken in defining what is meant by a firing rate. Since
neurons do not fire with perfect periodicity indefinitely, some care must be taken in defining
what we mean by the firing rate of a neuron. One method used to define the firing rate is
to choose a time interval, count the number of spikes appearing during this period of time
and then define the rate as the number of spikes divided by the length of the interval. This
measure of the firing rate has the undesirable property that it is only defined at discrete
values of the time. Some neuron models actually do use such a definition and update the
firing rate discontinuously at discrete time intervals (McCullock & Pitts, 1943; Hopfield,
1982; Amit, 1989; Hertz et al., 1990). However, it is often more useful to generate a firing
rate variable that is defined at all times. The oxymoron ‘instantaneous firing rate’ is often
used to denote such variables.

The linear filter can be used to define a firing rate variable if an appropriate constraint
is place on the kernel. Suppose that the neuron is firing at a constant rate with period T .
We require that, if r(t) is to be considered a firing rate variable, its value averaged over one
period T must be equal to the firing rate 1/T . From definition (3.1), this means that we
must have

1
T

∫ T

0
dt

∫ ∞

0
dt′ K(t′)s(t− t′) =

1
T

. (3.8)

By switching the order of integration and eliminating the common factor of 1/T , this can
be rewritten as the condition∫ ∞

0
dt′ K(t′)

∫ T

0
dt s(t− t′) = 1 . (3.9)

The second integral is always equal to one when the neuron is firing with period T so we
find that r(t) will qualify as a firing rate variable provided that∫ ∞

0
dt K(t) = 1 . (3.10)

Such a firing-rate variable is just a special case of a linear filter with the kernel required
to satisfy condition (3.10). Conversely, every decoded signal produced by a linear filter
is proportional to a quantity that can be considered to be a firing rate. Condition (3.10)
obviously leaves an infinite variety of kernels that can be used. Some possibilities are:

K(t) =
1
τ

exp(−t/τ) (3.11)
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or
K(t) =

t

τ2
exp(−t/τ) (3.12)

or
K(t) =

1
τ1 − τ2

[exp(−t/τ1)− exp(−t/τ2)] (3.13)

with τ1 > τ2. All three of these have obvious interpretations in terms of down-stream
processing of the spike train since forms like these are often used to characterize postsynaptic
responses. The exponential kernel (3.11) defines the firing rate as a low-pass filtered version
of the spike train. The resulting firing rate jumps up every time there is a spike and
decays exponentially toward zero with time constant τ when no spikes are present. The
discontinuous jump in the firing rate produced by this kernel is eliminated by the other two
kernels, the alpha-function (3.12) and difference of exponentials (3.13), because they do not
respond instantaneously. The second of these, (3.13), has the advantage that the rise time
τ2 and fall time τ1 can be adjusted independently.

4. Population Coding

An extremely widespread form of neural coding involves large arrays neurons that repre-
sent information collectively as an ensemble (Knudsen et al., 1987; Konishi, 1987; Sejnowski,
1988; Konishi, 1991; Eichenbaum, 1993). In such arrays, individual neurons are broadly-
tuned to a stimulus value. Individual firing rates depend on and reflect the value of the
coded information, but to be accurate the decoding should be based on action potentials
coming from many neurons. Many examples of information coded by the firing rates of
arrays of tuned neurons can be given. A partial list of neuronal arrays and the correspond-
ing coded quantities includes: neurons in the primary visual cortex of a cat coding the
orientation of a bar of light (for a review see Orban, 1984), the direction of arm movements
of a monkey coded by neurons in its motor cortex (Georgopolous et al., 1986, 1988 & 1993),
neurons in the superior colliculus encoding saccade direction (Van Gisbergen et al., 1987;
Lee et al., 1988), interneurons in the cercal system of the cricket coding the direction of
a wind stimulus (Bacon & Murphey, 1984; Miller et al., 1991; Theunissen & Miller, 1991;
Theunissen, 1993) and a similar system in the cockroach (Camhi & Levy, 1989), the di-
rection of a sound stimulus coded in neural arrays of the barn owl (Knudsen & Konishi,
1978; Konishi, 1991), the position of a rat in its environment coded by hippocampal place
cells (O’Keefe & Dostovsky, 1971; O’Keefe & Nadel, 1978; O’Keefe, 1979; Wilson & Mc-
Naughton, 1993), MT neurons coding visual motion direction (Maunsell & Newsome, 1987)
and neurons coding echo delay in the bat (O’Neill & Suga, 1982).

Population coding has been the subject of a number of theoretical analyses (Paradiso,
1988; Vogels, 1990; Foldiak, 1991 & 1993; Zohary, 1992; Snippe & Koenderink, 1992; Seung
& Sompolinsky, 1993; Touretzky et al., 1993; Salinas & Abbott, 1994), some related to the
issue of hyperacuity (Baldi & Heiligenberg, 1988; Altes, 1989; Lehky & Sejnowski, 1990;
Zhang & Miller, 1991) and others connected with network models (Lukashin, 1990; Burnod
et al., 1992; Van Opstal & Kappen, 1993).

In experiments involving coding by arrays of tuned neurons, the average responses or
tuning curves of individual neurons are measured as functions of the value of the stimulus
variable x. I will use an index that runs from one to N , the total number of neurons in the
array, to label individual neurons. The average firing response of neuron i to a stimulus
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that takes the value x is denoted by fi(x). For the purposes of this review, I will consider an
idealized array of tuned neurons with Gaussian tuning curves of identical shape but varied
optimal stimulus value,

fi(x) = rmax exp
(
−(x− yi)2/2σ2

f

)
(4.1)

as shown in figure 2. The parameter yi is the stimulus value at which neuron i responds
with its maximum average firing rate rmax. The width of the tuning curves is 2σf .

If the tuning curves cover the range of x densely and they overlap as in figure 2, we can
approximate sums over neurons by integrals over the positions y where the neurons fire at
their maximum rates, as follows

N∑
i=1

→ ρ

∫
dy . (4.2)

Here ρ is the neuronal tuning curve density which is the number of neurons covering a unit
range of x. We will ignore the edges of the array where the coded value reaches the limits
of its range by making this range infinite. Some useful results of these approximations are:

N∑
i=1

fi(x)fi(y) =
√

πρσfr2
max exp

(
−(x− y)2/4σ2

f

)
(4.3)

from which we find

N∑
i=1

f ′i(x)fi(y) =
√

πρr2
max

2σf
(y − x) exp

(
−(x− y)2/4σ2

f

)
(4.4)

and
N∑

i=1

[
f ′i(x)

]2 =
√

πρr2
max

2σf
(4.5)

where the prime denotes differentiation. Another useful formula for the derivations that
follow is ∫

dz exp

(
−(x− z)2

2σ2
1

− (y − z)2

2σ2
2

)
=
√

2πσ1σ2√
σ2

1 + σ2
2

exp

(
− (x− y)2

2(σ2
1 + σ2

2)

)
(4.6)

These equations will be used to derive the results given in the following sections.

