
role in both homeostatic and adaptive processes (see,
for example, Abbott and Marder, 2002), synaptic plas-
ticity, in particular long-term potentiation and depres-
sion (LTP and LTD), has received the most attention
from both experimentalists and modelers. In particular,
associative forms of LTP and LTD, which follow gen-
eral ideas about plasticity annunciated by Hebb and
others (Hebb, 1949), have been the focus of work on
learning and memory in neural circuits. An important
feature of experimentally measured LTP and LTD,
which has been stressed particularly in recent work,
concerns the role of spike timing in its induction. 
Results from a wide range of systems (reviewed in Ab-
bott and Nelson, 2000), including rat hippocampal cul-
ture and slice preparations (Levy and Stewart, 1983;
Gustafsson et al., 1987; Debanne et al., 1994; Bi and
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Introduction

Neural circuits are both highly adaptive and sturdily ro-
bust, attributes that are difficult to reconcile with each
other. Adaptation involves change, which, in learning
new tasks, may have to be quite large. Maintaining the
characteristics required for stable operation requires
homeostatic mechanisms that resist change or, at least,
tightly control it. Models of neurons and neural circuits
tend to focus on one aspect or the other, that is, on learn-
ing or on homeostasis. However, a deeper understanding
of neuronal circuit dynamics will require that we deal
with both types of plasticity, and that we learn how they
work together to produce adaptive but stable behavior.
Although mechanisms by which neurons regulate their
intrinsic conductances undoubtedly play an important
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Balancing homeostasis and learning in neural circuits**

L. F. Abbott*
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Summary 

Neural circuits are remarkably adaptable, providing animals with the ability to modify their behavior on the basis of experience. At the
same time, they are extremely robust and maintain stability despite the changes associated with adaptation. This combination of adapt-
ability and stability is difficult to achieve, and it provides a strong constraint on any models of plasticity in neural circuits. New evi-
dence suggests that the effect of action potential timing on synaptic plasticity may be an important element in reconciling homeostasis
with adaptability. In particular, spike-timing dependent plasticity can act as both an adaptive and a homeostatic mechanism, controlling
overall firing rates and distributions of synaptic efficacies while making neurons selective for certain aspects of their inputs. It can also
cause networks that initially represent the present state of a stimulus to predict its future state on the basis of experience, a theoretical re-
sult supported by experimental data in behaving rats.

Key words: plasticity, homeostasis, adaptation, long-term potentiation, spike timing



Poo, 1998; Magee and Johnston, 1997; Debanne et al.,
1998), neocortical slices (Markram et al., 1997; Egger
et al., 1999; Feldman, 2000; Sjöström et al., 2001;
Froemke and Dan, 2002), retinotectal synapses in the
tadpole (Zhang et al., 1998), synapses in the lateral line
lobe of electric fish (Bell et al., 1997), as well as indi-
rect evidence from rats (Mehta et al., 1997, 2000; Allen
et al., 2003), cats (Yao and Dan, 2001), and humans (Fu
et al., 2002), indicate that the induction of LTP or LTD
depends on the relative timing of pre- and postsynaptic
action potentials. In most of these preparations, LTP
arises if presynaptic action potentials precede postsy-
naptic action potentials by less than about 20–30 ms.
LTD results if, instead, presynaptic action potentials
follow postsynaptic spikes by an equivalent interval.
The resulting synaptic plasticity is called spike-timing
dependent plasticity, or STDP.
STDP has been the subject of a large number of theoret-
ical studies, using a variety of techniques (Kempter et
al., 1999; Song et al., 2000; Rubin et al., 2000; van
Rossum et al., 2000; Kistler et al., 2000; Cateau and
Fukai, 2003; Gütig et al., 2003) and applied to a variety
of systems. For example, STDP-like rules have been
applied to coincidence detection (Gerstner et al., 1996),
sequence learning (Minai and Levy, 1993; Abbott and
Blum, 1996; Roberts, 1999), path learning in naviga-
tion (Blum and Abbott, 1996; Gerstner and Abbott,
1997; Mehta et al., 2000), and direction selectivity in
visual responses (Mehta et al., 2000; Rao and Se-
jnowski, 2000). Here the focus will be on a particular
aspect of STDP, the fact that it can, at least to some de-
gree, reconcile and unite homeostatic and adaptive ef-
fects. An additional example will show how STDP can
explain modifications in the activity of neurons in be-
having animals, suggesting a possible mechanism for
navigation. 

