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A B S T R A C T

Working memory is a crucial component of most cognitive tasks. Its neuronal mechanisms are still

unclear despite intensive experimental and theoretical explorations. Most theoretical models of working

memory assume both time-invariant neural representations and precise connectivity schemes based on

the tuning properties of network neurons. A different, more recent class of models assumes randomly

connected neurons that have no tuning to any particular task, and bases task performance purely on

adjustment of network readout. Intermediate between these schemes are networks that start out

random but are trained by a learning scheme. Experimental studies of a delayed vibrotactile

discrimination task indicate that some of the neurons in prefrontal cortex are persistently tuned to the

frequency of a remembered stimulus, but the majority exhibit more complex relationships to the

stimulus that vary considerably across time. We compare three models, ranging from a highly organized

line attractor model to a randomly connected network with chaotic activity, with data recorded during

this task. The random network does a surprisingly good job of both performing the task and matching

certain aspects of the data. The intermediate model, in which an initially random network is partially

trained to perform the working memory task by tuning its recurrent and readout connections, provides a

better description, although none of the models matches all features of the data. Our results suggest that

prefrontal networks may begin in a random state relative to the task and initially rely on modified

readout for task performance. With further training, however, more tuned neurons with less time-

varying responses should emerge as the networks become more structured.
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1. Introduction

Working memory is used to hold and manipulate items mentally
for short periods of time, which is crucial for many higher cognitive
functions such as planning, reasoning, decision-making, and
language comprehension (Baddeley and Hitch, 1974; Baddeley,
1986; Fuster, 2008). Lesion and imaging studies have identified the
prefrontal cortex (PFC) as an essential area for working memory
performance. To explore the neural underpinnings of this facility,
experimental paradigms have been developed to record neural
activity while monkeys performed working-memory tasks, among
them delayed discrimination. In these experiments, monkeys have
to retain the memory of a briefly presented first stimulus (visual
image, location of the target, etc.) during a delay period of several
seconds in order to perform a comparison with a subsequently
presented stimulus. A key observation was the discovery of neurons
in several cortical areas, including PFC, that exhibit stimulus specific
persistent firing activity during the delay when no stimulus is
present (Fuster and Alexander, 1971; Miyashita and Chang, 1988;
Funahashi et al., 1989, 1990; Romo et al., 1999, 2002). It is commonly
believed that this persistent selective activity maintains the memory
of the stimulus.

Because no stimuli are presented during the delay, persistent
activity must be internally generated. A common theoretical
framework for this is the attractor neural network, which exhibits
many intrinsically stable activity states sustained by mutual
excitation between neurons coding for a particular stimulus or its
behaviorally relevant attribute (Hebb, 1949; Hopfield, 1982; Amit
and Brunel, 1997; Seung, 1998; Wang, 2001, 2009). When a
stimulus is briefly presented, the corresponding attractor is evoked
and remains active until the behavioral task is performed and the
network returns to its baseline state. In this way, the neuronal
activity encodes a memory trace during the delay.

If the features kept in working memory are of a discrete nature,
such as one of a collection of visual objects, the paradigmatic
network is of the Hopfield type (Hopfield, 1982) with a discrete set
of attractors. If the features are continuous, such as the spatial
location of a stimulus, the network dynamics should possess a
continuous set of attractors (Ben-Yishai et al., 1995; Seung, 1998).
In both situations, connections in the network have to be chosen as
a function of the selectivity properties of pre- and postsynaptic
neurons (e.g. increased mutual excitation between neurons with
similar tuning properties). Because the attractor states of the
network are stationary, the corresponding neural selectivity to
stimulus features is also stationary over the delay period.