5. Population Decoding

When information about a stimulus or motor output is coded by an entire ensemble of
neurons, decoding the full population response requires procedures for combining the firing
rates of many neurons into a population ensemble estimate. Georgopoulos and collaborators
developed one such approach by defining the population vector relating activity in the motor
cortex of the monkey to the direction of arm movements (Georgopoulos et al., 1986, 1988
& 1993). The population vector method developed for this system has been used in similar
arm movement studies of premotor cortex (Caminiti et al., 1991), parietal area 5 (Kalaska
et al., 1983) and cerebellum (Fortier et al., 1989). In addition, the vector method has
been applied to other systems such as primary visual cortex (Gilbert & Wiesel, 1990),
parietal visual neurons (Steinmetz et al., 1987) and inferotemporal neurons in the monkey
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responding to human faces (Young & Yamane, 1992). This last application involved the
use of multi-dimensional scaling to relate the responses of face cells to the encoding of a
two-dimensional vector. Wilson and McNaughton (1993) have used a different method to
decode the output of position selective place cells (O’Keefe & Dostovsky, 1971; O’Keefe &
Nadel, 1978; O’Keefe, 1979) in the hippocampus of the rat. A number of different methods
can be used to decode neural population activity in a variety of systems (for a review see
Salinas & Abbott, 1994).

Decoding the activity of a neural ensemble means computing an estimate of the coded
quantity xest from the firing rates of neurons in the ensemble. This is similar in spirit to
the procedure discussed in section 3 but this time the estimate is based on the firing of
many neurons, not one. Typically, this calculation makes use of the tuning curves fi(x) of
individual neurons i = 1, 2, . . . , N responding to the stimulus x. If the decoding schemes
works well, xest will typically be close to the true value of the stimulus x. However, this
need not always be the case. We will use decoding in another way as well. If something
in a neural network changes, such as the strengths of synapses between neurons, this may
shift the value of xest constructed by the decoding scheme. In this case, the shift in xest

may tell us something about the meaning and significance of the synaptic changes that
have occurred. As discussed in section 9, if xest is different from x this may have functional
significance rather than reflecting inaccuracy of the decoding scheme.

Several methods can be used to construct a population-based estimate of a coded signal.
We will denote the collection of all firing rates ri for i = 1, 2, . . . N by the notation r and
likewise the collection of tuning curves by f . The most sophisticated methods require
knowledge of the probability that the stimulus value is x given that the population firing
response was r, denoted P (x|r). The commonly used maximum likelihood method consists
of finding the value of x with the maximum probability given a set of firing rates and using
this for the estimate. Thus, P (xest|r) is maximized. P (r|x), the probability of a given
stimulus producing a set of firing rates, can be obtained from experimental measurements
and then P (xest|r) can be determined from this by Bayes’ theorem

P (x|r)P (r) = P (r|x)P (x) . (5.1)

Because the maximum likelihood procedure maximizes the probability with respect to the
value of x, the factor P (r) is not relevant and we can express the maximum likelihood
condition as

P (r|xest)P (xest) = maximum. (5.2)

If the population of neurons is large and the necessary probabilities are know, the
maximum likelihood method is probably the optimal decoding procedure to use. However,
if the population of neurons being used in the decoding is not large, there is no rigorous
theoretical justification for using the maximum likelihood method. Instead, it may be better
to use a Bayesian decoding scheme that is guaranteed to minimize the average squared
difference between the estimated value and the true stimulus value. This estimate is just
the average value of x corresponding to the probability distribution P (x|r),

xest =
∫

dxxP (x|r) . (5.3)

It many cases, the probability P (r|x) may not be known. A decoding method that has
been used in this case (Churchland & Sejnowski 1992; Wilson & McNaughton 1993) chooses
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the estimated value so that

N∑
i=1

rifi(xest)

[
N∑

i=1

r2
i

]−1/2 [ N∑
i=1

f2
i (xest)

]−1/2

= maximum . (5.4)

Both r and f can be considered to be vectors in the N -dimensional space of neural re-
sponses. Equation (5.4) minimizes the angle between the true response vector r and the
mean response vector f . This method is particularly useful if there are population wide
variations in the excitability of the neurons being decoded. Since this review covers theo-
retical applications of decoding, this type of variability will not be a problem and I will use
the simpler least squares approach discussed next.

A good general method for population decoding is to choose xest so that the mean firing
rates f(xest) provide the best possible match to the observed rates r. This can be done by
performing a least squares fit of the average rates f(xest) to the observed rates r

N∑
i=1

[ri − fi(xest)]
2 = minimum. (5.5)

The functions f(x) represent the average firing responses of the neurons in the array when
the coded quantity takes the value x. However, due to noise and neuronal variability there
will be variations around these mean firing rates. Because of this variability, the decoded
value xest will not always be identical to the true value x. On average the two quantities
will be the same, but xest will fluctuate around its average due to the variability of the firing
rates. Suppose that these fluctuations are uncorrelated and have zero mean and standard
deviation σr. The variance of the estimate xest given by the least-squares method, σ2

x, is
then

σ2
x = σ2

r

(
N∑

i=1

[f ′i(x)]2
)−1

(5.6)

where the prime denotes differentiation. For the case of Gaussian tuning curves, as in figure
2, this reduces to

σ2
x =

2σ2
rσf√

πρr2
max

. (5.7)

The higher the density of coverage, the lower the decoding error and the dependence of σx

on ρ indicates that this is a typical square root of N effect. The error depends directly on
the variability of the individual neuronal rates but only on the square root of the tuning
curve width.

6. Decoding Direction

The coding and decoding of direction is an interesting special case of population coding.
In this case the coded quantity is a vector ~x with multiple components xµ for µ = 1, 2, . . . , d
when a d-dimensional vector is being coded. The dimension d is typically either 2 or 3. If
only the direction and not the magnitude of ~x is being coded, it is convenient to make ~x a
unit vector so that |~x| = 1. The Cartesian components xµ of the vector ~x are the projections
of ~x onto unit vectors ~Cµ that form orthogonal coordinate axes,

xµ = ~x · ~Cµ = cos(θµ) (6.1)
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where θu is the angle between ~x and ~Cµ. The inverse procedure, reconstruction of a vector
from its components, is accomplished by summing the component values times the appro-
priate unit vectors

~x =
d∑

µ=1

xµ
~Cµ . (6.2)

Vectors are typically represented mathematically as in equation (6.1), by components
projected along orthogonal, Cartesian coordinate axes. Remarkable, many neuronal circuits
construct essentially the same representation (Touretzky et al., 1993; Salinas & Abbott,
1994). The indication that this is happening is that the tuning curves f(~x) are in the form
of cosine functions just like equation (6.1) so that the firing rates are proportional to the
projections of the coded vector along preferred axes defined by the neurons. Cosine tuning
curves are found in many systems. There are interneurons in the cricket cercal system
that code wind direction at low velocity by firing at rates that are proportional to the
Cartesian coordinates of the wind direction vector (Theunissen & Miller, 1991; Theunissen,
1993). The systems where the vector method has been applied to monkey arm movements,
in motor cortex (Schwartz et al., 1988), premotor cortex (Caminiti et al., 1991), parietal
area 5 (Kalaska et al., 1983) and cerebellum (Fortier et al., 1989) all exhibit cosine tuning
curves. Cosine responses are also found in neurons coding body (Suzuki et al., 1985) and
head position in cats (Shor et al., 1984) and head direction in rats (Chen et al., 1990; Taube
et al., 1990). Parietal visual neurons fire at rates proportional to the cosine of the angle of
movement direction of a visual stimulus (Steinmetz et al., 1987). Of course, cosine functions
are both positive and negative while firing rates cannot be negative. In some systems, this
means that only half of the cosine function can be represented by one neuron. For example,
in the cercal system of the cricket, one neuron represents the positive part of the cosine
function and a second neuron is used for the negative part (Theunissen & Miller, 1991;
Theunissen, 1993). In other systems like the monkey motor cortex (Schwartz et al., 1988),
there is a background rate of firing. If this is subtracted out in the definition of the firing
rate, then r(t) can become negative. As a result, a larger portion or even all of the cosine
curve can be represented by a single neuron.