Materials and methods

The results reported here were all obtained from mathe-
matical models analyzed either with standard mathe-
matical methods or by simulating them on computers.
Although the work is theoretical, all the elements of the
models are based on and guided by experimental data
and stay faithful to those data as much as possible.
Modeling approaches are extremely well suited for
studies of synaptic plasticity because, although a great
deal is known about LTP and LTD, it is usually ob-
tained either from connections between individual pairs
of neurons, or from stimulating numerous afferents in
parallel. Although this provides the critical data on
which models are built, it is not the situation that occurs
in vivo, where we must analyze complex patterns of
correlated and uncorrelated input across many thou-

sands of synapses. This is precisely what modeling
studies can do by extending our knowledge of synaptic
plasticity, obtained under simplified conditions, to
more realistic patterns of activity resembling those oc-
curring in behaving animals.
The results shown below are based on a mathematical
characterization of STDP (Song et al., 1999) used in
conjunction with either integrate-and-fire or conduc-
tance-based neuron models. Details of the work can be
found in the cited references.

Results

Figure 1 shows a schematic diagram of the experimen-
tal findings concerning STDP, as discussed in the intro-
duction. The curve in this figure shows the sign and the
amount of long-term synaptic modification induced by
pairing pre- and postsynaptic action potentials as a
function of the time between them. Action potentials
that occur in rapid succession in a pre-before-postsy-
naptic sequence cause LTP, and those that occur in a
rapid post-before-presynaptic sequence produce LTD.
There is a sharp transition between these two forms of
plasticity around the point of coincident pre- and post-
synaptic spiking.
The results summarized in Figure 1 indicate that causal-
ity plays an important role in determining whether
STDP strengthens or weakens synapses. Presynaptic
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Fig. 1. Mathematical characterization of STDP. The curve shows
the percent increase or decrease in synaptic strength caused by a
single pairing of a presynaptic action potential separated by the
specified time from an accompanying postsynaptic action poten-
tial. The left side of the plot corresponds to pre-before-postsynap-
tic ordering and the right side to post-before-presynaptic ordering.



action potentials that occur before the postsynaptic re-
sponse, and that therefore could have contributed to
evoking it, are strengthened. Presynaptic action poten-
tials that occur in conjunction with a postsynaptic re-
sponse, but that arrive too late to have evoked it, are
weakened. This makes logical sense as a way of
strengthening synapses that carry useful information. In
the following, it will also be assumed that when pre-
and postsynaptic action potentials occur in random, un-
correlated sequences, the overall effect of STDP is to
weaken synapses, as has been found experimentally
(Feldman, 2000). 
In many ways, STDP acts as a typical Hebbian plastic-
ity mechanism, strengthening correlated inputs, for ex-
ample. However, STDP has additional homeostatic fea-
tures. In the following sections, attention will be fo-
cused on aspects of plasticity exhibited by STDP that
are not typically associated with Hebbian mechanisms
of plasticity.

Homeostatic effects of STDP

As mentioned above, models allow us to examine how
STDP acts when a large number of inputs interact. 
Figure 2 shows histograms of the strengths of synapses
obtained from simulations in which a large number of
excitatory synapses, subject to STDP, drove the re-
sponses of a model neuron (Song et al., 1999). Because
STDP is a Hebbian form of plasticity, we would expect
that it would tend to either maximally strengthen or
maximally weaken synapses. This is because Hebbian
mechanisms make strong synapses stronger and weak
synapses weaker. The horizontal scales in Figure 2 run
from the minimum (zero) to the maximum allowed
synaptic strength. The bimodal form of the histograms