Maintaining the information about stimulus attributes with
stationary persistent activity appears to be a natural and robust
mechanism of working memory (see e.g. Wang, 2008). However, a
closer look at experimental recordings reveals much greater
variability in neuronal response properties than can be accounted
for by standard attractor neural networks. In particular, a majority
of the cells exhibit firing frequency and selectivity profiles that
vary markedly over the course of the delay period (see e.g. Brody
et al., 2003; Shafi et al., 2007). These observations indicate that
elucidating the neuronal mechanisms of working memory is still
an open issue requiring further experimental and theoretical
research.

In this contribution, we consider a tactile version of the working
memory task (Romo et al., 1999), in which two vibrating stimuli
separated by a delay of 3 s are presented to a monkey who then has
to report whether the frequency of the first stimulus is larger or
smaller than that of the second (Fig. 1A and B). The delayed tactile
discrimination task requires three computational elements:
encoding of a stimulus parameter (the first frequency), mainte-
nance of its value in working memory, and comparison with the
second stimulus. Single neurons that correlated well with these
features were recorded in the PFC (Romo et al., 1999). Fig. 1C shows
a neuron with a firing rate during the first stimulus that increases
as a monotonic function of the stimulus frequency, a tendency that
is then maintained throughout the delay period. The neuron
depicted in Fig. 1D exhibits a negative monotonic dependence on
stimulus frequency, suggesting that a subtractive comparison
might be implemented by combining responses of these two types
of neurons.

These striking properties prompted the formulation of network
models that elegantly implement the three required computation-
al elements (Miller et al., 2003; Machens et al., 2005; Miller and
Wang, 2006). Many neurons in the PFC have less regular responses
than those described above (e.g. Fig. 1E and F) and, across the
population, response profiles are extremely heterogeneous (Brody
et al., 2003; Singh and Eliasmith, 2006; Joshi, 2007). A recent
analysis trying to ascertain the degree to which two models of this
type fit the recorded data concluded that ‘‘Neither model predicted
. . . a large fraction of the recorded neurons . . . suggesting that the
neural representation of the task is significantly more heteroge-
neous than either model postulates’’ (Jun et al., 2010). While it
seems natural to suppose that a neural circuit holding a fixed value
of a stimulus parameter in short-term memory would do so by
representing it in a time-invariant manner, the data do not support
this view. The ‘‘large fraction of recorded neurons’’ that failed to
match these models did so because they had highly time-
dependent activity. Indeed, the dominant quantity being encoded
by the recorded PFC neurons is not the stimulus parameter
required for the task, but instead time (Machens et al., 2010).

To study the role of time-dependent neural activity in the
storage of static stimulus parameters, we compare three models to
the recorded data in the delayed tactile discrimination task. One of
these is the line attractor, or LA, model of Machens and Brody
(Machens et al., 2005). The second is a randomly connected
network model, called RN, exhibiting chaotic activity with weight
modification restricted solely to readout weights. The third is a
recurrent network trained to perform the task by unrestricted
modification of its connection weights, called TRAIN. Individual
units in these models span the range seen in the data, from
structured (Fig. 1C and D) to more complex (Fig. 1E) and highly
irregular (Fig. 1F).

In addition to differing in the time-dependence of their
stimulus representations, the LA, TRAIN and RN models also vary
over a range of what might be called model orderliness, or model
structure. The LA model was designed to perform the task by
assuring that it contained a line of fixed points or line attractor that
could statically represent different stimulus values. The TRAIN
model was developed from an initially random network by
applying the recently developed ‘‘Hessian-Free’’ learning algo-
rithm (Martens and Sutskever, 2011). This constructs a network
that is less structured than the LA model, although it performs the
task in a somewhat similar manner. The RN model is also based on
a randomly connected network, but in this case the only modified
element is the readout of network activity; the internal connec-
tivity, which defines the network dynamics, remains random and
unrelated to the task. This is a novel application of an echo-state
type of network (Jaeger, 2001; Maass et al., 2002) that operates in
the chaotic rather than in the transient decaying regime typically
used for such networks (Sussillo and Abbott, 2009). The result is a
highly unstructured network with chaotic activity. Thus, the RN
model is far removed from the LA model, both because its structure
is essentially random rather than designed, and because it exhibits
chaotic rather than fixed-point dynamics. The TRAIN model is
intermediate between these extremes.