The population vector decoding method (Georgopoulos et al., 1986, 1988 & 1993) is
based on the standard formula for reconstructing a vector from its components, equation
(6.2). If neuron i responds to stimulus ~x by firing at a rate proportional to ~x · ~Ci, the vector
method estimate of ~x is

~xest =
N∑

i=1

ri
~Ci (6.3)

just like (6.2). It can be shown that for a uniform distribution of preferred direction vectors
~C, the direction of ~xest will converge to that of ~x provided that enough neurons are included
in the sum (Georgopoulos et al., 1988).

There is a complication with neural coding of direction that is not present in the usual
Cartesian system. The number of neurons typically exceeds the number of coordinate axes,
N � d, and the axes ~C defined by the neurons do not form an orthogonal system. We
can correct for this by using a method similar in spirit to the Bayesian method of decoding
but linear in the firing rates. We express the estimated vector as a linear sum similar to
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equations (6.2) and (6.3)

~xest =
N∑

i=1

ri
~Di (6.4)

except that the basis vectors ~D are not set equal to the projection vectors ~C but are
determined by requiring that this linear estimate minimizes the average squared error (~xest−
~x)2. The resulting basis vectors are (Salinas & Abbott, 1994)

~Di =
N∑

j=1

Q−1
ij

~Lj (6.5)

with
~Lj =

∫
d~x~xfj(~x) (6.6)

and
Qij = σ2

rδij +
∫

d~x fi(~x)fj(~x) . (6.7)

The vectors ~L represent the ‘center of mass’ of the tuning curves. For symmetric tuning
curves they point in the same directions as the preferred direction vectors ~C. Q is the
correlation matrix of firing rates. This method provides the optimal linear estimate of the
coded signal.

7. Network Models

As well as being a powerful experimental tool, decoding is a useful technique for studying
model neural networks because it provides a concise description of population activity that
has direct functional significance. We will consider a model network with the architecture
shown in figure 3. Information about the stimulus value x is carried into the network by
a set of input firing rates. The firing rate of input a when the stimulus takes the value x
is ga(x) and the synaptic coupling from input a to neuron i has strength Mia. As a result
of these inputs, neuron i fires at a rate fi(x) in response to the stimulus. The firing of
neuron i is also affected by recurrent synapses between network neurons. The strength of
the synaptic connection from neuron j to neuron i is given by the weight Wij .

Using this architecture we can address many issues concerning network function and
plasticity. How do the response tuning curves f(x) arise from the afferent activity g(x)
and the synaptic couplings M between the input lines and the coding neurons? How do
modifications in the strengths of the input synapses affect the response properties of the
network neurons and the ensemble-coded value of the stimulus? What is the role of the
recurrent synapses within the network represented by the matrix W? How do modifications
in the strengths of recurrent synapses affect the response properties of the network neurons
and ensemble-coded value of the stimulus? In the following sections, I will discuss general
techniques for addressing these questions and will present some results obtained by applying
them.

Some applications require us to know how the firing rates r of the network neurons
depend on the input firing rates and on the synaptic weights connecting network neurons
to their inputs and to each other. It is simplest to assume a linear formula,

ri =
∑
a

Miaga(x) +
∑
j

Wijrj (7.1)
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where the first term represents the effect of input firing and the second term recurrent
network connections. I will discuss corrections to this linear approximation in section 12.
Equation (7.1) refers to static or quasi-static rates. The case of dynamically varying rates
will be considered in section 13.

8. Synaptic Modification and Learning Rules

It is widely believed that modification of synaptic strength is the basic phenomenon
underlying learning and memory (Morris et al., 1986; Byrne & Berry, 1989; Gluck &
Rumelhart, 1990; Baudry & Davis, 1991; Hawkins et al., 1993). In addition, activity-
dependent synaptic plasticity plays an important role in the development of the nervous
system (Shatz, 1990; Miller, 1990). A large body of experimental evidence supports the
notion that neuronal activity can affect synaptic strength and specific features of both LTP
(Bliss & Collingridge, 1993; Malenka & Nicoll, 1993) and LTD (Artola & Singer; 1993)
of synapses have been characterized. In addition, evidence and ideas about the molecular
basis for these phenomenon are accumulating (Lynch et al. 1983; Lisman & Goldring, 1988;
Lisman, 1989; Gustafsson & Wigstrom, 1988; Jahr & Stevens, 1990; Madison et al., 1991).
To reveal the functional and behavioral significance of LTP and LTD we must understand
how experience and training modify synapses and how the resulting modifications change
patterns of neuronal firing and affect behavior. Work on the first of these two issues has
led to a large number of neural network learning rules proposing how activity and training
experience change synaptic weights (Hebb, 1949; Sejnowski, 1977; Bienenstock et al., 1992;
reviewed in Abbott, 1990). Proposals concerning the second of these questions include
ideas about associative memory and pattern recognition (Marr, 1971; Hopfield, 1982 &
1984; Grossberg, 1988; Kohonen, 1984 & 1988; Rolls, 1989; Amit, 1989; Hertz et al., 1990),
storage of statistics (Sejnowski, 1977; Levy et al., 1990) and storage and recall of paths or
sequences of motor actions (Blum & Abbott, 1996; Abbott & Blum, 1996).

The form of synaptic modification that has attracted the most attention for models
of learning and memory is Hebbian LTP (Hebb, 1949). For potentiation of a synapse to
occur through this mechanism, both the presynaptic and postsynaptic neurons must be
depolarized. This suggests a learning rule in which the strength of a synapse from neuron
j to neuron i changes at a rate that is proportional to the product of the firing rates ri and
rj ,

dWij

dt
= εW rirj . (8.1)

Here εW is a parameter that determines the rate of the synaptic change. Similarly, the
strength of a synapse from input a to neuron i will be modified at a rate

dMia

dt
= εMriga (8.2)

with εM the corresponding rate constant for M. Of course, these equations assume that a
synapse is there to be modified. If no physical synapse exists, the corresponding element
Wij or Mia must be kept at the value zero. In particular, synapses between a neuron and
itself, i = j in equation (8.1), should not be included. In practice, it is common to assume
all-to-all coupling and ignore these constraints. This is a valid approximation for large,
highly-coupled networks.
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Equations (8.1) and (8.2) allow the synaptic strengths to grow without bound if the
pre- and postsynaptic firing rates are nonzero for a long period of time. This is clearly
unreasonable so some form of constraint must be imposed to prevent the synaptic weights
from growing too large (Oja, 1982; Linsker, 1988 & 1993; Miller & MacKay, 1994). I will not
discuss these constraints, assuming that synaptic potentiation stops before the constraint
is reached. This requires a mechanism that is capable of turning synaptic potentiation on
and off (Bortolotto et al., 1994). We can also justify ignoring the constraints by assuming
that the initial pattern of changes in synaptic strengths can be used to characterize the final
outcome of those changes (MacKay & Miller, 1990).

