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Abstract

Neurons in vivo receive a large amount of internally generated “background” activity in
addition to synaptic input directly driven by an external stimulus. Stimulus-driven and
background synaptic inputs interact, through the nonlinearities of neuronal integration, in
interesting ways. The dynamic clamp can be used in vitro to duplicate background input,
allowing the experimenter to take advantage of the accessibility of neurons in vitro while
still studying them under in vivo conditions. In this chapter we discuss some results from
experiments in which a neuron is driven by current injection that simulates a stimulus-
driven input as well as dynamic-clamp-generated background activity. One of the effects
uncovered in this way is multiplicative gain modulation, achieved by varying the level of
background synaptic input. We discuss how the dynamic clamp was used to discover this
effect and also how to choose parameters to simulate in vivo background synaptic input in
slice neurons.



1. Introduction

Much of what we know about the response properties of neurons comes from studies done
in fairly inactive slices or in cell cultures. These preparations are ideal for exploring basic
electrophysiological characteristics, but they do not duplicate in vivo conditions. Neurons
in a living brain are subject to a continual barrage of activity arising from both nearby
and distal sources. The synaptic input from this background barrage is highly irregular
(Softky and Koch, 1993; Shadlen and Newsome, 1994; Troyer and Miller, 1997; Stevens
and Zador, 1998; Jaeger and Bower, 1999; Santamaria et al., 2002; Wolfart et al., 2005;
Desai and Walcott, 2006), so it acts as a source of noise that introduces variability into the
stimulus-evoked responses of neurons (Schiller et al., 1976; Heggelund and Albus, 1978;
Vogels et al., 1989; Holt et al., 1996). As would be expected, noise from background
input limits the sensitivity and precision of stimulus-driven responses, but in some cases it
can actually have an enhancing effect (Troyer and Miller, 1997; Hô and Destexhe, 2000;
Anderson et al., 2000; Shu et al., 2003; Wenning et al., 2005) . In addition, background
synaptic input is thought to significantly increase the membrane conductance of neurons
(Borg-Graham et al., 1998; Hirsch et al., 1998; Destexhe and Paré, 1999, but see Waters
and Helmchen, 2006), which affects their input integration properties (Destexhe and Paré,
1999; Azouz, 2005; Zsiros and Hestrin, 2005). The “noise” effects of background input can
be mimicked in vitro by injecting a fluctuating current into the neuron being recorded, but
this does not replicate conductance changes. Fortunately, the dynamic clamp can be used to
simulate both the noise and conductance effects of background synaptic input, allowing us
to bridge the gap between typically silent slice preparations and active, functioning neural
circuits.

Although the summed background input to a neuron in vivo can be quite large, it does not,
in the absence of stimulus-dependent or other drive, cause neurons to fire at high rates,
nor does it hyperpolarize the neuron far below threshold. Reconciling this high level of
synaptic input with a relatively small change in mean membrane potential requires the ex-
citatory effects of background input to consist of a well-balanced combination of excitation
and inhibition (Shadlen and Newsome, 1994; Shu et al., 2003; Haider et al., 2006; Baca et
al., 2008; Okun and Lampl, 2008). Thus, background input to a neuron consists of large
amounts of excitation and inhibition that, to a large extent, cancel each other. Cancel-
lation between two large, random sources of opposite sign generates input currents with
small means and large variances. However, in spite of the large variance of the fluctuating
conductances, the membrane potential fluctuations are limited by the reversal potentials
of the synaptic input currents. Attempting to mimic background synaptic input by current
injection can result in unrealistically and even excessively large hyperpolarizations of the
neuron, a problem that is eliminated by using the dynamic clamp.