The ultimate goal is, of course, to figure out where PFC circuits
performing the delayed tactile discrimination task lie on the
spectrum from structured to unstructured and dynamically static



Fig. 1. The experimental task and sample neurons. (A) Task protocol: a mechanical probe is lowered (PD) and then the monkey grasps a key (KD) to signal readiness. Following

a delay of 1.5–3 s, the first stimulus is delivered followed by a 3 s delay and the second stimulus. The monkey then releases the key (KU) and presses one of two buttons (PB) to

report whether f1 > f2 or f1 < f2. (B) Performance: percent correct on each of the 10 stimulus pairs used. (C–F) PSTHs of four neurons during the task. Shaded areas denote the

stimulus periods, and color indicates the frequency of the first stimulus according to the colorbars. (C) A positively tuned neuron. (D) A negatively tuned neuron. (E) A neuron

that is negatively tuned during the first stimulus and positively tuned during the delay. (F) A neuron with strong temporal modulation, but no tuning to the frequency of the

stimulus.
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to chaotic. This is a difficult question, but progress can be made if
we can find analytic tools that can be applied to the data and that
are sensitive to where a circuit lies along this range. To this end, we
apply a variety of different measures to the data and to the LA,
TRAIN and RN models, allowing direct comparisons to be made.

2. Results

The experimental data used is based on 899 neurons recorded
from the inferior convexity of the PFC during a delayed tactile
discrimination task (Romo et al., 1999; see Barak et al., 2010 for a
discussion of the processing of these data). Briefly, monkeys were
presented with two stimuli separated by a 3 second delay, and had
to report which one had a higher frequency (Fig. 1A). The
frequencies were chosen from 10 pairs, and the average success
rate was 93.6%. In this contribution, we present and analyze three
different models that solve this task. The models were chosen to
range from structured to unstructured. To gain insight about which
of the three types of models best fits the data, we apply the same
analysis methods to all four systems.

2.1. The models

In all three models that we consider, the neurons receive
external input during the presentation of each stimulus that is
either a linearly increasing (plus inputs) or decreasing (minus
inputs) function of the stimulus frequency, with an equal
distribution between these two cases (see Section 4). This choice
is motivated by recordings in areas upstream of the prefrontal
cortex (Romo et al., 2002). In all three models, the decision about
whether f1 > f2 or f1 < f2 is made on the basis of whether an output
signal extracted from the network at a particular readout time
(immediately after the presentation of the second stimulus) is
positive or negative. After training, all the models performed the
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task at the same level as each other and as in the data,
approximately 94% accuracy. Due to their different structures,
this level of performance was achieved in different ways in the
different models. For the LA model, task accuracy was limited by
restricting the number of spiking neurons in the model, as well as
by including white noise inputs. In the RN model, the level of
performance was determined by the degree of chaos in the
network, controlled by the overall network connection strength.
The accuracy of the TRAIN model was set by introducing an
appropriate level of white noise. Details for each model are given in
Section 4.

The first model, LA (Fig. 2, top row), is an elegant implementa-
tion of a flexible network that switches between a line attractor
and a decision network (Machens et al., 2005). The model consists
of two populations of spiking neurons, a plus and a minus
population, that receive monotonically increasing and decreasing
(as a function of stimulus frequency) inputs respectively, and
inhibit each other. The recurrent connections between the neurons
are adjusted precisely so that the network forms a line attractor
during the delay period. As a result, a set of firing rates representing
a particular stimulus frequency is maintained at a constant value
throughout the delay period. The output that determines the
Fig. 2. The three models. Columns 1 and 2 illustrate the models we consider, column 3 

Stimulus presentation times are indicated in gray in column 3, and the decision time is

f1 < f2, respectively, as indicated by the schematics above. Correct responses occur when t