We would like to relate the changes in synaptic strength characterized by the above
equations to the experience of an animal during training or development. We will divide
this problem into two parts. During development, we are interested in the large changes
that give rise to the tuning curves f . During training following development, the changes
are apt to be more subtle and we can consider small deviations from the basic firing rates
f that are induced by the training experience. Because of this, the computation of training
induced changes requires fewer assumptions and we will begin with this case and discuss it
further in section 9.

Equations (8.1) and (8.2) require a knowledge of the firing rates r. If the tuning curves
have been developed previously and if the changes in W and M are not too large, we
can use our knowledge of the tuning curves to predict the firing rates. Thus, we use the
approximation r = f(x) in equations (8.1) and (8.2). Suppose that during the training
period the stimulus is described by x = X(t). Then, the firing rates of the network neurons
are given by f(X(t)) so, from (8.1) and (8.2),

dWij

dt
= εW fi(X(t))fj(X(t)) (8.3)

and
dMia

dt
= εMfi(X(t))ga(X(t)) . (8.4)

These equation can be integrated to determine the weight changes resulting from the entire
training period (see section 9).

Equations (8.3) and (8.4) ignore a feature of LTP that may have very important con-
sequences. The efficacy of LTP depends critically on the relative timing between the pre-
and postsynaptic activity (Gustafsson et al., 1987). If these are simultaneous, LTP occurs
as discussed above. However strict simultaneity of activity is not required. Postsynaptic
activity can follow presynaptic activity by 100 to 200 ms and LTP can still occur. On
the other hand, if postsynaptic activity precedes presynaptic activity, LTP does not occur.
Instead, LTD may result from this sequence of stimulation (Debanne et al., 1994). If we let
H(t) represent the relative efficacy of LTP when postsynaptic activity follows presynaptic
activity by a time t, the rate of change in synaptic strengths is given by

dWij

dt
= εW

∫
dt′H(t′)fi(X(t + t′))fj(X(t)) (8.5)

and
dMia

dt
= εM

∫
dt′H(t′)fi(X(t + t′))ga(X(t)) (8.6)
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which replace equations (8.3) and (8.4). The temporal asymmetry of H has a dramatic effect
on the synaptic weight changes produced by training because it causes them to depend on
the temporal order of the activity generated during training. This allows synaptic weights
to store information about temporal sequences and has been proposed as a mechanism for
learning paths and sequential motor actions (Blum & Abbott, 1996; Abbott & Blum, 1996).
However, in the cases considered here, temporal ordering will not play an important role
and equations (8.3) and (8.4) will lead to the same results as equations (8.5) and (8.6).

In studying development of tuning curves, we cannot rely on the approximation r = f(x)
used above because this assumes that the functions f are already well established. Instead,
we will use the linear approximation for the firing rates of equation (7.1). To simplify the
discussion of tuning curve development I will ignore the effect of recurrent synapses by
setting W = 0. The basic synaptic modification rule is obtained by substituting the firing
rates given by (7.1) with W = 0 into (8.2),

dMia

dt
= εM

∑
b

ga(X(t))gb(X(t))Mib . (8.7)

Here X(t) is the set of stimulus values presented during the development period. This
equation for the development of tuning curves will be analyzed in section 10.

9. The Effects of Synaptic Modification on Coding

The responses of neurons in a population coding the variable x are characterized by the
set of firing rate tuning curves f(x). These tuning curves are shaped by both input con-
nections and recurrent synapses between network neurons. Recurrent synaptic connections
between network neurons cause the firing rates of the neurons to depend on each other as
well as on the input firing rates. The effect of the firing rates on each other is considered
in section 11. Here we analyze the effect of changes in the strengths of synapses. Suppose
that we have mapped out the average firing responses f and then some modifications occur
due to experience and learning that change the synaptic weights by amounts ∆W and ∆M.
These changes can be computed by integrating equations (8.3) and (8.4) (or 8.5 and 8.6)
over time. If they are small, we can Taylor expand and write

ri = fi(x) +
∑
a

∆Miaga(x) +
∑
j

∆Wijfj(x) . (9.1)

This result is valid to first order in the synaptic changes assuming that the corresponding
dependence on the firing rates is linear as in equation (7.1). Equation (9.1) is a useful
result because it allows us to compute the effect of the training experience on the response
properties of neurons.

Suppose that after the changes represented by ∆M and ∆W we decode using the original
response functions f as in section 5. The result we will get is no longer xest = x as it was
before because of the shift in neuronal responses implied by the second term on the right
side of equation (9.1). Instead

xest = x +

∑
i f

′
i(x)

[∑
a ∆Miaga(x) +

∑
j ∆Wijfj(x)

]
∑

i [f ′i(x)]2
. (9.2)
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This result is obtained by minimizing the squared difference (5.5) with respect to xest using
equation (9.1) for the firing rates r and computing to lowest order in the weight changes.
Equation (9.2) allows us to evaluate the effect of synaptic modifications on the value of a
coded quantity. This effect is a shift, given by the second term on the right side of equation
(9.2), in the coded value away from the stimulus value.

To decode the firing rates given by (9.1) and derive the result (9.2), we used the original
tuning curves f to match with the actual firing rates r despite the fact that these are now
given by (9.1) not by r = f . This assumes that downstream neural networks have not
themselves been changed by the training experience that induced the changes of synaptic
weights represented by ∆M and ∆W. If, at a later time, these networks are modified so
that the appropriate tuning curves to use in decoding are those given by equation (9.1)
rather than by the original f(x), the shift in equation (9.2) will be eliminated and we will
find xest = x once again. This is an effective way of erasing the effects of learning without
having to reset the synaptic weights that were modified during the training process.

The results of this and the previous section give us enough information to predict how
exposure to a stimulus during a training period will affect synaptic strengths, how changes
in synaptic strengths modify patterns of firing and how the modified firing patterns affect
the value of a quantity encoded by the neural ensemble. After a training period during
which the stimulus takes a sequence of values X(t), if we subsequently expose the animal
to a stimulus x, neuron i will fire at a rate given by equation (9.1) with ∆W and ∆M
determined by integrating equations (8.3) and (8.4) (or 8.5 and 8.6). On the basis of
these equations, we can determine how network firing and the value of xest obtained from
that firing are affected by exposure to a time-dependent stimulus X(t) during training.
This relates the value of a coded quantity that is of behavioral relevance to the stimulus
experience of the animal during training and allows a direct computation of the effects of
training on coding. The results of some such calculations are given below and in figures 4
and 5 (see also Abbott & Blum, 1996).

