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Abstract

Spike-timing dependent plasticity (STDP) is a widespread plasticity mechanism in the ner-
vous system. The simplest description of STDP only takes into account pairs of pre- and
postsynaptic spikes, with potentiation of the synapse when a presynaptic spike precedes a
postsynaptic spike and depression otherwise. In light of experiments that explored a variety
of spike patterns, the pair-based STDP model has been augmented to account for multiple
pre- and postsynaptic spike interactions. As a result, a number of different “multi-spike”
STDP models have been proposed based on different experimental observations. The
behavior of these models at the population level is crucial for understanding mechanisms of
learning and memory. The challenging balance between the stability of a population of syn-
apses and their competitive modification is well studied for pair-based models, but it has not
yet been fully analyzed for multi-spike models. Here, we address this issue through numeri-
cal simulations of an integrate-and-fire model neuron with excitatory synapses subject to
STDP described by three different proposed multi-spike models. We also analytically calcu-
late average synaptic changes and fluctuations about these averages. Our results indicate
that the different multi-spike models behave quite differently at the population level.
Although each model can produce synaptic competition in certain parameter regions, none
of them induces synaptic competition with its originally fitted parameters. The dichotomy
between synaptic stability and Hebbian competition, which is well characterized for pair-
based STDP models, persists in multi-spike models. However, anti-Hebbian competition
can coexist with synaptic stability in some models. We propose that the collective behavior
of synaptic plasticity models at the population level should be used as an additional guide-
line in applying phenomenological models based on observations of single synapses.

Author Summary

Synaptic plasticity is believed to underlie learning and memory by competitive strengthen-
ing and weakening of synapses in neural networks. However, the ability to form new mem-
ories while maintaining the old ones involves an intricate balance between synaptic
stability and competition. In one of the most widespread such mechanisms, spike-timing
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dependent plasticity (STDP), the temporal order of pre- and postsynaptic spiking across a
synapse determines whether it is strengthened or weakened. Early description of STDP
only took into account pairs of pre- and postsynaptic spikes. However, more recent experi-
mental results showed that the “pair-based” description is not sufficient to fully account
for synaptic modifications under STDP, and motivated more complex “multi-spike”
STDP models. While the conditions under which the pair-based STDP leads to synaptic
stability and/or competition are well studied, it is not clear when and how multi-spike
STDP models lead to synaptic stability and competition. Here, we address these questions
through numerical simulation and analysis of a population of plastic excitatory synapses
that converge to a neuron. We show that different multi-spike STDP models can induce
synaptic stability and competition under radically different conditions, which have impor-
tant implications in relating learning and memory to biophysical properties of synapses.

Introduction

Spike-timing dependent plasticity (STDP) is a form of activity-dependent synaptic plasticity
that appears throughout the nervous system [1, 2, 3]. In STDP, pairs of pre- and postsynaptic
action potentials potentiate a synapse when the presynaptic spike precedes the postsynaptic
spike, and depress it for the reverse order [4, 5]. However, when multiple pre- and postsynaptic
spikes occur across a synapse over a short interval of time, the resulting plasticity depends on
their timing in a more complex manner. For example, pair-based STDP models predict that
“pre-post-pre” and “post-pre-post” triplets of spikes with the same pairwise intervals should
induce the same plasticity, but experiments indicate that these two triplet patterns have differ-
ent effects [6, 7]. This and similar contradictions motivated the development of multi-spike
models of STDP, which go beyond pairwise interactions of pre- and postsynaptic spikes (see
[8] for a review). Here, we analyze three such models that are based on experimental results to
determine how they affect populations of synapses converging onto a postsynaptic neuron. We
focus on two basic features: stability and competition.

Stability is a property of the distribution of synaptic weights arising from an STDP model, and
we will distinguish three cases: unstable, partially stable, and stable. In the unstable case, synaptic
weights perpetually increase under STDP, unless some upper limit is imposed (in principle,
weights could also decrease perpetually, but this is atypical). Although we briefly consider soft
bounds to limit the range of synaptic weights, we primarily consider hard bounds. When hard
limits are imposed on an unstable STDP model, the synaptic weights cluster tightly against the
upper bound. Another more interesting case is partial stability, in which individual synaptic
weights increase or decrease indefinitely, but the average of the weights across a synaptic popula-
tion stays fixed. When hard bounds are imposed on a partially stable STDP model to limit the
increases and decreases of individual synapses, the synaptic weights tend to cluster at either end of
their allowed range, forming a U-shaped distribution [9]. Finally, when an STDP model is stable,
no hard bounds need to be imposed, and synaptic weights form a unimodel distribution [10, 11,
12, 13]. We are interested in determining whether, and under what parameter values, different
multi-spike STDP models lead to stable, partially stable or unstable synaptic weight distributions.

The impact of STDP on the weights of synapses onto a postsynaptic neuron depends on cor-
relations between their presynaptic spike patterns. This can be studied by dividing the inputs
to a neuron into two groups, one with correlated presynaptic activity and the other with uncor-
related presynaptic spiking. In this context, competition refers to the propensity of either a cor-
related or an uncorrelated group of synapses to gain control of the postsynaptic spiking, while
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the other group become less influential, both as a consequence of STDP. In cases that we call
“Hebbian”, the synapses with correlated input become stronger than those with uncorrelated
input. In other “anti-Hebbian” cases, the reverse occurs and the correlated synapses become
weaker than the uncorrelated. We are interested in whether synaptic plasticity is Hebbian or
anti-Hebbian, by this definition, in various multi-spike STDP models and for different parame-
ter values of those models.

The three multi-spike STDP models that we consider were proposed on the basis of different
experimental results. In the “suppression model”, inspired by experimental results in cortical
slices, the plasticity-inducing effect of each pre- or postsynaptic spike is suppressed by preceding
spikes [6, 14]. The “triplet model”, inspired by experiments in hippocampal slices, includes the
effect of neighboring pre-post pairings as well as depression exerted by preceding presynaptic
spikes and potentiation by preceding postsynaptic spikes [15]. The third model we consider, the
“NMDAR-based model”, is phenomenologically based on the kinetics of the N-Methyl-D-Aspar-
tate receptor [16]. This model was proposed before experimental results on multi-spike effects in
STDP were available, and hence it was not explicitly aimed at accounting for multi-spike interac-
tions, unlike the first two models. However, as we show in the Results section, it demonstrates a
rich repertoire of multi-spike interactions, and can behave similar to either of the first two models
depending on its parameters. Therefore, we feel it deserves to be considered as a multi-spike
STDP model, even though it may not have been intended as such initially.

We begin by reviewing results for pair-based STDP to establish our approach and introduce
ways of characterizing the effects of plasticity. We then apply this approach and these charac-
terizations to the multi-spike STDP models. For each case, we first consider the parameters
originally proposed for the model, and then systematically explore a range of parameter values
to evaluate stability and competition. In light of the results obtained, we conclude by discussing
relationships between the models at the biophysical level, and the computational implications
of each model at the synaptic population level.