4, performance is shown as the fraction of ‘‘f1 > f2’’ responses for the entire f1–f2 plane (se

circles. The LA model is composed of populations of spiking neurons (1st column) rec

excitation and mutual inhibition. The output is defined as the difference between the firin

rate units randomly connected to each other, creating chaotic dynamics. 30% of the ne

readout from the entire network. The TRAIN model starts from a similar set up as the RN

algorithm. The output is a linear readout as for the RN model.
decision of the network is the difference between the mean firing
rates of the plus and minus populations at the decision time.

The second model, RN (Fig. 2, middle row), is a network of rate
units with random recurrent connections. Thirty percent of the
neurons receive external input, and the remainders react to the
input via the recurrent connections. This model is based on the
echo-state approach (Jaeger, 2001; Maass et al., 2002; Sussillo and
Abbott, 2009) in which information is maintained by the complex
intrinsic dynamics of the network and extracted by a linear readout
that defines the decision-making output of the network. The
decision is determined by the sign of the output at the decision
time. At other times, the output fluctuates wildly. The only
connection weights that are adjusted to make this network
perform the task are the weights onto the linear readout; the
recurrent connections retain their initial, randomly chosen values.
In contrast to the original echo-state networks, we chose the
parameters of our RN network so that its activity is spontaneously
chaotic (Sompolinsky et al., 1988). This means that the network
activity is chaotic before the first stimulus, during the delay period,
and after the second stimulus. It is not chaotic during stimulus
presentation due to the inputs that the network receives (Rajan
et al., 2010).
shows the output of each model, and column 4 demonstrates model performance.

 at the end of the time period shown. Red and blue traces correspond to f1 > f2 and

he blue traces are positive and the red traces are negative at decision time. In column

e colorbar above), with the 10 experimental frequency pairs indicated by the green

eiving positive and negative tuned input during the stimulus (shaded) with self-

g rates of the positive and negative populations. The RN model is composed of 1500

urons receive external input during the stimuli, and the output is a trained linear

 network, but all connections are trained (depicted in red) using the Hessian-Free
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The third model, TRAIN (Fig. 2, bottom row), starts from a similar
random recurrent network and linear readout as the RN model
(although with fewer neurons, see Section 4), but then a Hessian-
Free learning algorithm (Martens and Sutskever, 2011) is used to
adjust all the weights – recurrent, input and output – until the
output activity generates the correct decision. The Hessian-Free
training algorithm uses backpropagation through time to compute
the gradient of the error with respect to all network parameters. The
algorithm uses a truncated-Newton method that employs second-
order information about the error with respect to the network
parameters to speed up the minimization of this error and also to
handle pathological curvature in the space of network parameters.
This algorithm was chosen due to its effectiveness in obtaining a
desired network output. We do not assume that this form of learning
is biologically plausible, but rather use it as a tool for obtaining a
functioning network. Similar results were obtained when training
the network with the FORCE algorithm (Sussillo and Abbott, 2009).

Although all three models implemented the same task with the
same level of performance, they differ in the number and type of
neurons and the relevant sources of noise, in addition to their basic
organization differences. While some of these differences could
have been eliminated or reduced, we chose these specific models
to illustrate the wide range of possible solutions to this task. We
verified that the qualitative results do not change when we
examine variants of the models we present (see Section 3).

2.2. Comparison with experimental data

In order to compare activity in the models to the available data
with as little bias as possible, we used the same numbers of trials
Fig. 3. Activity of sample neurons from the models. The firing rates of two neurons taken f

(blue) to 34 Hz (red). Gray shadings denote the stimulus presentation periods.
for the different frequency pairs as in the data (see Section 4). We
used this procedure to compare the activity profile of a few sample
neurons from the models with that seen in the data. In the LA
model, all of the neurons exhibit persistent tuning similar to what
is shown in Fig. 1C and D (Fig. 3A1 and A2). The activity of most of
the units in the RN model does not have such a simple
correspondence with the stimulus frequency during the delay
period (Fig. 3B1), resembling the response shown in Fig. 1F; but
sometimes a tuned response appears (Fig. 3B2) despite the absence
of network structure. The TRAIN model shows an intermediate
behavior, with more neurons having stimulus-frequency tuning
during the delay period (Fig. 3C2), but some untuned neurons as
well (Fig. 3C1).