indicates that this intuition is correct, but it does not
fully describe what is going on. 
Although the synapses described by the histograms in
Figure 2 fall into either weak (near zero) or strong (near
the maximum) categories, as would follow from a
destabilizing “learning” form of plasticity, there is also
a homeostatic element in their overall distribution. As
further analysis has shown (Song et al., 1999), the
synapses in this case divide themselves into weak and
strong groups in such a way that the postsynaptic re-
sponse is regulated in a homeostatic manner. For Fig.
2A, the synaptic inputs to the model neuron were each
firing at 10 Hz. This produced a roughly equal division
between weak and strong synapses, as indicated by the
histogram in Fig. 2A. When the input firing rates were
increased by 3 Hz, STDP produced the histogram of
Fig. 2B, in which a larger percentage of the synapses
are in the weak group. Thus, STDP reduces the overall
drive to the neuron, which compensates for the increase
in input firing rate, a typical homeostatic function. In
fact, over a wide range of input firing rates, STDP can
homeostatically regulate and buffer both the overall
postsynaptic firing rate and aspects of its variability
(Song et al., 1999; Kempter et al., 2001).
It is surprising to see a Hebbian form of plasticity per-
forming a homeostatic function. In most models of
Hebbian plasticity, constraints must be introduced to
perform the required homeostatic adjustments to main-
tain reasonable levels of activity (Miller and MacKay,
1994). STDP can, at least in part, perform these homeo-
static functions itself, while retaining the desirable fea-
tures of Hebbian plasticity, such as producing selectiv-
ity in individual neurons and activity-dependent maps
of selectivity in neuronal populations (Song and Ab-
bott, 2001).

367

Balancing homeostasis and learning

Zoology 106 (2003) 4

Fig. 2. Histograms of the strengths
of multiple synapses onto a single
model neuron in the case of low-
(A) and high- (B) frequency input.
The horizontal axis indicates the
strength of a synapse divided by the
maximum allowed strength, and the
vertical axis corresponds to the frac-
tion of such synapses that appear
after STDP has equilibrated. STDP
produces a bimodal distribution of
synaptic strengths, with the percent-
age of strong and weak synapses
varying to compensate for modifica-
tions in total synaptic input.



Equalization of synaptic efficacy by anti-STDP

Synapses on many types of neurons appear to be ad-
justed in strength to compensate for distance-dependent
attenuation; in particular they appear to grow stronger
the further out they are on the dendrite in such a way
that somatic postsynaptic potentials are roughly equal-
ized (Iansek and Redman, 1973; Jack et al., 1981; An-
derson et al., 1980; Triller et al., 1990; Stricker et al.,
1996; Magee and Cook, 2000; Smith et al., 2003). Re-
cent work (Rumsey and Abbott, 2003; see also Gold-
berg et al., 2002) has shown that a form of STDP seen
in electric fish (Bell et al., 1997), called anti-STDP, can
produce this result.
The timing-dependent plasticity seen in synapses be-
tween electrosensory neurons in electric fish is a weak-
ening of synapses (LTD) when pre- and postsynaptic
action potentials are paired in the pre-before-post or-
dering. This is the opposite of what is seen in most
preparations, which accounts for the name anti-STDP.
In addition, there is a non-associative form of LTP seen
at these electric-fish synapses, which plays an impor-
tant role in the effect described below.
To examine the effect of anti-STDP on the synaptic
strengths of distal and proximal synapses, a multi-com-
partment model of an extended neuronal dendritic cable
was coupled to a spiking soma model (Rumsey and Ab-
bott, 2003). Initially, all the synapses of the model were
given the same intrinsic strength, which, due to attenua-
tion, produced the steadily attenuating somatic excita-