Results

To study the effect of different STDP models on synaptic weights, we simulated a single spiking
neuron receiving N, excitatory and Nj, inhibitory presynaptic spike trains with Poisson statis-
tics at rates 7, and r;,, respectively. The strengths of the excitatory synapses, denoted by w;
with i = 1,2,. . .,Ni, change according to STDP, while the strengths of inhibitory synapses
remain constant. Since we focus on the distribution of excitatory synaptic strengths, we treat
them as random variables collectively labeled with w. To examine the different forms of stabil-
ity of each STDP model, we check whether the steady-state distribution of synaptic strengths is
bounded without imposing external limits, or whether the increase or decrease of the weights is
stopped only when they hit a boundary. We distinguish between the partially stable and unsta-
ble cases by computing the evolution of the average of the synaptic weights, which reaches a
fixed point only in the partially stable case. Fully stable STDP is characterized by a fixed point
for the average rate and bounded deviations for the strengths of individual synapses about this
mean. As a probe of synaptic competition, we induce correlations to a subset of the excitatory
inputs (Methods) and check whether STDP causes the synapses corresponding to correlated
and uncorrelated subsets to compete for control of the postsynaptic firing. This also allows us
to determine whether the effect of correlations is Hebbian or anti-Hebbian. In the following
sections, we report the competitive behavior of the models in response to a fixed correlation
coefficient of 0.2 induced in half of the synapses. In S1 Fig we also show results for a range of
correlation coefficients. Except for few important exceptions that will be pointed out, the quali-
tative behavior of the models is not sensitive to the choice of correlation coefficient. Similarly,
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Table 1. Neuronal, synaptic, and plasticity parameters.

Parameter Symbol Default value
Membrane time constant B 20 ms
Spiking threshold Vin —40 mv
Resting membrane potential V. -60 mv
Synaptic time constant Tg 5 ms
Number of excitatory synapses Nex 1000
Number of inhibitory synapses Nin 250
Inhibitory synaptic strength Win 1mv
Excitatory input rate lore 10 Hz
Inhibitory input rate lin 10 Hz
Correlation coefficient * c 0.2

* Correlation is only introduced for simulations in which synaptic competition is examined.

doi:10.1371/journal.pcbi.1004750.1001

changing the proportion of correlated synapses to be more or less than half does not change
the obtained results qualitatively. The neuronal and input parameters used in our simulations
are given in Table 1.

Pair-based STDP

To explain our method for analyzing synaptic stability and competition and also to provide a
benchmark of comparison for the multi-spike STDP models, we first examine a pair-based
STDP model. In this model, synapses are modified only on the basis of the intervals between
pairs of pre- and postsynaptic spikes. When a synapse receives a larger ensemble of spikes,
such as triplets or quadruplets, plasticity is induced by the pre-post pairs within the ensemble
independent of the higher-order structure of the ensemble. As stated in the introduction, simi-
larly spaced “pre-post-pre” and “post-pre-post” triplets induce the same amount of synaptic
modification in this model (Fig 1A and 1E). The parameters of the pair-based model include
the maximum amounts by which synapses can be potentiated or depressed, A, and A_, and the
time constants for the potentiation and depression windows, 7, and 7_ (Eq 10). These parame-
ters also appear in the multi-spike models.

To quantify the average modification of a synapse under STDP, we first calculate the proba-
bility of a pairing interval At for spikes arriving at the synapse and then average synaptic modi-
fication (Eq 10) over that probability. We assume that the pre- and postsynaptic spike trains
are both Poisson. The rate of the presynaptic spike train takes the constant value .. The base-
line rate of postsynaptic firing is denoted by 7,5 (Eq 8). When a postsynaptic action potential
is generated, presynaptic spikes are equally likely to arrive at any later time because the post-
synaptic spike has no effect on presynaptic activity. However, when a presynaptic spike arrives
at a particular synapse, it transiently increases the postsynaptic firing rate by an amount pro-
portional to the strength of that synapse (Eq 9). As a result, a postsynaptic action potential is
more likely to be induced shortly after the arrival of a presynaptic spike. Including both the
baseline rate and this brief enhancement, the average synaptic modification or the “drift” for a
synaptic strength w is (see Methods)

dw At tr, w

—=At, AT )1, T o« T T e pre . 1
dr AT T AT T T S Vo @
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Fig 1. The pair-based STDP model. A. Top-left: The STDP window with A, <A_. Top-right: a triplet of spikes composed of two pre-post pairs with intervals
Aty and At,. Bottom: the amount of synaptic modification in response to triplets, which is symmetric in the pair-based model. B. The average drift induced by
the pair-based model on a population of excitatory synapses converging onto a single postsynaptic neuron, when A, < A_. The black curve is a numerical
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evaluation of Eq 2 and the gray area is the simulation results. The half-width of the gray area is the standard error. The filled circle is the stable fixed point.
The inset shows the w-dependent drift (Eq 3) C. The steady state distribution of synaptic weights obtained by simulation when A, < A_. D. The steady state
distribution of weights when half of the synapses receive correlated input (magenta) and the other half receive uncorrelated input (cyan). When A, <A_
correlated synapses are strengthened. E-H. The same as A-D, but for A, > A_. Note that there is no stable fixed point in F, and that all the synapses are
pushed to the upper bound in G and H. For these simulations, the constants of the STDP model were 7, =7_=20ms, A, =0.005 mVand A_=1.0.1A, in A-D
and A_=0.005mVandA,=1.0.1A_in E-H.

doi:10.1371/journal.pchi.1004750.g001

The first term in this equation relates the change in synaptic strength of a particular synapse,
w, to the average strength of all the excitatory synapses, (w), through the dependence of the
baseline firing rate 7os on this average. This term is the same for all synapses, so we call it the
“baseline drift”. The second term depends on the synaptic strength of the particular synapse
being considered, and it arises from the transient increase of postsynaptic firing rate following
a presynaptic spike at this synapse. We call it the “w-dependent drift”. The rate of change of
the average of all the excitatory synaptic weights is given by the sum of the baseline drift and
the average of the w-dependent drift,

d(w) AT T 1 (W)

——L=(At, —At)r, T .+ 1 pre .
dr =~ AT AT T Y, V)

(2)

The average synaptic strength in the steady-state is the values of (w) that sets the right side
of Eq (2) to zero (i.e. a fixed point). One such fixed point occurs when all the synapses are zero
({w) = 0). This makes the postsynaptic neuron silent (7o« = 0) and sets both the baseline and
average w-dependent drifts to zero. This state is uninteresting and simply reflects the fact that
no plasticity occurs when the postsynaptic neuron is silent. If the synaptic strengths are not
zero, the average w-dependent drift is always positive because presynaptic spikes always
enhance postsynaptic firing. As a result, a nontrivial fixed point for the average synaptic weight
can occur only if the baseline drift is negative (A_ 7_ > A, 7,) so that it can cancel the w-depen-
dent drift (Fig 1B, closed circle). This fixed point is stable, because the positive w-dependent
drift dominates if the average weight is smaller that the fixed-point value, and the negative
baseline drift dominates if it is larger. Mathematically, stability requires the slope of the average
drift to be negative at the fixed point (Fig 1B), which always holds for the nontrivial fixed point
of the pair-based model. In summary, the steady-state average synaptic strength in pair-based
STDP has a stable nontrivial mean if the depression window is larger than the potentiation
window (A_ 7_ > A, 7,). This fixed point is unique, so the mean of the steady-state distribution
of synaptic weights converges to this value regardless of its initial value.

The stability of the mean is not a sufficient condition for the steady-state distribution of syn-
aptic strengths to be fully stable, each synapse must also have a stable deviation from the mean.
The strength of a particular synapse can be expressed as w = (w) + 6w, where 6w is the devia-
tion of the synapse from the mean. If the deviation tends to grow over time, the synapses will
drift away from the mean and the distribution will be partially stable and U-shaped (bimodal).
If the deviation tends to decrease, the synapses will cluster around the mean and the distribu-
tion will be stable and unimodal. Assuming that the mean synaptic strength is at steady-state
and that the deviation of an individual synapse (out of a few thousand) does not alter the mean
significantly, the change of the deviation over time is governed solely by the w-dependent drift
and can be derived from Eq (1) as

dow _ AT T, T ore ow 3)
dt (t,+1) (Ve — V)1,

T
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Because the coefficient of 6w in this equation is positive (Fig 1B, inset), the deviations tends
to grow, and the final distribution of synaptic strengths for pair-based STDP is partially stable
and U-shaped even though the mean is stable (Fig 1C, ref. [9]).