2.2.1. Linearity and consistency of stimulus-frequency coding

Many brain areas upstream of the PFC exhibit firing rates that
vary as a linear function of the stimulus frequency during stimulus
presentation (Romo and Salinas, 2003). In PFC, a substantial
fraction of neurons exhibits linear frequency tuning even when the
stimulus is not present, suggesting that information is maintained
during the delay period by the intrinsic activity of PFC circuits. The
stimulus is represented in all of the models as input that depends
linearly on the stimulus frequency, and thus all three models show
linear frequency tuning during stimulus presentation. However,
frequency tuning when the stimulus is absent, such as during the
delay period, is different between the models. Because the LA
model was designed as a line attractor network that can maintain a
continuum of stable states corresponding to different frequencies
of the first stimulus, the firing rate of every neuron maintains a
constant linear frequency tuning throughout the delay period.
rom each model. The color represents the frequency of the first stimulus, from 10 Hz
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There is no comparable constancy of tuning in the RN model; in
fact linear tuning, which is only due to the stimulus input, should
disappear over the course of the delay period. We expect the TRAIN
model to show intermediate behavior in this regard.

To detect linear frequency tuning and examine how it changes
with time, we fit firing rates at various times during the delay
period from the data and from all three models to the linear form
r = a0 + a1f1, where r is the firing rate, f1 is the frequency of the first
stimulus and a0 and a1 are the fit parameters. Scatter plots of the a1

values obtained at the end of the delay period relative to those
obtained during the stimulus (Fig. 4A1–D1) or at the middle of the
delay period (Fig. 4A2–D2) reveal the features discussed above. All
of the LA neurons preserve the same linear tuning throughout the
task, whereas the tuning properties of RN neurons change
randomly, both between the stimulus and the delay and within
the delay. The data and the TRAIN network exhibit an intermediate
behavior with 62%, 37% of the neurons changing the sign of their
tuning from stimulus to delay and 25% and 8%, respectively,
changing their sign within the delay period.

The evolution of frequency selectivity during the task can be
revealed by computing correlation coefficients between an a1

value computed at some reference time and a1 values at all other
times. The reference point is taken to be either during the first
Fig. 4. Consistency of frequency tuning. Firing rates were fit according to r = a0 + a1f1. Va

mid-delay (2). 3 Correlation of a1 values across the population using either the stimul
stimulus presentation (Fig. 4A3, B3, C3, D3; blue) or at the middle of
the delay period (Fig. 4A3, B3, C3, D3; green). Again we see that the
two extreme models, LA and RN, exhibit behavior qualitatively
different from the data. The LA model shows almost perfect tuning
correlation across time, whereas tuning in the RN network quickly
decorrelates, either from the end of the first stimulus or during the
delay period. Both the data and the TRAIN network show partial
decorrelation to intermediate values during the delay period. Note
that by the end of the delay period, the correlation between the
tuning of the TRAIN network relative to the stimulus is negative.
This implies that the network stores the memory in an inverse
coding during the delay, possibly facilitating the comparison with
the 2nd stimulus. A related idea was proposed by Miller and Wang
(2006), and it seems as if the trained network found a similar
solution.