In the examples given here, I will only consider the effects of changes of recurrent
synapses between network neurons and will set ∆M = 0. The first case considered is an
X(t) that varies randomly but uniformly over the entire x range. This corresponds to
exposing the animal to a random sequence of stimuli during the training period. Using
the results given at the end of section 4, we find that such exposure changes the recurrent
synaptic strengths by an amount

∆Wij = gW

√
πr2

maxσf exp
(
−(yi − yj)2/4σ2

f

)
(9.3)

where gW is a constant related to εW and the duration of the training period. The resulting
effect of this sort of training on the neuronal response tuning curves is determined by
inserting this expression into equation (9.1) and again using the results at the end of section
4. We find that after this random training

ri = fi(x) +
2πgW ρr3

maxσ2
f√

3
exp

(
−(x− yi)2/6σ2

f

)
. (9.4)

The second term is a wider Gaussian curve than the original tuning curve fi(x). Thus,
exposure to random stimuli during training tends to broaden the tuning curves. This has
no effect on the value of the coded quantity because the tuning curves are not shifted or
asymmetrically distorted. As a result, decoding equation (9.4) produces the result xest = x.
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We now consider a case where the value of the coded quantity is changed by the expe-
rience during training. Here the training period consists of exposure to a single stimulus
value X(t) = 0. Such training changes the recurrent synapses by

∆Wij = gW r2
max exp

(
−(y2

i + y2
j )/2σ2

f

)
. (9.5)

The constant gW defined here is somewhat different than the one appearing in (9.3) but
again depends on the rate of synaptic change and on the length of the training period.
The rate of firing in response to an input x after this training, computed with the same
techniques used for equation (9.4), is

ri = fi(x) + gW

√
πr3

maxρσf exp
(
−(x2 + 2y2

i )/4σ2
f

)
. (9.6)

This causes an increase in the strength of the response for tuning curves centered at x = 0
and also an asymmetric distortion of the tuning curves near this point. The impact of these
changes on the decoded value xest as a function of the true stimulus value, computed using
equation (9.2), is

xest = x
(
1− gW

√
πρr2

maxσf exp
(
−x2/2σ2

f

))
. (9.7)

This is plotted in figure 4. Far from x = 0, the coded and actual stimulus values agree.
However, stimuli near zero, produce a coded value that is different from the stimulus value.
After exposure to the stimulus, the output of the network does not merely represent the
stimulus but rather a combination of its value and the training value.

What is the significance of the shift that causes xest to differ from x in the region around
the training point x = 0, as see in figure 4? Information about the stimuli experienced
during training affects the perception of new stimuli. The network interprets inputs near
x = 0 as if they were located nearer to x = 0 than they actually are. This relates to ideas
about pattern completion and associative memory in neural networks (Hopfield, 1982 &
1984; Grossberg, 1988; Kohonen, 1984 & 1988; Amit, 1989; Hertz et al., 1990). The point
x = 0 can be recovered from initial points near zero if we feed the value xest coded by the
output of the network back so that it acts as a new input x value. The result of iterating
this feedback loop is shown in figure 5. Iteration leads to a coded output value of xest = 0
for any initial input x near zero. Feedback of the network coded output to its input could
be achieved internally at the network level, or it could arise if the response of an animal
to the coded output leads to a new stimulus value equal to the coded value. In network
associative memories, only the final fixed-point value, x = 0 in this example, is given any
functional significance. However, at every value of x the deviation between the coded value
and the true value contains information. This difference identifies the direction toward the
training point x = 0 from any nearby x position.

Recently, it has been shown that networks of this type can store and recall information
about paths or sequences of motor actions (Blum & Abbott, 1996; Abbott & Blum, 1996).
Suppose, for example, that the input signal x corresponds to sensory information about
the position of a limb. Initially, network activity codes for a value xest identical to the
true position x. Now suppose that, during a training session, the motion X(t) is repeated
while synaptic potentiation takes place. Temporal inputs like this lead to an asymmetric,
sequence-dependent potentiation of synapses between coding neurons through the LTP
processes described by equation (8.5). After this potentiation, the result of decoding network
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activity, xest, is shifted away from the input value x by an amount given by equation
(9.2). This shift causes the coded value xest to lead the true value x and thus, to provided
information about where the limb should go in order to execute the learned motion X(t).
If the coded value is fed to motor networks controlling limb motion, the learned sequence
will automatically be recalled and generated.

This idea has also been applied to the recall of paths through a spatial environment by
the hippocampus (Blum & Abbott, 1996). In the hippocampus of the rat, place cells col-
lectively code information about the spatial position of the animal (O’Keefe & Dostovsky,
1971; O’Keefe & Nadel, 1978; O’Keefe, 1979; Wilson & McNaughton, 1993). If LTP occurs
while the rat travels down a particular path, a path-dependent pattern of synaptic poten-
tiation will be established. This LTP has been shown to shift the location coded by place
cell ensemble activity away from the location of the rat in a direction toward and along the
learned path. Thus, the position of the coded point can be used to guide navigation down
the previously learned path.

10. Development of Tuning Curves

In the previous section, we studied how existing tuning curves are modified by synaptic
changes and the impact that this has on coded quantities. Now we will consider how larger
synaptic modifications can lead to the development of tuning curves. This issue has been
analyzed in great depth in studies of the development of ocular dominance and directional
selectivity in the primary visual cortex (Malsburg, 1971 & 1979; Swindale, 1980; Linsker,
1986; Miller, 1990, 1992 & 1994; Bienenstock et al., 1992). I will discuss a simpler, generic
example to illustrate the general mechanism.

We will examine development without recurrent collateral input so that W = 0. The
tuning curves in this case are just the firing rates given by equation (7.1) with W = 0,

ri = fi(x) =
∑
a

Miaga(x) . (10.1)

If the rate parameter εM controlling the speed of synaptic changes is small so that the
synaptic changes are much slower than changes in the stimulus value, we can average over
the stimulus history and rewrite (8.7) as

dMia

dt
= εM

∑
b

<gagb > Mib . (10.2)

Here the brackets < > signify time averaging. The quantity < gagb > is the correlation
matrix of input firing rates. Since this matrix has positive eigenvalues, the synaptic weights
M will grow exponentially. The combination of synaptic weights that grows most rapidly
will ultimately dominate so we can approximate the final weights by considering only this
mode of equation (10.2) (Hertz et al., 1990; MacKay & Miller, 1990). This means that
ultimately M will be proportional to the eigenvector of the matrix < gagb > with the
maximum eigenvalue. This result has several interesting interpretations. First, it means
that the weights automatically select the combination of inputs with the maximum input
correlation (or input variance if the mean of the input signal is zero). The resulting firing
rate is proportional to the maximal principal component of the input data set (Oja, 1982;
Hertz et al., 1990). If certain conditions apply, it can be shown that this assures that
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the neuronal response carries the maximum amount of information about the input signal
(Linsker, 1988 & 1993). It is remarkable that such a simple developmental rule leads to an
optimal neuronal response.

Figure 6 shows the development of a neuronal response tuning curve for a single neuron
on the basis of equation (10.2). The inputs g in this case, are a set of Gaussian firing
rate curves like those shown in figure 2 and given by equation (4.1). Initially all the input
weights M were set equal to each other and the resulting firing rate as a function of x, given
by equation (10.1), is flat except at the edges (figure 6a). During development the stimulus
consisted of the single value X(t) = 0 so that

<gagb >= r2
max exp

(
−(y2

a + y2
b )/2σ2

f

)
. (10.3)

This leads to the development of a Gaussian firing response curve centered about the point
x = 0 (figures 6b and 6c). In this case, the final tuning curve has the property that the
neuron responds optimally to the value of the stimulus seen during development.