To check the accuracy of Eqs (2) and (3), we computed the synaptic drift by averaging the
amount of induced synaptic modification in simulations lasting 0° s of simulated time, without
implementing synaptic modification (Fig 1B, gray shade). In general, the agreement is good;
the discrepancy between the analytic and simulation results at low average synaptic strengths is
due to the fact that our approximation for the transient postsynaptic firing rate (Eq 9) is only
accurate when the mean excitatory input is significantly larger than the mean inhibitory input.
In the parameter regime where the potentiation window is larger than the depression window
(Fig 1E-1H), the mean synaptic weight only has the trivial and unstable zero fixed point (Fig
1F), so the distribution is unstable and all of the synaptic strengths grow until they hit the
upper bound, regardless of their initial values (Fig 1G).

When the mean synaptic strength is stable and the w-dependent drift is positive, it is possi-
ble for STDP to discriminate between two groups of synapses based on the degree of correla-
tion in their presynaptic spike trains. If the spike trains arriving at one group of synapses are
correlated and those of the other synapses are not, the correlated group induces a larger tran-
sient increase in the postsynaptic firing rate and hence a larger w-dependent drift. Therefore
the correlated group is more likely to become stronger than the mean, and the uncorrelated
group tends to become weaker to maintain the balance around the mean (Fig 1D). This results
in a Hebbian competition among the synapses [9]. On the other hand, when there is no stable
mean, all the synapses tend to grow regardless of their correlation and no competition takes
place, although the correlated synapses still end up stronger than the uncorrelated group (Fig
1H). Therefore, the condition for Hebbian competition through pair-based STDP is the exis-
tence of a stable mean, i.e. A_ 7~ > A, 7,, which is equivalent to partial stability. Importantly,
as long as the steady-state mean of the synaptic strength is within the allowed range, this condi-
tion is not changed by modifying the lower or upper bounds of the synaptic strengths. This is
also the case for the multi-spike models discussed in the following sections.

The triplet model

Experimental results on synapses in hippocampal cultures reveal a marked asymmetry in the
plasticity induced by post-pre-post and pre-post-pre spike sequences, in contrast to the predic-
tions of the pair-based model (Fig 1A and 1E). Post-pre-post sequences induce potentiation,
and pre-post-pre has little or no effect [7]. In addition, in experiments on cortical synapses, the
balance between potentiation and depression shifts toward potentiation when the frequency of
pre-post pairing events increases, another property not captured by pair-based STDP [17].
These results motivated Pfister & Gerstner [15] to propose the triplet model, which takes into
account interactions of spikes beyond pre-post pairings. In addition to the effect of pre-post
pairings, the triplet model includes additional depression due to previous presynaptic spikes
and additional potentiation from earlier postsynaptic spikes (Fig 2A). This is accomplished
through a presynaptic depression variable and a postsynaptic potentiation variable assigned to
each synapse (Eq 11). In the absence of incoming presynaptic spikes, the presynaptic depres-
sion variable decays exponentially with time constant 7. Likewise, the value of postsynaptic
potentiation variable decreases exponentially in the absence of postsynaptic spikes with time
constant Tp,s. When a presynaptic spike reaches the synapse, the presynaptic depression vari-
able abruptly increases by the amount A, and when a postsynaptic spike occurs, the postsyn-
aptic variable increases by Apos (Eq 12). This is how the triplet model accounts for the
asymmetry of synaptic modification in response to triplets. For a pre-post-pre triplet, the first
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Fig 2. The triplet model. A. Schematic illustration of spike interactions in the triplet model in which previous
presynaptic spikes induce extra depression (top) and previous postsynaptic spikes induce extra potentiation
(bottom). B. Plasticity due to triplets of spikes: pre-post-pre triplets induce depression or weak potentiation
(top left), and post-pre-post ordering induces mostly potentiation (bottom right). This figure is based on
parameters fit to hippocampal data (Table 2).

doi:10.1371/journal.pcbi.1004750.g002

presynaptic spike induces extra depression on the synapse, while for a post-pre-post triplet the
first postsynaptic spike induces extra potentiation (Fig 2B). The triplet model that we consider
sums the contributions of all previous pre- and postsynaptic spikes as well as all pre-post pair-
ings (all-to-all). Pfister & Gerstner [15] also provided a version of the triplet model based only
on nearest neighboring spikes, but the qualitative behavior of both versions is similar.

As we did for pair-based STDP, we can derive equations governing the evolution of the
mean synaptic strengths and deviations around the mean for individual synaptic weights. The
average values of the presynaptic depression and postsynaptic potentiation variables, obtained
from substituting rates for spikes in Eq 12, are Apre Tpre pre and A T, Tpost. Using these values
and averaging the synaptic modification (Eq 11) over the probability of pre-post pairings, the
drift of the mean of the synaptic weights in the triplet model is

d{w) _ _ _ . -

— 2
dt - A+T+rpre rpost + Apost Tpost T+ rpre rpost - A* Tfrpre rpost - Apre Tpre Tfrpre rpost

(A + Apost post post) T+Ts rpre <W>
(‘Cs + T+)(‘/th - Vr) ™

(4)

As in the pair-based model, the last term in this equation is the w-dependent drift and the
other terms make up the baseline drift. The dynamics of deviations of individual synapses from
the mean is governed by the w-dependent drift, so

d(SW (A + Apost post ?post) ‘C+‘Cs rpre 5W (5)
dt B (Ts + T+)(‘/th - Vr) T .

As in the pair-based model, the coefficient of dw is always positive, so individual weights
will drift away from the mean for any choice of parameters, making individual synaptic weights
unstable.
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The parameters of the original model were fit by Pfister & Gerstner [15] separately to match
experimental data from hippocampal cultures and cortical slices, resulting in two sets of
parameters. Our simulation results indicate that, for both sets of parameters, the distribution of
synaptic weights is unstable, so that all the synaptic weights cluster around the upper bound. In
addition, no competition takes place between correlated and uncorrelated synapses with these
parameter sets. This led us to consider properties of the triplet model for a range of parameter
values. As in our discussion of pair-based STDP, we study the triplet model when pair-based
potentiation is larger than pair-based depression (A_=0.005mV, A, = 1.01A_) and when
pair-based depression is larger than pair-based potentiation (A, = 0.005 mV, A_=1.014,).In
each case, we varied the ratio between postsynaptic potentiation and presynaptic depression
(Apost/Apre) systematically, while keeping A, constant at 0.001 mV.

We first examine the fixed points of the mean synaptic weight (Fig 3A and 3F). When A/
Apre is small, the average synaptic weight has two nontrivial fixed points (Fig 3B and 3G). The
first is stable (Fig 3B and 3G, filled circle) and the second is unstable (Fig 3B and 3G, open cir-
cle). The appearance of the unstable fixed point in the triplet model is due to the dependence of
the postsynaptic potentiation on the postsynaptic firing rate. This added potentiation increases
when the mean synaptic weight increases, eventually overcoming the combined effect of pre-
synaptic and pair-based depression. The existence of two fixed points makes the steady-state
distribution of synaptic weights sensitive to the initial distribution. If the mean of the initial dis-
tribution is greater than the unstable fixed point, the distribution will be unstable and all of the
weights will be pushed toward the upper bound (Fig 3D and 31, right). If the mean of the initial
distribution is lower than the unstable fixed point, the mean of the steady-state distribution
converges to the stable fixed point and individual weights drift away from the mean toward the
lower and upper bounds, resulting in partial stability and a U-shaped distribution similar to
the pair-based model (Figs 3D and 21, left). When Ap,s/Apy reaches a critical value, the two
fixed points coalesce and annihilate each other, and only the trivial unstable fixed point
remains (Fig 3C and 3H). In this case, regardless of the initial distribution, the final distribution
is unstable and tightly clustered near the upper bound (Fig 3D and 31, bottom).