2.2.2. Extracting constant stimulus-frequency signals from the

neuronal populations

Even when the activity of individual neurons is highly time-
dependent, it may be possible to extract a relatively constant signal
that reflects the remembered stimulus frequency during the delay
period from a neuronal population. To isolate such signals, we
followed an approach developed by Machens et al. (2010),
lues of a1 at the end of the delay were compared to those during the stimulus (1) or

us (blue) or mid-delay (green) as a reference.
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performing a modified principal component (difference of
covariances) analysis (Section 4). This approach isolates a
component that predominately encodes time, which we do not
show, and another component that captures the stimulus
frequency encoded during the delay period (Fig. 5). The percent
of the total variance captured by this particular component in the
data and LA, RN and TRAIN models is 2%, 91%, 5% and 28%,
respectively. The higher percentages for the RN and TRAIN models
reflect the fact that this modified PCA procedure is extremely
effective at suppressing white noise, whereas it is less effective at
suppressing extraneous signals in the data and the chaotic
fluctuations of the RN model. When only the variance across
stimulus conditions is considered, the percent variances are 30%,
98%, 41% and 85% (see Section 4).

A fairly time-independent signal reflecting stimulus frequency
can be extracted from all three models. This is particularly
surprising for the RN model that has nothing resembling a line
attractor in its dynamics. The reason for this is that the stimulus
leaves a trace within the network, and it is precisely this trace that
Fig. 5. Linear extraction by a modified PCA (Machens et al., 2010) of a time invariant

signal that most strongly reflects the coding of stimulus frequency during the delay

period. The extraction is done on half the trials, and the projection on the other half.

Note that even the random network has a roughly time-invariant component.

Fig. 6. Temporal evolution of the fraction of significantly tuned neurons in the data

and models. The models were simulated with an identical number of trials as the

data to allow evaluation of significance. Note that only the data show an increase in

the number of significantly tuned neurons during the delay period.
the modified PCA method extracts. This analysis should serve as a
cautionary note about interpreting results even of an almost
assumption free cross-validated population analysis.

2.2.3. Model failures

One prominent feature of the data is not accounted for by any of
the models considered in this study. It is an increase in the number
of tuned neurons toward the end of the delay period (Fig. 6A),
indicating an increasingly precise encoding of the stimulus
attributes in the population firing rates of the PFC neurons. It
has been proposed (Barak et al., 2010; Deco et al., 2010) that these
surprising finding could indicate the extraction of information
about the stimulus from a synaptic form (selective patterns of
short-term synaptic facilitation) into a spiking form. It remains a
challenge to future work to develop echo-state random networks
and TRAIN networks with short-term synaptic plasticity of
recurrent connections.

3. Discussion

The main goal of this study was to obtain a broader view of the
possible mechanisms of working memory, in particular parametric
working memory. To this end, we presented a comparative
analysis of three network models performing a delayed frequency
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discrimination of vibrotactile stimuli. By all the measures, it
appears fairly clear that the line attractor model (LA) does not
adequately describe the experimental data, primarily because
neurons in this network all exhibit constant tuning to stimulus
features throughout the delay period, whereas many neurons in
the data do not (see also Jun et al., 2010). It is noteworthy that a
completely random recurrent network that is in the chaotic state
(RN) can perform the task reasonably well for delay periods up to
about 30 times the time constant of the units, even if the state of
the network is not reset before the beginning of each trial.
Moreover, some of the neurons in this network retain their tuning
to the stimulus until the end of the delay, despite the chaotic
dynamics. Overall this network is qualitatively somewhat similar
to experimental data. This surprising observation illustrates the
difficulty in uncovering the mechanisms of working memory from
single neuron recordings and even population analysis of relevant
brain regions.

In both the RN and TRAIN networks, which have internal and
external noise respectively, the first stimulus is presented at a
random time after a random initialization of the network (between
5 and 35 time constants of the network). This means that the
network state is different on each trial at the time of the
presentation of the first stimulus. In addition, both stimuli (the
first and the second) have the same strength, and this is insufficient
to put the network into a unique state, independent of its state
prior to stimulus onset. If the stimuli were much stronger than this,
all memory of the first stimulus would be lost when the second
stimulus was presented, making a comparison of them impossible.
Thus, these models perform the task at a high level of accuracy
despite a large variability in their initial conditions.