11. Effects of Recurrent Synapses on Firing Rates

In the last section, we saw that neuronal responses tuned to a specific stimulus value
could be established using only the input synaptic weights and ignoring recurrent synapses
between network neurons. In section 9, we noted the effect of training-induced changes
in the strengths of recurrent synapses, but did not consider the impact of the recurrents
themselves. What then is the role of recurrent network synapses in tuning and refining
the neuronal and network responses to inputs? Suppose that the input synaptic weights
have developed to produce tuning curves given by equation (10.1). When we add recurrent
synapses, the firing rates of network neurons depend on each other as well as on the stimulus
value,

ri = fi(x) +
N∑

j=1

Wijrj . (11.1)

To determine the neuronal responses in the presence of recurrent synapses, we solve this
equation for the firing rates,

ri =
N∑

j=1

(δij −Wij)−1fj(x) . (11.2)

We assume that W can be diagonalized and define a complete set of eigenvectors ξn
i and

eigenvalues λn labeled by the index n and satisfying

N∑
j=1

Wijξ
n
j = λnξn

i . (11.3)

In terms of these, we can write

fj(x) =
∑
n

An(x)ξn
j (11.4)

and the solution for the firing rates becomes

ri =
∑
n

An(x)ξn
i

1− λn
. (11.5)
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Equation (11.5) displays the interesting phenomenon of resonance. Suppose that one
or more of the eigenvalues is near, but slightly less than, one. Any stimulus that causes
the value of An(x) corresponding to one of these eigenvalues to be appreciably greater than
zero will elicit a very strong firing response. The firing response is amplified by the factor
1 − λn in the denominator of (11.5) for eigenvalues near one. This strong response will
be proportional to ξn. The network is exhibiting pattern (or in this simple case, value)
recognition. Special values of the stimulus, those that excite modes with eigenvalues near
one, elicit extremely strong responses from the system. In addition, there will be a strong
bias of the coded value of a stimulus toward values corresponding to eigenvectors of W with
eigenvalues near one.

If any of the eigenvalues is larger than one, the resonance phenomenon is even more dra-
matic. In this case, if we do not have inhibition or some mechanism to limit the firing rates,
a dynamic model (section 13) shows that the network becomes unstable and the firing rates
diverge. However, if these limiting mechanisms are incorporated into the model a strong
resonance phenomenon is observed. This is shown in section 13 where the implications of
resonant responses are also discussed.

12. Network Models - Nonlinear Effects

Many of the results discussed in previous sections have been based on an assumption
about how the firing rate of an individual neuron depends on the firing rates of other neu-
rons that synapse onto it. We have assumed in equation (7.1) that this dependence is
linear, but this assumption should be compared with experimental results and corrected
if it is not accurate. Unfortunately, this is not something that is easily done. In neuro-
physiology experiments, the firing rate is usually measured as a function of the amount of
current injected through a microelectrode into the soma of a recorded neuron (Gustafsson
& Wigstrom, 1981; Lanthorn et al., 1984). However, in a natural setting neurons receive
current from synapses not through electrodes. There are three parts to the computation
that determines how neuronal firing rates depend on each other. First, we need to know
how the firing rate of a neuron depends on the amount of current injected into its soma.
Second, we must determine how presynaptic firing changes the conductance at the postsy-
naptic terminal leading to a synaptic current in the postsynaptic neuron. Finally, we must
relate the amount of current entering the soma to these synaptically induced conductance
changes.

There is evidence that in some circuits and situations neurons may operate in a fairly
linear range (Jagadeesh et al., 1993). However, there are many potential sources of non-
linearities along the pathway from presynaptic to postsynaptic firing. The firing rates of
neurons do not have a strictly linear dependence on the amount of current injected into
their somata. Below a threshold current, no firing occurs. At the threshold, the firing rate
may suddenly jump to a nonzero value or it may rise continuously from zero (Rinzel &
Ermentrout, 1989). Bifurcation theory indicates that in the latter case for a wide class of
models, the firing rate should depend on the square root of the difference between the in-
jected current and the threshold current near the transition to firing (Rinzel & Ermentrout,
1989). At the high current end, firing rates do not rise indefinitely but saturate because of
the effects of the refractory period. Under constant current injection, the firing rate may
not remain steady but may fall due to spike-rate adaptation. Even the simplest of model
neurons, the integrate-and-fire model, has a firing rate that is a nonlinear (logarithmic)
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function of injected current (see for example Tuckwell, 1988).
Presynaptic firing results in the release of transmitter from the presynaptic neuron and

this induces a change in the membrane conductance of the postsynaptic neuron at the site
of the synapse. The amount of current per unit area that enters a neuron due to a synaptic
conductance can be written as

Isyn = gsynm (Esyn − V ) (12.1)

where Esyn is the synaptic reversal potential. Because this current depends on the presy-
naptic voltage V , it produces potential nonlinear effects that are discussed below. The
postsynaptic conductance per unit area has been written in the form gsynm where gsyn is
a constant and m is a dynamic variable in the range 0 ≤ m ≤ 1. The variable m is the
probability that a synaptic receptor channel is in an open, conducting state.

The first step in analyzing the dependence of the synaptic conductance on the presynap-
tic firing rate is to determine how the amount of transmitter released from the presynaptic
terminal depends on this rate. For simplicity, we might take this dependence to be linear,
but it need not be. Suppose that the transmitter interacts with the receptor through a
simple binding reaction

closed receptor + n transmitter molecules ⇀↽ open receptor (12.2)

with forward rate constant k1 and the backward rate constant k−1. In terms of the open
probability for the receptor m, these reactions imply that

dm

dt
= k1T

n(1−m)− k−1m (12.3)

with T the transmitter concentration. The steady-state open probability given by this
equation is

m = m∞ =
k1T

n

k−1 + k1Tn
. (12.4)

This is only linear in T if n = 1 and T is small.
Synaptic conductances induce currents over the surface of large, elaborate dendritic

trees. The total current Isoma feeding into the soma from the trunk of the dendritic tree,
shown in figure 7a, is the analog of the current injected through an electrode in an exper-
imental setting. Currents entering through dendritic synapses must travel down dendritic
cables before reaching the soma. They are thus subject to losses from the longitudinal
resistance of the dendritic cable and due to leakage through the dendritic membrane. Since
synaptic conductances along the dendritic cable can affect the amount of membrane leak-
age, there is a potential nonlinear impact on the amount of current entering the soma (Rall,
1964; Koch et al., 1983; Segev & Parnas, 1989; Abbott, 1991b; Bernander et al., 1991; Rapp
et al., 1992).

I will assume that the neuron being modeled has a passive dendritic tree. This is not a
particularly valid assumption but it provides at least a lower limit on the nonlinear effects
to be expected. Active dendritic trees can introduce additional sources of nonlinearity.
In the passive case, the current Isoma entering the soma from the dendritic tree can be
computed using methods of cable theory (Jack et al., 1974; Rall, 1977; Tuckwell, 1988;
Butz & Cowan, 1974; Koch & Poggio, 1985; Abbott, 1992). In the examples given here, I
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will compute the current which flows out of the trunk of a dendritic tree into the soma when
synapses along the dendrite introduce a conductance change per unit area given by gsynm
and a synaptic current density Isyn. This computation is greatly simplified if we make use
of a very convenient simplification due to Rall (1962 & 1977). The idea is to replace a
complete dendritic tree with a single cylindrical cable having the same total electrotonic
length as the original tree and the same total surface area. This simplification is shown in
figures 7b and 7c.