As we argued in the case of the pair-based model, synaptic competition can only take place
when the steady-state distribution has a nontrivial stable mean and is partially stable. In the
triplet model, when Ap,os/Ap. is relatively small and the initial mean synaptic weight is lower
than the unstable fixed point, this condition is fulfilled (Fig 3A and 3F, dark gray areas; Fig 3E,
left). However, if the stable and unstable fixed points are too close together, there is no guaran-
tee of synaptic competition (Fig 3], left). The reason for this is that when a subset of the synap-
tic inputs are correlated, presynaptic spikes tend to arrive in tandem and induce large
transients in the postsynaptic firing rate, causing large fluctuations in the mean synaptic
weight. This can cause the mean synaptic strength to fluctuate beyond the unstable fixed point,
destabilizing the weight distribution. As a result, the parameter regime for synaptic competi-
tion in the triplet model is highly restricted to the region of small A,q/Ap.e with A, < A_ (Fig
3A, dark gray). Even within this small region, if the correlation coefficient among the correlated
synapses is high, competition does not take place and all the synapses tend to the upper bound
(S1 Fig), due to the fluctuations mentioned above. Thus, it is not surprising that the original
parameters obtained by Pfister & Gerstner [15] did not lead to competitive synaptic plasticity.
In summary, the novel properties of the triplet model, as compared to the pair-based model,
are the sensitivity to the initial distribution of weights and a tighter parameter range for Heb-
bian competition.
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COMPUTATIONAL

®PLOS

BIOLOGY Stability and Competition in Multi-spike STDP Models
j A <A F A, > A
> 2 I - - - - - r r 1 - - . -
g 1 = = = Unstable Stable mean
| Stable (potentially competitive) | |
R e+« « « Trivial & 1
® \ Unstable mean \
w 1+ AY (non-competitive) 1 F 1
- ~ A3
c ~ o
.6 ——— -
0. 0.5} ] = |
T
Q
X Ole s s s s s s s s s smsssassonossgessyssnpusspssag ls = o 5,8 # # 8,8 8 # 5,8 ® 8 @, ® ® 8 @ @ ® @4 8 E W PE EEPEEE§E & &
(' 0 0.4 0.8 1.2 1.6 2 0 0.4 0.8 1.6
l APO-‘“‘- /APP"C\ l A;msi/Apr'c\
B -6 C 1wt G, H
x 10 3 16 3
12
= S1iy
I‘E [’
1.5 a 1.
.x_\ 6 dur - 8 " 5 S
E/ dw
s 0
0 1 2 0 1 2 0 1 2 0 1 2
D (w)(mV) (w)(mV) I l (w)(mV) \fn}(m\a’)
6 50 6
60
gi 3 25 3 30
—
0 1 2 0 1.9 2 0 1 2 0 1.9 2
= 50 D— = 50 )
- -
0 1.9 2 0 1.9 2
w(mV) w(mV)
E J
10 120 120
[l Uncorrelated 120
I Correlated
=5 60 60 60
Hnﬂ..... n.-.nnnl'I”H .-..—.nnl'l”nH moannfll
0 1 2 0 19 2 0 1.9 2 0 19 2
510{” :5«; 80
—
=== !
0 1.9 2 0 1.9 2
w(mV) w(mV)

Fig 3. Stability and competition in the triplet model. A-E. Pair-based depression is larger than pair-based potentiation. A. Fixed points of (w) as functions
of the ratio between postsynaptic potentiation and presynaptic depression parameters (Apost/Apre). When Aposi/Apre is small, two nontrivial fixed points exist,
one stable and one unstable. At higher values, they collide and disappear. When a stable fixed point exists (solid curve), the model is potentially competitive
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(dark gray area). B. Average drift of the weights, when Apqs/Apre = 0.2. The gray area shows simulation results, and the solid curve is obtained from Eq (4).
The filled circle depicts the stable fixed point and the open circle the unstable fixed point. The inset shows the w-dependent drift near the stable fixed point. C.
Average drift of the weights when A,../Apre = 1.2. The average weight has no nontrivial fixed points. D. Distribution of synaptic weights obtained from
simulation. With parameters as in B and an initial mean of 0.4 mV, the final distribution is U-shaped (left). With an initial mean of 1.6, the final distribution
clusters around the upper bound (right). Using parameters as in C, the final distribution also clusters around the upper bound (bottom). E. Synaptic
competition for the parameters and initial values used in corresponding panels of D. Hebbian competition occurs only when the mean weight is stable and its
initial value is below the unstable fixed point (left). F-J. Same as A-E, but when pair-based potentiation is larger than pair-based depression. F. The nontrivial
fixed points disappear at lower values of A,.s/Apre than in A, making the potentially competitive region smaller than in A (dark gray area). G-J. The same as
B-E, but with pair-based potentiation larger than pair-based depression. Because the stable and unstable fixed points are close (G), competition does not
occur even in the presence of a stable fixed point for the mean weight (J, left). For this figure, the time constants of presynaptic depression and postsynaptic
potentiation were 1,,e = 705t = 40 Ms, and the pair-based parameters of the model were the same as the pair-based model in Fig 1.

doi:10.1371/journal.pcbi.1004750.9003

The suppression model

Plasticity experiments in cortical slices using triplets of spikes showed different effects than the
hippocampal results. In the synapses of the visual cortex of rats, pre-post-pre triplets induce
potentiation whereas post-pre-post triplets induce depression [6]. These results led Froemke
et al. [6] to propose the suppression model, in which plasticity is induce by nearest neighbor
pre- and postsynaptic spikes. The plasticity is computed from the standard pair-based STDP
curve, but the effect of the presynaptic spike in each pair is suppressed by previous presynaptic
spikes and, similarly, the plasticity induced by the postsynaptic spike in each pair is suppressed
by previous postsynaptic spikes (Fig 4A). The suppression is maximal immediately after each
pre- or postsynaptic spike, and it decreases exponentially as the interval between consecutive
pre- or postsynaptic spike increases (Eq 13). The suppression accounts for the asymmetry of
synaptic modification in response to triplets. In the case of a pre-post-pre triplet, the first pair
(pre-post) induces potentiation, but the amount of depression induced by the second pair
(post-pre) is suppressed by the first presynaptic spike. For a post-pre-post triplet, the first pair
(post-pre) induces depression, but the potentiation induced by the second pair (pre-post) is
suppressed by the first postsynaptic spike (Fig 4B).

The parameters of the model were originally set to match the synaptic modification seen in
the experiments (ref. [6]; Table 2). Our numerical simulations with these parameters show that
the steady-state distribution is unstable and tightly clustered around the upper bound. When

Aw
A B (mV)
Alpre A
e, & 0.12
Presynaptic |'¥>|: )
suppression 0.08
Afr.ma
—— 0.04
Postynaptic |¥,i O
suppression 0
|
4L
-0.04

=20 =10 0 10 20
Aty (ms)

Fig 4. The suppression model. A. Schematic illustration of spike interactions in the suppression model, in
which the effect of the presynaptic spike in a pair is suppressed by a previous presynaptic spike (top), and the
effect of the postsynaptic spike is suppressed by a previous postsynaptic spike (bottom). B. Plasticity in the
suppression model induced by triplets of spikes: pre-post-pre triplets induce potentiation (top left), and post-
pre-post triplets induce depression (bottom right).

doi:10.1371/journal.pcbi.1004750.9004
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Table 2. Original parameters of the multi-spike STDP models used to generate Figs 2B, 4B, 7B and 9.