Closer analysis indicates that the PFC networks are less random
than what is found in the RN model, most prominently, their
frequency tuning retains some correlation across the task. This and
other features were fairly well captured by the TRAIN model that
occupies an intermediate position between the line attractor and
RN networks. This network is specifically tuned to the stimuli used
in training, and it can retain the tuning to stimulus attributes for
significantly longer time than the RN network. Yet in this network
as well, many neurons lose their tuning at different epochs of the
delay and/or change their tuning properties compared to the
stimulus presentation time. This feature is shared by the data.

Although both the RN and TRAIN models start out as randomly
connected networks, a distinguishing feature after training is that
the connectivity of the RN model is not tuned in any way to the
input it receives. Thus, the RN model with appropriately adjusted
readouts will perform equivalently for any rearrangement of the
stimulus input. The TRAIN model, on the other hand, is adjusted to
the specific input it receives during training.

The range of models we considered suggests a possible
sequence during learning and development of expertise in the
task. It is unlikely that something as organized as the LA model
could exist in the neural circuitry of the monkey prior to task
learning. Instead, it is more plausible that, initially, the monkey
performs the task by extracting whatever signals correlate with
reward from existing neural circuitry. At this stage, we argue that
the best analogy is with the RN model, not necessarily because the
PFC neural circuits are initially random, but because at an early
stage they are unlikely to be specialized for the task. With further
training, modification of those circuits may occur, leading to
something closer to the TRAIN model, and we suggest this
approximates the state of the PFC circuitry at the time when the
recordings were made. It is possible that with extremely extensive
further training, these circuits could become even more organized
and develop a true line attractor, as in the LA model. This, in fact, is
the trend we observed in the TRAIN model if it was subjected to a
more rigorous training procedure, in particular when the delay
period was varied from trial to trial. Thus, the different approaches
we considered can be viewed as a sequence of models roughly
matching stages in the evolution in task performance from novice
(RN) to expert (TRAIN) and finally to virtuoso (LA).

4. Methods

LA model. This model was described in detail previously (Machens et al., 2005).

Briefly, two populations of spiking neurons are connected with self excitation and

mutual inhibition (synaptic time constant of 80 ms). The connectivity is tuned such

the network implements a line attractor during the delay period. The stimulus

tuning during the second stimulus is opposite to that during the first, thereby

implementing the subtraction operation for stimulus comparison. The model was

implemented using the code appearing in the supplementary material of Machens

et al. (2005). The only modification was using 17 instead of 500 neurons in each pool

to increase the effective noise. We chose to increase noise in this manner because it

enabled us to have error trials on all frequency pairs. Another option to decrease

overall performance is to impair the tuning of the line attractor, but that would

impair only a couple of frequency pairs, unlike the experimental data.

RN model. The RN network is an N-dimensional recurrent neural network

defined by

t
dxi

dt
¼ �xi þ g

XN

j¼1

Ji jr j þ ui with ri ¼ tanhðxiÞ and z ¼
XN

i¼1

Wiri (1)

where x is the N-dimensional vector of activations (analogous to the input to a

neuron), r is the vector of ‘‘firing rates’’ and the output or readout z is a linear

combination of the firing rates. The recurrent feedback in the network is defined by

an N � N recurrent weight matrix J with n nonzero elements per row chosen

randomly from a Gaussian distribution with mean zero and variance 1/n. The

neuronal time constant t sets the time scale for the model.

Thirty percent of the units received tuned input during the stimuli. Each such

unit i had a random value Bi chosen uniformly between �1 and 1, that determined

its tuning. The input ui is kept at the value zero except when the stimulus is present.