I will give results for the total dendritic current entering the soma, Isoma, for an equiv-
alent cable of radius a and length L with two different synaptic placements. First, suppose
that the synapses are uniformly spread along the entire dendritic cable as in figure 7b. In
this case (Abbott, 1991b),

Isoma = 2πaλ(m)Isyn tanh(L/λ(m)) (12.5)

with

λ(m) =

√
aRM

2RL(1 + gsynmRM )
(12.6)

where 1/RM is the conductance per unit area of the membrane and RL is the longitudinal
resistivity of the intracellular fluid. For a short cable and small synaptic conductance, this
formula is in fact linear in the synaptic current,

Isoma ≈ 2πaLIsyn . (12.7)

This is just the area of the cable times the synaptic current density. However, if the cable
length is longer and the synaptic conductance is larger, the somatic current given by (12.5)
grows only like the square root of the synaptic conductance.

The nonlinear dependence of Isoma on the firing rates is more dramatic if the synaptic
input is located at the end of the equivalent cable, as in figure 7c. In this case (Abbott,
1991b),

Isoma =
πa2Isyn

cosh(L/λ0) + gsynmRLλ0 sinh(L/λ0)
(12.8)

with

λ0 =

√
aRM

2RL
. (12.9)

For a short cable, this becomes

Isoma ≈
πa2Isyn

1 + gsynmRLL
. (12.10)

Both (12.8) and (12.10) are linear in Isyn for small synaptic conductances but approach
finite limiting values for large synaptic conductances.

In summary there are many possible sources of nonlinearity in the relation between pre-
and postsynaptic firing rates. Transmitter release can be a nonlinear function of presy-
naptic firing rate, synaptic conductance a nonlinear function of transmitter concentration,
somatic current a nonlinear function of synaptic conductance and postsynaptic firing rate
a nonlinear function of somatic current. Perhaps, with luck, all of these combine to pro-
duce a fairly linear dependence and, of course, over a small enough range most nonlinear
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functions can be approximated by linear expressions. Nevertheless, there are situations in
which nonlinearities may be important, as seen in the next section.

13. Network Dynamics

Perhaps the single feature of biological neural systems most responsible for making them
difficult to model is the tremendous range of time scales for their dynamics (Churchland &
Sejnowski, 1992). The fastest currents in a typical neuron, those responsible for initiating
the action potential, turn on in less than a millisecond. The slowest currents and some
synaptic currents have time constants of hundreds of milliseconds or more. Cultured neurons
have shown activity-dependent changes over periods of about one hour (Turrigiano et al.,
1994). Thus, the dynamic range that must be modeled extends over three to seven orders
of magnitude. The most drastic of the many approximations made to produce idealized
neural network models is the collapsing of this huge range to a single time scale. This
approximation has been made rigorous in cases where synaptic couplings are much slower
than any other time constants affecting neuronal dynamics (Ermentrout, 1994). I will take
another approach here and assume that the time scale used in the kernel of equation (3.1)
to define the spike rate variable r(t) is significantly longer than any time scale affecting
neuronal or network dynamics.

If the time scale of the kernel K is slower than all other intrinsic and synaptic time
scales, the problems associated with the complexity of neuronal dynamics disappear. We
will consider at first a single neuron responding to a stimulus. Suppose that the stimulus is
described by a slowly varying function x(t) and the average, quasi-steady-state firing rate
response to this stimulus is f(x(t)). If the neuronal dynamics is faster than the time scale
for the kernel, the actual firing rate will settle down to something close to its steady-state
value in a time shorter than this scale. In addition, for a slow kernel, many spike will be
integrated before the kernel changes appreciably. As a result, we can replace the actual
spike response function s(t) in equation (3.1) by the average firing rate at a particular value
of x(t) and write

r(t) =
∫ ∞

0
dt′ K(t′)f(x(t− t′)) . (13.1)

This relates the dynamics of the firing rate variable r(t) directly to the stimulus dynamics
x(t) through the steady-state response function. By using a slowly varying kernel to define
the firing rate, we can avoid the complications of neuronal and network dynamics and build
a dynamic model purely on the basis of steady-state properties.

If we take the exponential kernel of equation (3.11), r(t) can also be express in the form
of a differential equation

τ
dr(t)
dt

= −r(t) + f(x(t)) . (13.2)

Equation (13.2) has been discussed and derived many times (Wilson & Cowan, 1972 &
1973; Hopfield, 1984; Frolov & Medvedev, 1986; Abbott, 1991a; Amit & Tsodyks, 1991a &
1991b; Ermentrout, 1994). It should be stress that, according to the viewpoint presented
here, the time constant τ appearing in equation (13.2) is not directly related to any time
constant characterizing the neuron, the membrane time constant in particular. Rather it
is a parameter related to properties of the neuronal spike train and its characterization in
terms of an integrated variable.
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Differential equations can be written corresponding to the kernels (3.12) and (3.13) as
well. For example, if we use the kernel (3.12) instead of the exponential kernel, r(t) is given
by a pair of differential equations,

τ
dr(t)
dt

= −r(t) + a(t) (13.3)

and
τ
da(t)
dt

= −a(t) + f(x(t)) . (13.4)

For the double exponential kernel, the firing rate is described by

r(t) =
a(t)− b(t)

τ1 − τ2
(13.5)

where
τ1

da(t)
dt

= −a(t) + τ1f(x(t)) (13.6)

and
τ2

db(t)
dt

= −b(t) + τ2f(x(t)) . (13.7)

The effects of recurrent synapses between network neurons can also be included in this
type of firing-rate model. For example, if we use equation (11.1) to describe how network
firing rates depend on each other and we use the exponential kernel, firing rates in the
network will be obey the equations

τ
dri(t)

dt
= −ri(t) + fi(x) +

N∑
j=1

Wijrj(t) . (13.8)

Nonlinear effects like those discussed in the last section can be incorporated by using more
complex expressions for the last term in this equation (Abbott, 1991a & 1991b).

A dynamic model of the neuronal response allows us to study, among other things, the
resonance phenomenon discussed in section 11. There it was pointed out that if there are
eigenvalues of the synaptic weight matrix greater than one, the linear network is unstable
to uncontrolled growth of the firing rates. This can be seen by performing a linear stability
analysis of equation (13.8). Various ways of controlling this explosive, unstable rise in firing
have been proposed. The basic mechanism is inhibition and involves either a nonlinear firing
rate for inhibitory neurons (Buhmann, 1989), nonlinear effects of fast inhibition (Abbott,
1991a) or the relative timing of excitatory and inhibitory responses (Douglas et al., 1989;
Douglas & Martin, 1991). In the model shown in figures 8 and 9, the unbounded growth
of firing rates in the linear networks during a resonance is controlled by nonlinear effects of
inhibition computed as in the last section (Abbott, 1991a & 1991b).