Triplet Suppression NMDAR-based
A, 53x 10 mV 1.3x 1072 mV 103 mV
A 3.5x 10 mV 51 x 1072 mV 10° mv
Apre 0 = =
Apost 8 x 10_3 mV - —
AP = = 1
Adn - - 0.5
Alp - - 0.7
Adn - - 0.7
e 16.8 ms 13.3 ms -
T_ 33.7 ms 34.5 ms =
Tore = 28 ms =
Tpost 40 ms 88 ms =
@ = = 300 ms
" - - 300 ms
G — — 600 ms
@ - - 600 ms
6P - - 0.7
o - - 0.35

doi:10.1371/journal.pcbi.1004750.1002

correlations are induced in half of the synaptic inputs, no competition takes place and all

the weights are potentiated indiscriminately. To observe a range of behaviors of this model,

we set the suppression time constants equal to the values given by Froembke et al. [6], namely
Tpre = 28 MS, Tpoq = 88 ms. We also set the maximum potentiation and depression values equal
(A, =A_=0.005mV and fixed the depression time constant (7_ = 20 ms). We then varied the
potentiation time constant 7, to observe different behaviors of the model. Transitions to differ-
ent behaviors can also be seen when changing other parameters (for example the ratio A,/A_),
but our simulations showed that changing the ratio between the potentiation and depression
time constants (7,/7_) reveals these transitions most clearly.

Calculating the drift of synapses in the suppression model is more complicated than in the
models considered above. We leave the details to S2 Appendix and report the results here.
When 7,/7_ < 1.2, the average synaptic weight has a stable nontrivial fixed point (Fig 5A-5C).
For higher values of 7,/7_, the nontrivial fixed point disappears and the average synaptic weigh
has only the trivial zero fixed point (Fig 5A and 5D). For low 7,/7_ values, the steady-state dis-
tribution of weights is partially stable and U-shaped, as in the case of the pair-based model (Fig
5E). However, for 7,/7_ between 1.05 and 1.2, the value of the average synaptic weight grows
rapidly (Fig 5A, gray area), and the steady-state distribution is stable and unimodal (Fig 5F),
implying that the w-dependent drift is negative in this range. Because of the complexity of
spike interaction in the suppression model, a complete characterization of the w-dependent
drift is beyond our analytical calculations (S2 Appendix). However, features of the response of
an integrate-and-fire neuron to a pair of presynaptic spikes in the context of the suppression
model explain why the w-dependent drift becomes negative when the average synaptic weight
is large.

Suppose that two presynaptic spikes arrive at a neuron in quick succession, and we want to
analyze the role of the second spike in inducing plasticity under the suppression model (Fig 6).
The second presynaptic spike participates in plasticity twice: once by pairing with the previous
postsynaptic spike, and again by pairing with the next postsynaptic spike. When the strength

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004750 March 3, 2016 12/26
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Fig 5. Stability and competition in the suppression model. A. Fixed points of (w) as functions of the ratio between the potentiation and depression time
constants. The stable fixed point disappears beyond the critical value 7,/7_ < 1.2. When the ratio approaches the critical value, the fixed point grows rapidly
(gray area), leading to a stable distribution. B. The average drift when 7,/7_= 1. The solid curve shows the analytical result (Eq 6) and the boundaries of gray
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shading is obtained by simulations. The filled circle is the stable fixed point. C. The average drift when z,/7_=1.1. The stable fixed point moves to larger
values than in B. D. The average drift when 7,/7_ = 1.5. No nontrivial fixed point exists. E. The partially stable bimodal steady-state distribution of weights
corresponding to the parameters of B. F. The stable steady-state distribution of weights corresponding to the parameters of C. G. The unstable steady-state
distribution of weights clustered around the upper bound corresponding to the parameters of D, when no stable fixed point exists. H-J. Competition between
correlated and uncorrelated synapses with parameter corresponding to E-G. The competition is anti-Hebbian in all cases.

doi:10.1371/journal.pcbi.1004750.9005

of the synapse is low, the first presynaptic spike is not very likely to induce a postsynaptic
action potential after its arrival, so the pairing interval between the second presynaptic spike
and the preceding postsynaptic spike is typically long, which induce weak depression (Fig 6A).
However, if the synapse is strong, the first presynaptic spike is likely to induce a postsynaptic
action potential, and its pairing interval with the second presynaptic spike is then short, induc-
ing strong depression (Fig 6B). In addition, because of the high probability of postsynaptic fir-
ing in response to both presynaptic spikes, the interval between the induced postsynaptic
spikes is short, which strongly suppresses the potentiation caused by pairing the second pre-
synaptic spike with its following postsynaptic spike. Therefore, depression dominates over
potentiation in the suppression model when synapses are strong. When this happens, devia-
tions to even higher values lead to depression. This explains why w-dependent drift is negative
when the average synaptic weight is large, which occurs when 7,/7_ approaches the critical
value 1.2 (Fig 5A, gray area).

When half of the synapses receive correlated spike trains and the other half uncorrelated
inputs, a distinctive features of the suppression model is that anti-Hebbian competition takes
place: the uncorrelated synapses become strong and the correlated ones weak (Fig 5H-5]). This
is the result of postsynaptic suppression. When correlated presynaptic spikes arrive, they tend
to induce a postsynaptic spike shortly after their arrival. This makes the interval between the
induced postsynaptic action potential and the previous spike shorter than for the postsynaptic
response to uncorrelated input. As a result, potentiation is suppressed for correlated synapses,
and they eventually lose the competition with uncorrelated ones. In analogy with what was
described in the previous paragraph, correlated inputs are similar to inputs with strong synap-
ses and, in either case, the high probability of postsynaptic spiking makes the w-dependent
drift negative. In summary, the characteristic properties of suppression model are anti-Hebbian
competition and stability of the synaptic distribution when the mean synaptic strength is large.

A B
Weak Synapse Strong Synapse
Af At
A 7
Weak L Strong r-
depression H depression I
Weak “_" Strong ‘_'
suppression of Atyont suppression of Atpost
potentiation potebntiation

Fig 6. Response of a neuron to a pair of presynaptic spikes and its consequences in the suppression
model. A. When the synapse is weak, the probability of a postsynaptic spike does not increase significantly
from the baseline. The interval between postsynaptic spikes and also the pairing interval between the second
presynaptic and the first postsynaptic spike are likely to be long. The result is a weak depression and also a
weak suppression of potentiation. B. When the synapse is strong, the neuron is likely to fire in response to
both presynaptic spikes, which results in strong depression and also strong suppression of potentiation.

doi:10.1371/journal.pchi.1004750.g006
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The NMDAR-based model

The NMDAR-based model [16] was proposed as an explanation for the original STDP experi-
ments of Markram et al. [4], and it predates both the triplet and suppression models and the
data that inspired them. Nevertheless, as we will see below, it has features that resemble both of
these models, and it is sensitive to spike interactions beyond pre-post pairings. The original
version of the NMDAR-based model [16] includes the dynamics of the probability of presyn-
aptic vesicle release. We focus on a simpler version that only models the modification of synap-
tic strengths by pre- and postsynaptic spikes [18].

In the NMDAR-based model, the NMDAR is assumed to have three states, rest, up and
down. Each incoming presynaptic spike moves a portion of the NMDAR:s in the rest state into
the up state, and each postsynaptic spike transitions a portion of the rest-state NMDARs into
the down state. The NMDAR decays back to the rest state exponentially in the absence of
spikes (E 14). In accord with the molecular kinetics of NMDARSs [19, 20], the rest state can be
interpreted as an NMDAR that is not bound to glutamate and is blocked by Mg**, the up state
as an NMDAR that is bound to glutamate but blocked by Mg**, and the down state as an
NMDAR that is not bound to glutamate but has had its Mg>" block removed by a postsynaptic
spike. The model also has two second messengers, called “up” and “down” messengers, which
mediate potentiation and depression, respectively. These can be in either active or inactive
states. When a presynaptic spike arrives, a fraction of the inactive down messengers transition
to the active state. Likewise, when a postsynaptic spike reaches the synapse, it moves a portion
of the inactive up messengers into their active state. The messengers decay back to their inac-
tive states in the absence of spikes (Eq 15). Finally, upon arrival of a presynaptic spike, the syn-
apse is depressed proportional to the amount of active down messenger, provided that this is
larger than a threshold 6. Similarly, each postsynaptic spike causes the synapse to potentiate
proportional to the amount of active up messenger provided that it is larger than a threshold
6"? (Eq 16). Thus, the presynaptic spike plays three roles in this model: it moves resting
NMDARSs into the up state, it activates the down messenger, and it induces depression. The
postsynaptic spike also has three roles: it transitions resting NMDARs into the down state, acti-
vates the up messenger, and induces potentiation (Fig 7A).