It is convenient to divide the total synaptic input to a neuron into a component that controls
the total synaptic current, which we call the driving input, and a balanced component that
affects both the total synaptic conductance and the input variance arising from the synaptic
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input but makes little contribution to the total synaptic current. The total synaptic current
to the neuron is proportional to the driving component because, by definition, synaptic cur-
rents generated by the balanced component are small. On the other hand, because the total
synaptic drive consists of two large, essentially canceling terms, the total synaptic conduc-
tance and the variability of the synaptic current are dominated by the balanced component.
These two components of the synaptic input can act as two independent signal-carrying
channels. The driving component can be modulated by changing excitatory and inhibitory
drive in opposite directions, increasing excitation and decreasing inhibition, for example.
The balanced component can be modified by changing excitation and inhibition in parallel,
such as increasing both excitatory and inhibitory input. Often the synaptic input to a neuron
is modeled as consisting of a variable stimulus-dependent driving component and a fixed,
though large, balanced component. Some studies, however, have considered the impact of
modulating the balanced component of synaptic input, with interesting results. Changes in
balanced input provide an alternative way of modulating neural responses (Silberberg et al.,
2004; Fourcaud-Trocmé and Brunel, 2005; Khorsand and Chance, 2008) or of modifying
neuronal gain, defined by the relationship between firing rate and input current (Doiron et
al., 2001; Chance et al., 2002; Fellous et al., 2003; Prescott and De Koninck, 2003) or EPSP
rate (Mitchell and Silver, 2003), or spiking probability and EPSC size (Hô and Destexhe,
2000; Shu et al., 2003; Chance, 2007). The gain modulation effect relies, in particular, on
the impact of the conductance introduced by background synaptic input. Reproducing this
effect in slice experiments therefore requires the dynamic clamp. We focus on this effect
in this chapter.

In addition to demonstrating the gain modulation effect that arises from simulated back-
ground activity, we discuss in this chapter how the dynamic clamp can be used, in general,
to simulate the input that a neuron might receive in vivo (Destexhe et al., 2001; Chance
et al., 2002). In the latter part of this chapter, we focus on calculations needed to adjust
the parameters of the dynamic clamp input to reproduce desired values for the mean and
variance of the conductance and membrane potential.

2. Gain Modulation from Dynamic Clamp Input

The dynamic clamp allows any combination of conductance changes and current injec-
tions to be introduced into a recorded neuron. In this section, we discuss the effects of
introducing a fluctuating conductance and current, similar to what would be generated by
spontaneous activity in vivo, into a cortical neuron recorded in a slice preparation. We also
analyze separate conductance and current effects by considering them independently.

2.1 Generating the Dynamic Clamp Input

The essential feature that allows conductances to be mimicked by the dynamic clamp is
that the current it injects into a neuron depends on the membrane potential of the neuron.
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To duplicate the effects of time-dependent excitatory and inhibitory synaptic conductances
Gex(t) and Gin(t) with reversal potentials Eex and Ein respectively, the current injected by
the dynamic clamp should be

I = Gex(t)(Eex − V ) + Gin(t)(Ein − V ) ,

where V is the membrane potential of the neuron. Given computer generated values of
Gex(t) and Gin(t) and preset values of Eex and Ein, this is exactly what the dynamic clamp
does. We have a good idea of the values of the reversal potentials of excitatory and in-
hibitory synaptic conductances, so the problem of duplicating in vivo synaptic input lies in
mimicking the time-dependent conductances that real synaptic input generates.

One way to generate a time-dependent synaptic conductance mimicking the total conduc-
tance produced by a set of afferents to a neuron is to model the spike trains carried by those
afferents. Typically, these are assumed to have Poisson statistics. The dynamic clamp
attempts to reproduce the effects of synapses distributed across the dendritic arbor by sim-
ulating a conductance located at the site of an electrode. Within this unavoidable approxi-
mation, the effects of all the afferents on a given conductance (excitatory or inhibitory) add
linearly and the Poisson model is similarly additive, we can simply generate spikes at a rate
obtained by adding together the rates on all of the afferents. This is done, for a desired total
firing rate R, by generating an action potential at each small time step ∆t with a probability
R∆t. These Poisson-generated action potentials are then fed into a model of the synaptic
conductance. A simple model, for example, increments the total conductance by an amount
that represents the unitary maximal synaptic conductance every time a spike is generated,
and allows it to decay exponentially back toward zero between spikes. In mathematical
terms, we compute Gex and Gin by integrating the differential equations

τex
dGex

dt
= −Gex and τin

dGin

dt
= −Gin ,

where τex and τin are the decay time constants for the excitatory and inhibitory synaptic
conductances, and we increment these conductances by

Gex → Gex + gex and Gin → Gin + gin

every time an excitatory (left equation) or inhibitory (right equation) action potential is
generated by the Poisson model. This model works well (with a small but inessential
rise time included, see Chance et al., 2002), but later in this chapter we discuss another
procedure that has the virtue of being convenient for mathematical analysis.

