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We explore the effects of short-term synaptic depression on the
temporal dynamics of V1 responses to visual images by con-
structing a model simple cell. Synaptic depression is modeled
on the basis of previous detailed fits to experimental data. A
component of synaptic depression operating in the range of
hundreds of milliseconds can account for a number of the
unique temporal characteristics of cortical neurons, including
the bandpass nature of frequency–response curves, increases
in response amplitude and in cutoff frequency for transient
stimuli, nonlinear temporal summation, and contrast-

dependent shifts in response phase. Synaptic depression also
provides a mechanism for generating the temporal phase shifts
needed to produce direction selectivity, and a model con-
structed along these lines matches both extracellular and in-
tracellular data. A slower component of depression can repro-
duce the effects of contrast adaptation.
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The responses of cortical neurons to time-dependent stimuli
display a paradoxical feature. In primary visual, auditory, and
somatosensory cortices of rats, cats, and monkeys, many neurons
exhibit responses to oscillatory stimuli that peak at frequencies of
a few Hertz and fall rapidly to zero above !10 Hz. This might
give the impression that cortical neurons act as low-pass filters of
the sensory stimuli that drive them. However, the same neurons
can exhibit vigorous responses to transients, such as rapid stimu-
lus onsets, that have much of their power above 10 Hz. Why do
these neurons respond to high-frequency stimuli that are novel
and fail to respond to sustained stimuli over the same frequency
range?

Neurons in the mammalian primary visual cortex (V1) display
this paradoxical feature along with a number of other character-
istics that reflect nonlinear temporal dynamics. Responses of V1
neurons fall off at lower temporal frequencies and at slower image
velocities than those of neurons in the lateral geniculate nucleus
(LGN) (Movshon et al., 1978; Orban et al., 1985; Hawken et al.,
1996). Nevertheless, V1 neurons respond briskly to transients that
contain high-frequency components, and responses to sustained
stimuli are more transient than would be predicted on the basis of
steady-state responses to oscillating images (Ikeda and Wright,
1975; Movshon et al., 1978; Kulikowski et al., 1979; Tolhurst et al.,
1980). When visual images oscillating at different temporal fre-
quencies are combined, V1 responses show nonlinear temporal
summation. Even simple cells, which show approximately linear
summation over different spatial regions of their receptive fields
(Ferster, 1994), display nonlinear summation in the temporal
domain. Combining two oscillating (counterphase) gratings with
different temporal frequencies decreases the response to the more
slowly oscillating image and enhances the response to the higher-

frequency oscillation (Dean et al., 1982). V1 cells respond to
temporally irregular visual stimuli formed from sums of sinusoi-
dal oscillations at temporal frequencies well above the response
cutoff for simple sinusoidal oscillations (Reid et al., 1992). The
phases of the responses of V1 neurons to temporally oscillating
images shift as a function of contrast, again revealing temporal
nonlinearity (Dean and Tolhurst, 1986; Carandini and Heeger,
1994). Nonlinear temporal dynamics is likely to contribute to a
number of features exhibited by V1 cells, including direction
selectivity (Reid et al., 1991; Jagadeesh et al., 1993; Tolhurst and
Heeger, 1997) and velocity tuning (Orban et al., 1985). Intracel-
lularly recorded membrane potentials from directionally selective
neurons stimulated with sinusoidally oscillating gratings at cer-
tain spatial phases are distinctly nonsinusoidal (Jagadeesh et al.,
1993). The mechanisms responsible for these temporal nonlin-
earities have not been identified.

In this paper, we explore the idea that short-term synaptic
plasticity, in particular synaptic depression, is an important ele-
ment in the nonlinear temporal dynamics that leads to enhance-
ment of transient responses, nonlinear temporal summation, vari-
able phase shifts, and direction selectivity. We also study the
suggestion that a slow form of synaptic depression plays a signif-
icant role in contrast adaptation of V1 neurons (Nelson, 1991b;
Finlayson and Cynader, 1995; Nelson et al., 1997; Todorov et al.,
1997). Synaptic depression is a particularly prominent feature of
transmission at neocortical synapses (Shaw and Teyler, 1982;
Deisz and Prince, 1989; Thomson and West, 1993; Thomson et
al., 1993). Short-term depression has been observed in studies of
cat visual cortex (Stratford et al., 1996), in rodent somatosensory
(Markram and Tsodyks, 1996; Tsodyks and Markram, 1997),
motor (Thomson and Deuchars, 1994; Castro-Alamancos and
Connors, 1996), and visual (Abbott et al., 1997; Varela et al.,
1997) cortices, and at cat (Stratford et al., 1996) and rat (Gil et al.,
1997) thalamocortical synapses. In our study of the dynamics of
excitatory transmission from layer 4 to layer 2/3 in slices of rat
primary visual cortex (Abbott et al., 1997; Varela et al., 1997), we
measured and modeled several components of short-term synap-
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tic plasticity acting over a number of time scales. Most prominent
among these were two forms of synaptic depression: one rapid,
setting in within 5–10 presynaptic action potentials and requiring
300–600 msec for recovery, and the other much slower, requiring
many action potentials to reach full extent and recovering in !10
sec. The recovery time for the rapid form of synaptic depression
is in the correct range to contribute to the frequency dependence
of cortical responses. It is nonlinear and, although suppressing
sustained responses, can transiently transmit rapid stimulus on-
sets with high efficacy. The faster component of depression also
acts on a timescale appropriate for contributing to response phase
shifts, including those responsible for direction selectivity (Nel-
son et al., 1997).