A B
Postsynaptic Presynaptic Aw
spike spike (mV)
x1073
@ ’
Presynaptic Postsynaptic
spike spike 0
. . -3
Presynaptic Postsynaptic
spike spike y -6
[ﬂlrrf”- _ 94”-]4- [‘.Uur? _ gu:r]+ =20 =10 0 10 20

Aty (ms)

LD «——— Y) ——— 7P

Fig 7. The NMDAR-based model. A. Schematic illustration of spike interactions in the NMDAR-based model. The presynaptic spike up-regulates ",
activates M9 and depresses the synapse. The postsynaptic spike down-regulates 7, activates M“° and potentiates the synapse. B. Plasticity in the
NMDAR-based model due to triplets of spikes with parameters as in Table 2. The effect is asymmetric, with pre-post-pre triplets inducing potentiation (top
left) and post-pre-post depression (bottom right).

doi:10.1371/journal.pcbi.1004750.9007
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A key feature of the NMDAR based model is that preceding spikes decease the amount of
available resting NMDARs available to upcoming spikes. This implements a mechanism akin
to the suppression model, in which previous spikes suppress the effect of subsequent spikes.
The roles of the second messengers are quite similar to those of the presynaptic depression and
postsynaptic potentiation variables in the triplet model in that both integrate the effects of pre-
and postsynaptic spiking to modify depression and potentiation. In fact, if we assume that the
spikes have access to an unlimited pool of resting NMDARs and messengers, the NMDAR-
based model is equivalent to the triplet model.

Given the multi-spike interactions in the NMDAR-based model, it is not surprising that it
responds asymmetrically to triplets of spikes. Our numerical simulations using the parameters
provided by Senn et al. [16] (Table 2) show that the synaptic modification in response to trip-
lets in this model is qualitatively similar to that of the suppression model (Fig 7B). The simula-
tions also show that, with the parameters provided by Senn et al. [16], the steady-state
distribution is unstable and tightly clustered around the upper bound. When correlations are
induced in half of the synaptic inputs, no competition takes place and all the weights are poten-
tiated indiscriminately.

To examine the spectrum of behaviors in the NMDAR-based model, we calculated the syn-
aptic drift (S3 Appendix). Interesting transitions into different regimes occur when the thresh-
old of the up messenger is larger than that of the down messenger (8" = 0.2, §*? = 0), and the
ratio between maximum potentiation and maximum depression (A,/A_) is varied (Fig 8). All
other parameters of the model are held constant at equal values for potentiation and depression
components, and the time constants are set to the values provided by Senn et al. [16] (Table 2).
When A,/A_ is smaller than a critical value (0.042), the average synaptic weight has both stable
and unstable nontrivial fixed points. At the critical value, these two fixed points coalesce and
disappear, and beyond the critical value the average synaptic weight has only the trivial fixed
point at zero (Fig 8A). The sign of w-dependent drift also changes as A,/A_ varies. When A,/
A_is smaller than 0.025, the w-dependent drift is negative, and for larger ratios it is positive
(Fig 8B). Taken together, three different behaviors are observed in the NMDAR-based model:
1) When a stable mean synaptic weight exists and w-dependent drift is negative (0 < A,/A_ <
0.025, Fig 8A-8B, dark gray area), the steady-state distribution of synaptic weights is stable and
unimodal (Fig 8C and 8F). 2) When a stable mean synaptic weight exists and w-dependent
drift is positive (0 < A,/A_ < 0.042, Fig 8A and 8B, light gray area), the steady-state distribu-
tion of synaptic weights is partially stable and U-shaped (Fig 8D and 8G). 3) When the mean
synaptic weight has no stable fixed point (A,/A_ > 0.042), the steady state distribution is unsta-
ble, and it clusters near the upper bound (Fig 8E and 8H).

Synaptic competition is different in these three regions of the parameter space. When half
of the input spike trains are correlated, the competition in the first region is anti-Hebbian
because the w-dependent drift is negative and correlated synapses receive more depression (Fig
8I). It is Hebbian in the second region because the w-dependent drift is positive (Fig 8]). As in
the triplet model, the closeness of the stable and unstable fixed points in this region makes syn-
aptic competition elusive, such that when the correlation coefficient between the synapses is
high, all the synapses tend to the upper bound and no competition takes place (S1 Fig). There
is no competition in the third region because the mean is not stable (Fig 8K). In short, the dis-
tinguishing features of the NMDAR-based model compared to the pair-based model are the
possibility of a stable synaptic distribution and anti-Hebbian competition when the maximum
depression is significantly larger than the maximum potentiation.
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Fig 8. Stability and competition in the NMDAR-based model. A. Fixed points of (w) as functions of the ratio between the maximum potentiation and
depression parameters. When A,/A_is smaller than 0.042, two nontrivial fixed points exist. At higher values, they collide and disappear. B. The w-dependent
drift at the stable fixed point, as a function of A,/A_, which changes sign at A,/A_ = 0.025. In the dark gray region, a stable fixed point exists and the w-
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dependent drift is negative. In the light gray region a stable fixed point exists and the w-dependent drift is positive, and in the white region there is no stable
fixed point. C-E. The average drift when A,/A_is 0.01, 0.03 and 0.05, respectively. Filled circles represent stable fixed points and the open circle an unstable
fixed point. The gray shading is the result of simulations, and the solid curve is the analytical result. F-H. The steady-state distributions corresponding to the
parameters in C-E. I-K. Synaptic competition between correlated and uncorrelated synapses corresponding to the parameters in C-E. Parameters are

AP = AP = Al = A% = 0.1, and the time constants are as in Table 2.

doi:10.1371/journal.pebi. 1004750.g008

STDP with soft bounds

In previous sections, we imposed so-called hard bounds on the synaptic strengths to confine
them between zero and a maximum allowed value (Wy,y). It is also possible to confine the syn-
apse by implementing soft bounds, that is, by making the maximum depression and potentia-
tion weight-dependent so that when a synaptic strength approaches the bounds, its rate of
change gradually decreases. This can be done by multiplying A, and A_ by 1 — w/wy,, and w/
Wmax respectively. In the case of the triplet model, the presynaptic depression and postsynaptic
potentiation variables should be also multiplied by 1 — w/wy,.x and w/wy,.x respectively,
because they appear as potentiation and depression factors as well.

The steady-state distribution of synaptic strengths is stable and unimodal for all three
multi-spike STDP models with soft bounds (Fig 9). This behavior is robust and holds for a
wide range of parameters (we only show simulation results for the original parameters
(Table 2) in each model). The soft bounds weaken synaptic competition drastically, so than the
distributions of correlated and uncorrelated synapses are close to each other (Fig 9, insets). As
has been shown for pair-based STDP [10, 11], soft bounds turn STDP into a homeostatic plas-
ticity mechanism with minimal sensitivity to the correlation structure of the external input.