tory postsynaptic potentials (epsps) seen in Fig. 3A. At
this point, a steady 10 Hz input was simulated on all
synapses and anti-STDP adjusted synaptic strengths on
the basis of the pre- and postsynaptic activity at each
synapse. After the synaptic strengths reached equilib-
rium values, the intrinsic strengths of the synapses in-
creased steadily as a function of distance along the den-
dritic cable. As a result, the somatic epsps evoked by
stimulating each synapse independently, as measured
from the soma, achieved equal values (Fig. 3B). This
form of synaptic equalization is similar to what has
been seen experimentally (see, for example, Cook and
Magee, 2000). 
Anti-STDP is a homeostatic form of plasticity, so the
fact that it regulates synaptic strengths, rather than forc-
ing them to extreme values, is to be expected. The
novel feature in this example is that synaptic strengths
compensate for attenuation. This represents a connec-
tion between the local factors that determine the effi-
cacy of a synapse, namely its intrinsic strength, and the
global factors that modify this efficacy, such as attenua-
tion along dendritic cables. The ability of anti-STDP to
compensate local and global elements affecting synap-
tic efficacy suggests that it may be an important ele-
ment of homeostatic synaptic regulation.

STDP and hippocampal place cells

The previous examples stressed the role of STDP (or
anti-STDP) in homeostatic regulation because this is a
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Fig. 3. Equalization of synaptic efficacy by anti-STDP. Both plots show the magnitudes of epsps, measured at the soma of a model
neuron, produced by synapses at varying distances along a dendritic cable (each dot corresponds to a different synapse). The distance
from the synapse to the soma, indicated along the horizontal axis, is given in units of the electrotonic length constant of the dendritic
cable (λ units). (A) Initially, proximal synapses produced larger epsps than distal synapses. The steps in these results reflected the com-
partmental structure of the dendritic cable. (B) After anti-STDP has modified synaptic strengths, epsp magnitudes are equalized for
proximal and distal synapses.



somewhat surprising feature (especially in the case of
STDP). A final example, given in this section, shows
how STDP can act in a more usual Hebbian learning ca-
pacity, except with the added wrinkle of its timing de-
pendence. This produces an interesting effect that al-
lows networks that initially provide a representation of
a stimulus parameter to predict future values of that pa-
rameter on the basis of previous experience (Abbott
and Blum, 1996). The particular example, hippocamal
place cells, is chosen because evidence of the predicted
effects of STDP has been seen in this system (Mehta et
al., 1997, 2000).
Hippocampal place cells fire action potentials at a rate
that depends on the location of the rat within its envi-
ronment. Using models of STDP, it is possible to com-
pute the effects that the activity of place cells has on the
synapses between them (Blum and Abbott, 1996). Fur-
thermore, because place cell activity is correlated with
an animal’s locomotion, it is possible to assess the ef-
fect that previous behavior has on place cell activity
through timing-dependent synaptic plasticity. Finally,
theoretical predictions of place cell modification by
previous experience can be tested experimentally due
to the extensive recording done of place cell activity in
behaving animals.
Consider the situation depicted in Fig. 4A, which
shows two place cells that are reciprocally connected
by excitatory synapses that are subject to STDP. Sup-
pose that a rat walks along a path that sequentially acti-
vates the neurons shown in Figure 4 in the order cell 1
followed immediately by cell 2. In other words, these
two neurons have place fields (the area in the environ-
ment that evokes place cell activity when occupied by
the rat) in neighboring regions of space, and the rat