It is a good idea to use two recording electrodes when duplicating synaptic input with the
dynamic clamp in this way: one electrode to record the membrane potential and a second to
inject the computed dynamic-clamp current. Using two electrodes eliminates artifacts that
can be introduced into the membrane potential measurements by the injection of rapidly
fluctuating current. Figure 1a shows the membrane potential of a neuron recorded from
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Figure 1: Intracellular recordings from a layer 5 pyramidal neuron in a slice of rat so-
matosensory cortex with and without simulated background activity. In both cases, con-
stant current was injected to drive the neuron at approximately 5 Hz. a) The membrane
potential of the spiking neuron in the absence of simulated background activity. b) The
dynamic clamp was used to simulate 1X background activity. (Adapted from Chance et al.,
2002.)

a slice of somatosensory cortex driven to fire by a constant injected current without any
additional dynamic clamp input. The firing pattern is regular and the membrane potential
shows no significant fluctuations due to the relative silence of this slice preparation. For
Figure 1b, excitatory inputs were simulated at a total rate of 7000 Hz and inhibitory inputs
at a total rate of 3000 Hz, representing the summed effects of many simulated afferents.
The arrival times of these synaptic inputs were randomly generated with Poisson statistics.
The unitary synaptic conductance for each synaptic input was set to 2% of the measured
resting membrane conductance for excitatory input and 6% of the resting conductance for
inhibitory input. The synaptic time constants were τex = 5 ms and τin = 10 ms. In the
following discussion, we refer to this as the 1X condition (see filled circles in Figure 2),
and we will consider 2X and 3X conditions produced by doubling or tripling the rates
of both the excitatory and inhibitory synaptic inputs. These parameters were chosen to
achieve realistic conductance changes and levels of noise, and to put the synaptic inputs
into a configuration in which excitation approximately balanced inhibition. Because of
the balance between excitation and inhibition, the background synaptic activity by itself
was not very effective at driving the recorded neuron. Instead, the dominant effect of
this background activity was to increase the effective membrane conductance and also to
introduce noise into the neuronal response, as illustrated in Figure 1b.

2.2 Multiplicative Gain Modulation in a Slice

Varying the level of dynamic-clamp background activity, by multiplying excitatory and
inhibitory input rates by factors of 0, 1, 2 or 3, for example, has an interesting effect on the
firing properties of a neuron. We characterize firing by plotting firing rates as a function of
constant injected current. Multiple firing-rate curves are obtained by measuring the firing
rate as a function of driving current for different levels of background activity. Gain is
defined as the slope of the non-zero portion of the firing-rate curve. Figure 2A shows firing-
rate curves of the same neuron under four different levels of background activity. For the
open circles, no background activity was present. The filled circles, open squares, and filled
squares are firing-rate curves recorded under 1X, 2X, and 3X conditions, respectively. The
solid lines are the best linear fits to these data. The curves show that increasing background
input led to a reduction of the firing rate, but did not significantly change the minimum
threshold current required to fire the neuron. The dominant effect of changing the level of
background activity was to divisively scale the curve of firing-rate versus input current for
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the neuron. This indicates a change of gain.

To create Figure 2B, the constant current input for the 1X, 2X and 3X cases were divi-
sively scaled by appropriate factors to make the corresponding firing-rate curves overlay
the control (0X or no background activity) curve (open circles). The good match between
the resulting curves indicates that the gain modulation effect is, indeed, divisive (or equiv-
alently multiplicative if we invert the scaling factors). Two different possibilities exist,
however, for how the divisive effect can be realized. A firing rate function of input current,
r = f(I) can be scaled, as in Figure 2B, by dividing the input current by a factor c, so
that r = f(I/c). Alternatively, the rate itself can be scaled by a factor, r = f(I)/c. In
either case, c takes different values for each condition. In Figure 2C, the firing rates of
the control, 1X and 2X firing-rate curves were divisively scaled to overlay the 3X firing-
rate curve (filled squares). This shows that the results are accounted for equally well by
a scaling of the rate. In fact, it is impossible to determine whether the gain modulation
effect illustrated here represents input gain control (where the input is divisively scaled) or
response gain control (where the firing rates are divisively scaled). This ambiguity arises
because of the linearity of the neuron firing-rate curves, but analysis of the effect suggests
that raising the level of background activity results in changes in both response-gain and
input-gain (Chance et al., 2002).