Then, it is given by

ui ¼ Bihð f Þ (2)

where f is the stimulus frequency, and h(f) maps the experimental frequency range

[10,34] Hz to the range [1,9]. The input ui is always positive (Barak et al., 2010),

achieved by adding a bias term to the inputs for which Bi < 0. Thus,

h(f) = 1 + 8(f � 10)/(34 � 10) for inputs with B > 0, and h(f) = 9 � 8(f � 10)/

(34 � 10) for inputs with B < 0. In addition, we chose N = 1500, n = 100, g = 1.5

and t = 100 ms, and ran the model in steps of 0.01t.

Each trial began with every xi initiated to an independent value from a normal

distribution. Following a variable delay of between 500 and 3500 ms, the first

stimulus was applied for 500 ms. For the training only, a variable delay of between

2700 and 3300 ms was used. During the testing phase, the delay was always

3000 ms. The second stimulus followed the delay, and the activity of the network

was monitored for a further 500 ms. The firing rate of the network 100 ms after the

offset of the second stimulus was collected for 2000 different trials. A linear

classifier was trained to discriminate the vectors according to the task, using a

maximum margin perceptron (Krauth and Mézard, 1987; Wills and Ninness, 2010).

TRAIN model. The TRAIN network is similar to the RN except for the following

differences. The network was smaller, N = 500, n = 500. Because connections within

the network were modified during training, we could not rely on chaotic dynamics

to provide noise, and hence injected white noise to each neuron.

The TRAIN network was trained using the Hessian-Free algorithm for recurrent

networks (Martens and Sutskever, 2011). Specifically, the matrix J and weights B
and W (Eqs. (1) and (2)) were trained on the same training trials as described above,

but with stimulus amplitudes in the range [0.2,1.8] instead of [1,9]. The model was

trained with the HF algorithm in the presence of white noise of amplitude 0.16, and

an L2 penalty on the weights, with a weighting coefficient of 2 � 10�6. The desired

output was �1 for a duration of 100 ms, delayed 100 ms from the offset of the 2nd

stimulus, and error was assessed using mean squared error from the target. After each

training iteration (1000 trials), the performance of the model was evaluated on the 10

stimulus conditions. Once the performance exceeded 94%, the noise amplitude was

recalibrated to achieve exactly 94% performance, which happened on the 8th iteration

with a noise amplitude of 0.2.

4.1. Data analysis

Some of the trials in the data were excluded due to suspected spike sorting

problems (Barak et al., 2010). To reduce comparison artifacts, for all models the

numbers of trials for different stimulus pairs were matched to those of the

experimental data. Specifically, model trials were deleted until the number of trials

for each stimulus condition matched that of the data.

For all three models, Figs. 3–6 were generated from simulating the network with

10 trials of each of the 10 stimulus conditions, with a delay of 3000 ms. Fig. 2 used

2592 random frequency pairs within the experimental range. For the data and
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LA model, firing rates of all neurons were calculated for each stimulus condition (f1,

f2 pair) in non overlapping 100 ms bins, by averaging the number of spikes emitted

by the neuron over all trials with this frequency. Linear tuning was assessed by

fitting the function ri(f1, t) = a0(i, t) + a1(i, t)f1. Significance was assessed at the 5%

confidence level.

The modified PCA was done as described in Machens et al. (2010), with slight

modifications. The time-averaged and frequency-averaged firing rates were defined

as rf(i, f) = <ri(f, t) > t and rt(i, f) = <ri(f, t) > f. Three N � N covariance matrices were

computed: C computed from r using all stimulus conditions and time bins as

samples, Cf computed from rf using all stimulus conditions as samples, and Ct

computed from rt using all time bins as samples. The leading eigenvector V of the

matrix Cf � Ct was extracted from half the trials, and the activity of the remaining

half was projected onto it. Using cross validation, we also computed the total

variance explained by this eigenvector, Tr(VTCV)/Tr(C), and the variance when only

stimulus conditions were considered, Tr(VTCfV)/TR(Cf).
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