Discussion

The main focus of this study has been on synaptic stability and competition, two desirable but
often conflicting features of activity-dependent plasticity rules [21]. Our analytical tool for
assessing these properties was calculating the drift of a population of synapses under each
multi-spike STDP model. This method has been applied to the pair-based STDP model in a
number of previous studies. The pair-based model with hard bounds was shown to produce a
partially stable U-shaped steady-state distribution of weights and Hebbian competition that
favors correlated synapses over uncorrelated ones [9, 22, 23]. On the other hand, the pair-base
model with soft bounds has been shown to have a stable steady-state distribution at the expense
of losing synaptic competition and sensitivity to input correlations [10, 11]. Our analysis can
be viewed as a reconfirmation of these results of the pair-based models and an extension into
the domain of multi-spike STDP models.

Our goal has not been to identify a superior model among the different options. Rather, we
have highlighted the largely overlooked consequences of implementing these models at the
population level. Table 3 summarizes the results of our survey of stability and competition in
multi-spike STDP models. Like the pair-based model, the triplet model produces a partially sta-
ble steady-state distribution of synaptic weights and Hebbian synaptic competition. However,
competition is observed only for a limited range of its parameters. The suppression model
shows predominantly anti-Hebbian competition and a stable steady-state distribution of syn-
aptic weights when the average weight is high. The NMDAR-based model displays both stable
and partially stable steady-state distributions depending on the parameters, with anti-Hebbian
competition in the former case and Hebbian in the latter.

Our results indicate that the dichotomy between stability and Hebbian competition, which
is well characterized for pair-based STDP models, persists in multi-spike STDP models. How-
ever, anti-Hebbian competition can coexist with full synaptic stability for at least some
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Fig 9. Stability and competition in multi-spike STDP models with soft bounds. A. Steady-state distribution of synaptic strengths in the triplet model with
soft bounds. B. Steady-state distribution of synaptic strengths in the suppression model with soft bounds. C. Steady-state distribution of synaptic strengths in
the NMDAR-based model with soft bounds. Insets: steady-state distribution of weights when half of the synapses receive correlated input (magenta) and the
other half receive uncorrelated input (cyan). In each case, the original parameters (Table 2) are used.

doi:10.1371/journal.pcbi.1004750.9009

parameter regimes in the suppression and NMDAR-based models. Conflict exists between sta-
bility and Hebbian competition because, for such competition to take place, correlated synap-
ses, which induce a large transient increase in postsynaptic firing rate, should be strengthened.
This property undermines full stability of the synaptic distribution because it creates a positive
teedback loop in which strong synapses, which also induce large transient increases in postsyn-
aptic firing, become even stronger. Thus, it is not surprising that this conflict persists in more
elaborate multi-spike models. Anti-Hebbian competition, on the other hand, involves

Table 3. Summary of stability/plasticity in STDP models.

Stability Partial stability Hebbian competition Anti-Hebbian competition
Pair-based - v v =
Triplet - v v -
Suppression v v - v
NMDAR-based V¥ v v v

* Stability only coexists with anti-Hebbian competition is this model.

doi:10.1371/journal.pcbi.1004750.t003

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004750 March 3, 2016 19/26



®PLOS

COMPUTATIONAL

BIOLOGY

Stability and Competition in Multi-spike STDP Models

weakening of correlated synapses that induce large transients in the postsynaptic activity, and
so should be compatible with full stability of the synaptic distribution.

The dichotomy between synaptic competition and stability is a specific form of the general
stability/plasticity dilemma [24]. Every form of plasticity faces the challenge of maintaining the
balance between forming new memories through modification of synaptic strengths, and pre-
serving old synaptic configurations to maintain old memories. A more specific aspect of this
challenge is that Hebbian (or anti-Hebbian) competition among synapses in a network is a
powerful mechanism for shaping and modifying neural activity based on the properties of the
inputs to the network. However, unless changes in synaptic strength are stabilized appropri-
ately, the level of activity in a neural circuit can grow or shrink in an uncontrolled way [25].
Therefore, it is highly desirable, from a computational point of view, to find a biologically plau-
sible model that reconciles synaptic stability with competition. A number of solutions have
been proposed for harmonizing stability and competition in pair-based STDP. One solution is
interpolating between hard and soft bounds to obtain a middle ground that can harbor both
synaptic competition and stability, which is obtained over a limited parameter range [12].
Another solution, based on a small temporal shift in the STDP window;, can stabilize the distri-
bution of synaptic weights while maintaining competitiveness [13]. This shift has a similar
effect in the triplet model [13].

To search the parameter space of the models for different stability/plasticity interplays, we
systematically varied the balance between potentiation and depression parameters in each
multi-spike STDP model. However, for each model, a fixed set of parameters was originally
proposed to match experimental results. Our parameter changes may cause the response pro-
file of the model to deviate from its originally fitted form. This can be justified because both the
temporal spread and the magnitude of potentiation and depression vary considerably as a func-
tion of the location of a synapse [14, 26, 27]. Therefore, each parameter set in our analyses and
numerical simulations could coincide with the characteristics of the STDP window at a particu-
lar location on the dendritic tree.

Although all of the models we considered were proposed on the basis of experimental obser-
vations of synaptic modification, their effect on a population of synapses onto a postsynaptic
neuron can be quite different. As mentioned above, one useful computational aspect of STDP
is its ability to implement Hebbian learning and to functionally organize neural circuits. None
of the three multi-spike models generated Hebbian competition when the original fitted
parameters were used. Moreover, using these parameters, all three models produced an unsta-
ble distribution of weights tightly clustered near the upper bound of their allowed range. Given
the observed broad distribution of synaptic weights in vitro [28, 29, 30] this is implausible. As
it is possible to construct several phenomenological models that explain a given experimental
data set, it seems reasonable to use the effects of plasticity at the population level (evaluated
through simulations or analytical calculations) as a criterion for selecting a model. This crite-
rion works particularly against model such as triplet STDP, because of its limited capacity for
inducing competition among synapses at the population level even with altered parameter val-
ues, even though the model accounts for isolated experimental results satisfactorily.

Finally a natural question is whether the STDP models we have considered are interrelated
in any way, or whether it is possible to unite them in a single framework. The triplet and sup-
pression models were motivated by different experimental data sets that showed opposite syn-
aptic modification in response to triplets (ref. [6] vs. ref. [7]). However, the NMDAR-based
model, which is phenomenologically closer to the molecular machinery involved in synaptic
modification, can match the effects of either of these models, depending on the parameters
used. Moreover, from the biophysical viewpoint, the other two models can be considered limit-
ing versions of the NMDAR-based model through different simplifying assumptions about its
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components (Fig 10). If the second messengers activate instantaneously, the NMDAR-based
model is qualitatively equivalent to the suppression model. The consumption of the limited
pool of resting NMDARs by conversion into up or down states implements the suppressive
effect of the preceding pre- or postsynaptic spike on the upcoming pre-post interaction. On the
other hand, if there exists an infinite reservoir of resting NMDARs and inactive second mes-
sengers, the NMDAR-base model reduces to the triplet model. If both assumptions are fulfilled,
the NMDAR-based model reduces to the simple pair-based model. This leads to the possibility
that both the triplet and suppression models may arise from a single biophysical mechanism
that involves NMDARSs [31], but under different conditions for the speed of conformational
changes and abundance of second messengers.

Models
Neuronal and synaptic models

We used a leaky integrate-and-fire (LIF) model neuron in our numerical simulations. The
membrane potential of the LIF neuron obeys

dv

—=(V.-V)+I_ -1 6
‘Emdt (r )+ex ) ()

where 7,, is the membrane time constant, V, is the resting potential, I is the excitatory input
and I, the inhibitory input. Although these inputs appear as currents, they are actually mea-
sured in units of the membrane potential (mV) because a factor of the membrane resistance
has been absorbed into their definition. When the membrane potential V reaches the firing
threshold Vy,, the neuron fires an action potential and the membrane potential resets to the
resting value V.. The numerical values of all parameters are given Table 1.