We summarize the effect of background activity on 18 different neurons in Figure 2D.
For each neuron, the slope of the firing-rate curve for each level of background input was
measured and then normalized by the gain in the 1X condition. Mean gain (averaged
across all neurons recorded in each condition) is plotted as a function of rate factor (the
factor multiplying the excitatory and inhibitory firing rates, i.e. the 1, 2 or 3 in the 1X, 2X
or 3X conditions) in Figure 2D. The numbers under each data point describe the number of
cells that were recorded in each condition.

Figure 2: Effects of background activity on the firing-rate curves of neurons. A) Firing
rate-curves under 0X (no background activity, open circles), 1X (filled circles), 2X (open
squares) and 3X (filled squares) conditions. Lines are linear fits. B) The firing-rate curves
from (A) except that the driving currents of the 1X, 2X, and 3X firing-rate curves were
scaled so that the firing-rate curves overlay the firing-rate curve in the 0X condition. C)
The firing-rate curves from (A) with the firing rates of the 0X, 1X, and 2X curves divisively
scaled to overlay the 3X firing-rate curve. D) Slope of the firing-rate curves, normalized
to the slope of the 1X firing-rate curve, plotted as a function of rate factor. (Adapted from
Chance et al., 2002.)

Although gain modulation arises through this mechanism in part because of increased vari-
ance in the neuronal input, gain modulation occurs without a corresponding change in
response variability. This is illustrated in Figure 3A, where variability is measured either
as the coefficient of variation of the interspike intervals (filled triangles) or the standard
deviation of the membrane potential (open triangles) under different levels of background
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activity. This relative constancy of variability occurs because the effect of the increased
variance of the synaptic current is cancelled by the increased conductance of the neuron
(see Chance et al., 2002 for a more detailed explanation). This is an example of an effect
for which the ability of the dynamic clamp to mimic conductances is essential.

Figure 3: Effects of background activity on the firing of neurons. A) Standard deviation
of subthreshold membrane potential fluctuations (open triangles) or coefficient of variation
of interspike intervals (filled triangles) as a function of rate factor. For the open triangles,
constant current was injected to drive the neuron at 20 Hz. B) Firing-rate curves in the 1X
condition (open circles) and with 3X current variance but 1X conductance changes (filled
squares). C) Firing-rate curves in the absence of background activity (open circles) and
with 32 nS of additional conductance (filled squares). D) Firing-rate curves of a neuron
in the 1X (open circles) or the 3X (filled squares) condition. (Adapted from Chance et al.,
2002.)

By Ohm’s law, increases in membrane conductance will have a divisive effect on the sub-
threshold membrane potential fluctuations arising from fluctuating input current. However,
the multiplicative effect on firing rate illustrated here is not simply a result of the increased
conductance induced by the dynamic-clamp simulated input (see Chance et al., 2002 for
a full explanation). Two fundamental components of synaptic input increase when back-
ground synaptic activity is increased: the variance of the synaptic current entering the
neuron and the overall membrane conductance of the neuron.

Increasing the variance of the input current leads to an increase in neuronal firing rate. Of
particular relevance is that the elevation in firing rate is also associated with a decrease in
gain. The firing-rate curve of a neuron in the 1X condition is plotted in Figure 3B with open
circles. To produce the filled squares, the size of the unitary synaptic conductance change
associated with a particular synaptic input was tripled while the input rates were divided
by three. This increased the variance of the synaptic input current without changing the
average synaptic conductance. Thus, the variance of the input current was equivalent to
the variance of the input current in the 3X condition, but the average conductance was un-
changed from the 1X case. The effect of the increased current variance alone is a decrease
in gain combined with an additive (leftward) shift in firing rate. This is equivalent to what
would be obtained simply by adding fluctuating current to the input.