The typical response of a population of cortical or hippocampal neurons to stimulation
is induced firing followed by two kinds of inhibition (Avoli, 1986; Connors et al., 1988).
The two inhibitory responses are a fast component that can terminate the firing followed
by a slower, long-lasting hyperpolarization. These are the result of the neurotransmitter
GABA activating two types of receptors labeled A and B respectively. The fast inhibition
is essential for the normal operation of excitatory neurons, if it is blocked these tend to
fire in epileptic bursts (Dichter & Ayala, 1987; Miles & Wong, 1987). The existence of two
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forms of inhibition and the time scales associated with them suggest that, if resonances
actually occur, they might be controlled by GABAA inhibition and terminated by GABAB

inhibition.
Figure 8a shows the non-resonant response of network neurons in a model that includes

excitatory synapses and both slow and fast inhibition (see Abbott, 1991a for details of
the model). The stimulation induces firing of the principal neurons of the network and
this in turn causes a rise in both the fast and slow inhibition. In this case, the stimulus
does not produce a strong response and, in particular, the response does not outlast the
duration of the stimulus. Figure 8b shows a resonant response achieved by increasing
the strength of excitatory synapses until they cause an instability in the network firing
following stimulation. This instability can be seen in the rapid rise of the firing rate following
stimulation. The response is stabilized by the rapid activation of fast GABAA inhibition
that stops the exponential rise of the firing rate. Firing is temporarily self-sustaining but
ultimately the slower GABAB inhibition terminates the firing. The result is a much stronger
response that lasts significantly longer than the stimulus.

Figure 9 shows how the resonance effect can be used to achieve pattern recognition.
In this figure, a model network was exposed to random patterns of neuronal stimulation
lasting for 10 ms and occurring every 100 ms. These produced the modest patterns of firing
shown. However, at 500 ms a special pattern of stimulation was introduced, one that led
to the activation of strong excitatory coupling between network neurons and resulted in a
resonance. This is seen in the greatly enhanced activity corresponding to this pattern of
stimulation. Interpreted using the concept of decoding, the resonance phenomenon means
that stimulus values close to values experienced during a training period will elicit a much
stronger response from the network than values that have not been previously experienced.
The resonance phenomenon is an amplification process caused by the recurrent collaterals
as discussed in section 11 and, in the model shown, it is controlled by some of the nonlinear
process reviewed in section 12.

14. Conclusions

The possibility of decoding spike trains from single neurons as well as firing from an
entire ensemble of neurons has important implications for both experiments and theoretical
studies. One the theoretical side, it allows us to interpret the results of our models in a way
that has both behavioral and experimental significance. Instead of reporting the results of
modeling studied in terms of abstract patterns of neural firing, we can provided the values
of coded stimuli or motor outputs.

Our knowledge of synaptic plasticity is growing continually and these results, when
translated into synaptic weight learning rules, provide us with the possibility of avoiding
the dilemma caused by our ignorance of synaptic strengths in real neuronal circuits. In
some cases, detailed knowledge of how a neural network is affected by training experience
coupled with information about the initial state of the system before training (provided for
example by neuronal tuning curves) may be sufficient to allow us to predict and analyze
how training changes behavior.

Although most neural network models are extremely simplified, this is not an essential
feature of such modeling. Nonlinear and dynamic effects can be included in these models if
they are needed to account for a particular phenomenon being studied. An example of this
is the nonlinear resonance effect that may be related to recognition of previously learned
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stimuli. However, it should be emphasized that simplicity is one of the great virtues of these
network models since it allows phenomena to be studied in enough detail to provide new
insights. People eager for more complexity can always study the biological system itself.
I am extremely grateful to my collaborators Emilio Salinas, Kenneth Blum, Kamal Sen and
Carl van Vreeswijk who helped develop many of these ideas. Research supported by NSF
grant DMS-9208206.
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Fig. 1: Spike decoding of a stimulus by a linear filter. The stimulus, shown by the solid
lines in a) and c), is quasiperiodic. Spike trains were generated by an integrate-and-fire
model neuron with the stimulus acting as an input current. These were decoded by a linear
filter to estimate the stimulus. The estimate is indicated by the dashed lines in figures
a) and c). The spike train is also shown in c). In a) the random kernel plotted in b) is
used and the estimate does not match the signal. The good match between the estimate
and the stimulus value seen in c) is produced by the kernel shown in d) that resulted from
repeated application of the modification rule discussed in section 3.



Fig. 2: An array of Gaussian tuning curves. Tuning curves are all identical in shape and
are overlapping. The tuning curve centered at x = 0 is darkened for clarity.



Fig. 3: The network model. Neurons, label by the index i and shown as stippled circles,
respond to a stimulus value x by firing at a rate fi(x). Information about x is carried
into the network from inputs shown as small striped circles through synapses depicted by
arrow heads. Firing rates along the input lines, label by the index a, are given by ga(x).
The strength of the synapse from input a to neuron i is Mai. Synapses between network
neurons are denoted by filled circles. The strength of the synapse from neuron j to neuron
i is given by Wij .



Fig. 4: Effect of training with a single stimulus value on the coded variable. The coded
value xest is plotted as a function of the true stimulus value x. The training period
consisted of exposure to the stimulus X = 0. This results in the distortion of the coded
value near x = 0 seen in a) and magnified in b).



Fig. 5: Iteration of the trained network. It the coded value xest is fed back so that it
becomes a new stimulus value, this results in a steady progression from the initial stimulus
value x0 to a final coded value xest = 0 which is equal to the training stimulus.



Fig. 6: Development of a Gaussian tuning curve. Correlation-based synaptic modification
of input synapses during a developmental period when the stimulus value was zero results
in the appearance of a Gaussian tuning curve centered at this point. a) The initial tuning
curve is flat, except near the edges. b) The Gaussian curve begins to appear. c) The final
Gaussian tuning curve. In all three plots, the firing rates are divided by the maximum
rates for each case. In absolute terms, the tuning curve in c) represents a much larger
firing rate that the curve shown in a).



Fig. 7: The model neuron and synaptic placements considered in section 12. a) A soma
and typical passive dendritic tree. The current Isoma being computed is the current
flowing from the dendritic tree into the soma. b) and c) show the soma with a single
passive dendritic cable equivalent to the full tree in a). For b) synapses are uniformly
distributed over the equivalent cable while in c) synapses are located at the end of the cable.

Fig. 8: Resonance in a firing-rate model with two forms of inhibition. For network (ex-
citatory) neurons, both spikes and a firing rate are plotted. The levels of fast and slow
inhibition as a function of time are also indicated. A brief 10 ms stimulation current excites
the system initially. a) Stimulation results in a transient, weak firing response with modest
increases in inhibition. b) Stronger excitatory couplings between network neurons cause
the firing rate to climb sharply but fast inhibition controls this rate resulting in sustained
firing. Ultimately, slow inhibition increases to the point where it terminates the firing. This
is a typical resonance response to a stimulus. (Not available on Web.)

Fig. 9: A network resonance and pattern recognition. Excitatory couplings between network
neurons were chosen so that one particular pattern of activity resulted in particularly strong
network excitation. Each trace represents the firing of one unit and tick marks indicate
action potentials. Every 100 ms a brief current is injected into a random collection of
neurons. This elicits a small number of spikes from the stimulated neurons. However, at
time 500 ms the specific pattern leading to strong excitatory network coupling is stimulated.
As a result, the system responds with a firing resonance. (Not available on Web.)
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