Each presynaptic action potential arriving at an excitatory or inhibitory synapse induces an
instantaneous jump in the corresponding synaptic input (I or I;,), which decays exponentially
between the input action potentials. The time course of the synaptic inputs can thus be
expressed as

th—t : th—t
10 = S e () ) = w e (). )

where w; is the weight for excitatory synapse i, w;, is the common fixed weight for all Ny, inhib-
itory synapses, and t* is the time of the k-th action potential at synapse i. The sums over pre-
synaptic spike times are limited to spikes that arrive prior to the time ¢. The synaptic time
constant 7, = 5 ms is taken to be the same for excitatory and inhibitory synapses. The excitatory
synaptic strengths, labeled collectively as w, are modified by STDP.

If the rate of the excitatory and inhibitory inputs is 7. and r;, respectively, the average fir-
ing rate of the LIF neuron can be approximated as [32]

Vih—# -1
Trost = <Tm\/E hé;“dxexp(xz)(l + erf(x))) , (8)

where

o (N7 (W) 4N, T, W)
H= (Nex 7”Pre <W> - Nin rin Win)rs and 0-2 = ( == < > m) : ’
Tm

with (w) denoting the average value of the excitatory synaptic weights. The parameter

o = |{(1/2)|\/7,/27,,, where {, is a correction to account for the nonzero synaptic decay
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Fig 10. Relationships between the three multi-spike STDP models. If the second messengers activate instantaneously, the NMDAR-based model is
qualitatively equivalent to the suppression model (top, right). If there exists an infinite reservoir of resting NMDARs and inactive second messengers, the
NMDAR-base model reduces to the triplet model (bottom-left). If both assumptions are fulfilled, the NMDAR-based model reduces to the pair-based model

(bottom- right).
doi:10.1371/journal.pcbi.1004750.9010

constant. The arrival of a presynaptic spike increases the firing rate of the postsynaptic neuron
transiently. For an LIF neuron in the case where the average excitatory input dominates over
the inhibitory input, the firing rate after the arrival of a presynaptic spike at time £, can be
approximated as ([33]; see S1 Appendix)

t—t,
Ts

~ w exp( )
Toost () A T + WV~ V)t ot —t,),

©)

where w is the strength of the synapse through which the presynaptic spike arrived, and © is
the Heaviside step function.

Correlated spike trains

To study synaptic competition, we introduce correlations into half of the excitatory input spike
trains. To generate Poisson spike trains with homogeneous pairwise (zero-lag) correlations, a
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“generating” spike train with rate r/c was first produced. The correlated spike trains were then
obtained by trimming the generating spike train, that is, by randomly deleting spikes with
probability 1 — c. The resulting spike trains all have rate , and each pair is correlated with cor-
relation coefficient ¢ [34].

The pair-based model

In pair-based STDP, a change of synaptic strength, Aw, is induced by a pair of pre- and post-
synaptic action potentials with time difference (pairing interval) At = f,o5 — tpre. The functional
relation between the synaptic modification and the pairing interval is

A, exp(—At/t.) ifAt>0
Aw = F(At) = (10)
—A_exp(At/t_) if At <O0.

The positive parameters A, and A_ specify the maximum potentiation and depression,
respectively. We express the synaptic strengths in units of the membrane potential (mV), so A,
and A_ have mV units. The time constants 7, and 7_ determine the temporal spread of the
STDP window for potentiation and depression (Fig 1A and 1E). In our analysis, we assume
that the spike pairings are all-to-all, meaning that all possible pre-post pairs, not only the near-
est neighbor pairs, contribute to plasticity. However, the results we derive apply qualitatively to
a pair-based model with a nearest-neighbor restriction as well.

The triplet model

In the triplet model, synapses are modified on the basis of pre-post pairing events in a manner
similar to the pair-based model (Eq 10) but, in addition, when a synapse is potentiated by a
pre-post pairing (At > 0), the postsynaptic potentiation variable My, is added to the amount
of the pair-based potentiation A,. Similarly, when a synapse is depressed by a paring event
(At < 0), the presynaptic depression variable M. is added to the pair-based depression A_.
Thus,

[A, + M, (t —€)] exp(~At/z,) if At>0
(Af) = (11)
—[A_+M (t—¢€)]exp(At/z_) if At <O0.

pre

Aw=F

trip

The small parameter € ensures that the values of M. and M, just before their update by
the pre- or postsynaptic spikes are used. The postsynaptic potentiation and presynaptic depres-
sion variables are governed by the equations

dM M
pre e oA E S(t — Y
dt Tpre + pre - ( pre)

dM

05! M 05! i
d: t = - T - + Apostzié(t - tI(Jo)st)7 (12)
post

where 6(t) is the Dirac delta function, and t]()?e and t;’;im are the times of arrival of pre- and post-

synaptic spikes respectively. This introduces four parameters into the model beyond those of
the pair-based model: the time constants 7. and 7,05 and the increments A, and Apos.
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The suppression model

In the suppression model with time constants 7y, and 7y, the change in a synaptic weight is
determined by

Aw = Fp, (At) = [1 — exp(=At,, /7, )] [1 = exp(=At,g, /7,0,)]

A, exp(—At/t,) if At>0
X (13)
—A_exp(At/t_) if At <0,

where At,,,. is the interval between the presynaptic spike in the pair and its preceding presynap-
tic spike, and At is the interval between the postsynaptic spike and its preceding spike. The
suppression model introduces two new parameters beyond those of the pair-based model: the
time constants e and T,oq.

The NMDAR-based model

The NMDAR-based model [16, 18] is based on the assumption that NMDARs can be in one of
three different states: “rest”, “up” and “down”. The variables /', /P and f*" denote the fraction
of NMDARs in each state respectively (f' + f*F + f*" = 1). In the absence of pre- and postsyn-
aptic spikes, the receptors in up and down states return to the rest state with time constants t;°

and t}i“ respectively. Each presynaptic spike up-regulates the receptors immediately after its
arrival by an amount proportional to a parameter A7¥, and each postsynaptic spike down-regu-
lates the receptors proportional to a parameter Af“. The dynamics of the NMDARs in the “up”

and “down” states can be expressed as:

dfllp up rrest
7___+APf Zé pre

fdn dn J
i +A 'f Zét—tp(m (14)

where the sums run over all pre- (t}(,"rl) or postsynaptic (tl(,’gst) spike times, indexed by i. In this
and subsequent equations, we assume the convention that a quantity multiplying a J function
is evaluated immediately before the time when the argument of the § function is zero.

The fraction of active second messenger M"? is increased by postsynaptic spikes propor-
tional to the amount of up-regulated NMDARs f*¥ and the available inactive messengers 1 —
M"P. Likewise, the fraction of active second messenger M“" is increased by presynaptic spikes
proportional to the amount of down-regulated NMDARs f*" and available inactive messenger
1 — M®". In the absence of spikes, these second messenger fractions decay with time constants
7y and 197, respectively. Thus,

dm M
- “P +Aupfup MUP Zé t_tpost

dt
den Mdn
T +AR (1= M) (-4, (15)

where the sums run over all pre- (¢\!)) or postsynaptic (¢ Ost) spike times. The parameters A}

pre

and A% governing the magnitude of the changes in the messengers on spiking events. Finally,
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synaptic potentiation occurs in response to postsynaptic spikes and depends on the amount of
M™, and synaptic depression occurs in response to presynaptic spikes depending on the
amount of M®", so that

dw

— =AM - 07 st —t, —e)— A M"— 0" (-t —¢€),  (16)

pre

where 8" and %" are thresholds above which the corresponding messengers take part in plas-
ticity, and [x]* denotes the piece-wise linear threshold function [x]" = x for x > 0 and zero oth-
erwise. The small parameter € is included because, in this case, we evaluate the factors
multiplying the & functions after the time of a spike, as required by the model.
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