In figure 3C, the open circles are the firing-rate curve of a neuron with no simulated back-
ground activity. To produce the filled squares, an additional constant conductance of 32 nS
was added (the reversal potential of the resulting current was set to -57 mV, the effective
reversal potential of the simulated background inputs). The effect of this additional conduc-
tance was subtractive, so it shifted the firing-rate curve along the driving current axis. This
result is consistent with previous studies examining the effects of increased conductance
on the firing-rate curves of neurons (Gabbiani et al., 1994; Holt and Koch, 1997, Chance et
al., 2002).
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When the rate of background synaptic input is increased, the effect of the increased input
current variance illustrated in Figure 3B is combined with the effect of the increased mem-
brane conductance illustrated in Figure 3C. For a certain parameter range, the subtractive
effect of the conductance increase cancels the additive effect of the current variance in-
crease, leaving a divisive gain change. The effect of increasing background input from 1X
to 3X is illustrated in Figure 3D.

If excitation and inhibition arising from the background input are not appropriately bal-
anced, mixed multiplicative/divisive and additive/subtractive effects occur. For example,
if inhibition is slightly stronger than excitation, a subtractive shift (shifting the curve to
the right along the input axis) will accompany the divisive modulation. Therefore, mixed
multiplicative and additive effects can arise from this mechanism through non-balanced
background activity. This implies that we should not think of firing-rate curves plotted as a
function of a single variable (the mean input current or, equivalently, the driving input), but
as firing-rate surfaces in a two-dimensional plot with the two variables being driving input
and balanced input (Abbott and Chance, 2005).

3. Computing the Dynamic Clamp Input

In this section, we present another model for generating dynamic clamp input that is very
similar to the input discussed in the previous section, but the model is more analytically
tractable, allowing us to discuss how the appropriate parameters of the dynamic clamp
model are determined for a given application (see also Rudolph and Destexhe, 2003). To
begin our discussion, we consider a single, generic conductance and only later discuss the
effects of both excitation and inhibition. Thus, in the initial discussion that follows, the
conductance Gs can represent either an excitatory (Gex) or an inhibitory (Gin) conductance.

3.1 Driving the Synaptic Conductance with White-Noise Input

The alternative approach we now consider is to approximate the Poisson spike train used
in the previous section with white noise. This approximation has been used in a number of
studies (Destexhe et al., 2001; Fellous et al., 2003; Wolfart et al., 2005; Desai and Walcott,
2006; Piwkowska et al., 2008). According to this method, we determine the total synaptic
conductance from the stochastic differential equation

τs
dGs(t)

dt
= −Gs(t) + Gs +

√
2Dsη(t) ,

where Gs and Ds are parameters, and η(t) is a stochastic term satisfying

〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′) ,

where the angle brackets denote time averages. In practice, η(t) is generated randomly at
discrete times that are integer multiples of a minimum time interval ∆t from a Gaussian
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distribution with zero mean and variance equal to 1/∆t. The parameters Gs, which is the
time-average of Gs(t), and Ds are related to the unitary synaptic conductance gs and the
total afferent firing rate R of the Poisson model discussed in the previous section by

Gs = gsτsR and Ds =
1

2
g2

s τ
2
s R .

Note that Gs and Ds can be varied independently by adjusting gs and R. The white-noise
driven model therefore defines a two-parameter model of a synaptic conductance. When we
include both excitation and inhibition, this will become a four-parameter model described
by Gex, Gin, Dex and Din. The problem we discuss is how to constrain these four parameters.

3.2 Determining the White-Noise Parameters

The autocorrelation function of the conductance determined by the equation above is

〈
(Gs(t)−Gs)(Gs(t

′)−Gs)
〉

=
Ds

τs
exp(−|t− t′|/τs) .

The variance of the conductance is just this correlation function evaluated at zero, which is

σ2
G =

Ds

τs
.

To determine the effects of this conductance on the membrane potential, we use a passive
RC model with membrane capacitance Cm, resting conductance (in the absence of synaptic
input) Grest, and resting potential Vrest. The resulting mean membrane potential is

V =
1

Gtot

(
GrestVrest + GsEs

)
,

where
Gtot = Grest + Gs

is the average total conductance of the neuron. We can also compute the autocorrelation
function for the voltage and, from this, the variance of the membrane potential,

σ2
V =

Ds(V − Es)
2

Gtot(Cm + Gtotτs)
.

In performing this calculation, we have used the approximation that V stays close to the
value V . If there are excitatory and inhibitory synapses, their variances simply add together
to give the total variance.