moves through these regions in a direction that caused
neuron 1 to fire and then neuron 2 to fire. In this exam-
ple, the two reciprocal synapses initially have the same
strengths (Fig. 4A). If the rat moves repeatedly through
its environment along the postulated path, neurons 1
and 2 will repeatedly fire sequentially and, through
STDP, the synapses between them will be modified.
Because this direction of motion produces a specific
order of firing, the synapse from neuron 1 to neuron 2
will be strengthened by this process, while the synapse
from neuron 2 to neuron 1 will be weakened (Fig. 4B). 
As a result of the synaptic modification shown in 
Fig. 4B, neuron 2 may, after STDP has occurred, fire in
response to the excitation coming from neuron 1
through the strengthened synapse. From the point of
view of someone recording the activity of neuron 2, this
has the effect of expanding its place field in a direction
opposite to the direction of motion of the rat during the
“training” period. Of course, there are many more than
two place cells in the rat hippocampus but, using com-
putational methods, it is possible to compute the effect
of large numbers of place cells and synapses on place
field size and shape (Blum and Abbott, 1996). A result
of such a calculation is shown in Figure 5. The thinner
line in this plot shows the activity of a model place cell
prior to the experience that modifies its shape. The
place field, in this example, is the region of space cov-
ered by the response “tuning curve”, which is a Gaus-
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Fig. 4. Effect of locomotion on synaptic connections between
place cells. The two open circles in each figure represent two hip-
pocampal place cells. The two filled circles indicate reciprocal
synapses between these two neurons, with the size of the filled
circle representing the strength of the synapse. The arrows indi-
cate that a rat is moving in a direction that causes sequential acti-
vation of neuron 1 followed by neuron 2. (A) Before locomotion,
both synapses have equal strength. (B) After repeated locomotion
in the direction indicated by the arrow, STDP strengthens the
synapse from neuron 1 to neuron 2 and weakens the synapse from
neuron 2 to neuron 1.

Fig. 5. Predicted place field shift. Activity of a model place cell
is plotted as a function of the position of the rat in its environ-
ment. Firing rate is normalized to a maximum of one for the ini-
tial firing rate curve. The thinner line shows the firing rate as a
function of position prior to training experience. The thicker line
is the firing rate of the same neuron after repeated network activ-
ity corresponding to motion of the rat from left to right along the
horizontal axis. The resulting shift arises from modification due
to STDP of the strengths of synapses onto this neuron from other
place cells.



sian function of the location of the rat. The thicker line
is the response tuning curve of the same neuron calcu-
lated after experience modifies its shape through STDP.
The “experience” here corresponds to motion of a rat
from left to right in Figure 5. Notice that after this expe-
rience, the place field is expanded in an asymmetric
way, primarily in the direction opposite to that tra-
versed by the rat.
Such place field shifts, initially predicted from mathe-
matical calculations (Blum and Abbott, 1996), have
been seen in experiments involving repeated traversal
(in a single direction) of a rat around a closed-loop path
(Mehta et al., 1997, 2000). The shape and direction of
place field shifts seen in the data match those of the pre-
diction. This provides strong, though indirect, evidence
that spike-timing dependent mechanisms are active in
behaving animals. Furthermore, the place field shift
seen in Figure 5 has interesting functional implications.
Before the experience, place field activity provides an
internal, neuronal representation of the location of the
rat in space. After the experience-induced changes in
place field shape take place, the activity of the popula-
tion of place cells that initially reported the current lo-
cation of the rat now represents a prediction of the fu-
ture location of the rat on the basis of the training expe-
rience (Blum and Abbott, 1996; Gerstner and Abbott,
1997). In a more general context, STDP provides a way
for neural circuits to develop predictive representations
of quantities with behavior relevance.

Discussion

Synaptic plasticity is viewed primarily as a mechanism
for enhancing the selectivity of a neuron through Heb-
bian learning. However, important homeostatic pro-
cesses are also required to make a neuron function
properly. Among these is regulation of total excitatory
synaptic strength and synapse equalization, which
means that distal synapses have, at least potentially, an
equal chance of controlling postsynaptic firing as prox-
imal synapses. Reconciling the homeostatic and learn-
ing functions of synaptic plasticity is difficult but, in
some instances, STDP, or its reverse anti-STDP, can
serve these homeostatic functions. STDP can act as
both an adaptive and a homeostatic mechanism, con-
trolling overall firing rates and distributions of synaptic
efficacies while making neurons selective for certain
aspects of their inputs. It can also cause networks that
initially represent the present state of a stimulus to pre-
dict its future state on the basis of experience, a theoret-
ical result supported by experimental data in behaving
rats. An appropriate combination of STDP and anti-
STDP has the potential of providing both homeostatic
and learning functions. 
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