3.3 Determining the Dynamic Clamp Parameters
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We show how to determine the parameters of the underlying model that drives the dynamic
clamp from the simulated electrophysiological properties. When we have both excitatory
and inhibitory conductances, the parameters Gex, Gin, Dex and Din can be determined in
terms of more biophysically relevant variables using the equations and approximations
discussed above. Gex and Gin determine the average total conductance of the neuron,

Gtot = Grest + Gex + Gin ,

and the average potential is given by

V =
1

Gtot

(
GrestVrest + GexEex + GinEin

)
.

If we know the values of Gtot and V that we want to simulate, we can determine the param-
eters we need,

Gex =
Gtot(V − Ein)−Grest(Vrest − Ein)

Eex − Ein
and Gin =

Gtot(V − Eex)−Grest(Vrest − Eex)

Ein − Eex
.

To determine Dex and Din, we relate them to the variances of the synaptic conductance and
the membrane potential. From the above equations, the variance of the conductance is

σ2
G =

D2
ex

τex
+

D2
in

τin

and the variance of the membrane potential is

σ2
V =

Dex(V − Eex)
2

Gtot(Cm + Gtotτex)
+

Din(V − Ein)
2

Gtot(Cm + Gtotτin)
.

These equations are sufficient to determine both parameters. If we define

αex =
Gtot(Cm + Gtotτex)

(V − Eex)2
and αin =

Gtot(Cm + Gtotτin)

(V − Ein)2
,

the variance parameters of the white-noise driven model are given by

Dex =
αexτex(αinσ

2
V − τinσ

2
G)

αinτex − αexτin
and Dex =

αinτin(αexσ
2
V − τinσ

2
G)

αinτex − αexτin
.

Using the above equations, all of the parameters of the dynamic clamp can be determined
on the basis of the total synaptic conductance, mean membrane potential, and variances of
the synaptic conductance and membrane potential that are desired. If all of these are not
known, other assumptions, such as fixing gex or gin to experimentally constrained values,
can by used to reduce the number of free parameters. If the Poisson model is used instead,
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the unitary conductances and firing rates can be obtained from the conversion formulas
between these parameters and Gex, Dex, Gin, and Din.

4. Conclusions

The dynamic clamp is an effective means of mimicking in vivo conditions in vitro. This
allows us to take advantage of the accessibility of neurons in the slice for recording without
losing the background synaptic input that strongly affects their response properties in an
intact animal. We have discussed the impact of background activity on neuronal gain,
but it would be extremely interesting to examine a number of other phenomena, including
dendritic integration, dendritic spiking and synaptic plasticity, in the presence of dynamic-
clamp simulated background synaptic input.

Acknowledgments

Research supported by the National Institute of Mental Health (MH-58754) an NIH Direc-
tor’s Pioneer Award, part of the NIH Roadmap for Medical Research, through grant number
5-DP1-OD114-02 to LFA and by NSF-IOB-0446129, funds provided by the University of
California and an Alfred P. Sloan Foundation Research Fellowship to FSC.

References

Abbott, L.F. and Chance F.S. (2005) Drivers and Modulators from Push-Pull and Balanced
Synaptic Input. Prog. Brain Res. 149:147-155.

Azouz R (2005) Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal
gain, revisited. J Neurophysiol 94: 2785-2796.

Anderson JS, Lampl I, Gillespie DC and Ferster D (2000) The contribution of noise to
contrast invariance of orientation tuning in cat visual cortex. Science 290: 1968-1972.

Baca SM, Marin-Burgin A, Wagenaar DA and Kristan WB (2008) Widespread inhibition
proportional to excitation controls the gain of a leech behavioral circuit. Neuron 57:
276-289.

Borg-Graham LJ, Monier, C, and Frgnac Y. (1998) Visual input evokes transient and strong
shunting inhibition in visual cortical neurons. Nature 393: 369-372.

Chance FS (2007) Receiver operating characteristic (ROC) analysis for characterizing synap-
tic efficacy. J Neurophysiol 97: 1799-1808.

Chance FS, Abbott LF and Reyes AD (2002) Gain Modulation Through Background Synap-
tic Input. Neuron 35:773-782.

Desai NS and Walcott EC (2006) Synaptic bombardment modulates muscarinic effects in
forelimb motor cortex. J Neurosci 26:2215-226.
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