Responses of V1 cells adapt to the level of contrast during
prolonged visual stimulation (Movshon and Lennie, 1979;
Ohzawa et al., 1985; Maddess et al., 1988; Bonds, 1991; Nelson,
1991a). The slower form of synaptic depression seen in the layer
4 to layer 2/3 pathway seems well suited to contribute to this
phenomenon. Its time course matches the time constants mea-
sured for contrast adaptation in single-unit and evoked-potential
studies (Albrecht et al., 1984; Ho and Berkley, 1988; Maddess et
al., 1988; Giaschi et al., 1993).

To examine the role of synaptic depression in shaping the
temporal response properties of cortical neurons, we constructed
a model of a V1 simple cell that receives its afferent drive via
synapses that depress. Although the circuitry in the model is
highly simplified, the synaptic dynamics is modeled quite accu-
rately using a mathematical description that fits experimental
data (Abbott et al., 1997; Varela et al., 1997). Although a number
of mechanisms may contribute to temporal nonlinearities in cor-
tical responses, we focus rather exclusively on synaptic depression
within this modeling study to determine the limits of what it can
explain and thereby to establish whether it is an important ele-
ment in cortical dynamics.

MATERIALS AND METHODS
The model
Simple-cell model. The model simple cell that we study is a single-
compartment, integrate-and-fire neuron that receives synaptic input in
the form of transient conductance changes at both excitatory and inhib-
itory synapses. The total excitatory and inhibitory synaptic conductances
at time t are denoted by GE(t) and GI(t) and are computed by summing
contributions from all of the excitatory and inhibitory synapses, respec-
tively. For convenience, we define synaptic conductances in dimension-
less units so that GE and GI are the usual synaptic conductances divided
by the resting membrane conductance of the cell. The membrane poten-
tial is computed by numerically integrating the first-order differential
equation describing a resistance-capacitance (RC) circuit with additional
synaptic conductances:

!m
dV
dt " V0 # V $ GE"t#"VE # V# $ GI"t#"VI # V#, (1)

where !m equals 30 msec and is the membrane time constant, V0 equals
$70 mV and is the resting potential, and VE and VI equal 0 and $90 mV
and are the reversal potentials for the excitatory and inhibitory synapses,
respectively. When the membrane potential reaches the threshold value
of $55 mV, an action potential is fired, and the membrane potential is
reset to $58 mV. The relatively high reset value was used to make the
voltage traces match typical somatic recordings. Use of a lower value did
not change the behavior of the model in any significant way.

When a presynaptic spike occurs on an excitatory afferent, the excita-
tory conductance is increased by the substitution:

GE3 GE $ gjDjSj , (2)

where j is a label identifying which afferent fired. The parameter gj is a
constant that sets the strength of synapse j, and Dj and Sj are factors

describing its degree of fast and slow depression as discussed below. If
the synapse for afferent j is inhibitory, a similar increment is made in the
inhibitory conductance:

GI3 GI $ gjDjSj . (3)

Between presynaptic action potentials, the synaptic conductances decay
exponentially to zero with time constants !E % 2 msec and !I % 10 msec:

!E
dGE

dt " $GE and !I
dGI

dt " $GI . (4)

Synaptic depression. Synaptic depression is modeled using the same
formalism and parameter values used to fit slice data (Abbott et al., 1997;
Varela et al., 1997). The general procedure is related to methods used
previously to describe short-term plasticity at the neuromuscular junction
(Liley and North, 1952; Magleby and Zengel, 1975; Krausz and Friesen,
1977; Zengel and Magleby, 1982; Sen et al., 1996) and adapted for our
purposes (Abbott et al., 1997; Varela et al., 1997; see also Grossberg,
1984; Tsodyks and Markram, 1997). Each time a presynaptic action
potential arrives at synapse j, the factors Dj and Sj for that synapse are
reduced by multiplicative factors:

Dj3 djDj and Sj3 sjSj . (5)

The fixed parameters dj and sj (with 0 % dj, sj % 1) determine the amount
of depression at synapse j induced by each spike and thereby control the
depression onset rate. Between presynaptic action potentials, Dj and Sj
recover exponentially toward the value one:

!D
dDj

dt " 1 # Dj and !s
dSj

dt " 1 # Sj . (6)

The time constants !D and !S determine the depression recovery rates.
This model provides a good fit of experimental data (Varela et al., 1997).
The two sets of equations listed above can be combined by writing:

!D
dDj

dt " 1 # Dj $ Dj ln"dj#!D!
&

'"t # t&# (7)

and:

!S
dSj

dt " 1 # Sj $ Sj ln"sj#!S!
&

'"t # t&# , (8)

where t& is the time of a presynaptic spike labeled by the index & and
'(t $ t&) is the Dirac ' function. These equations are convenient for
determining average values of the depression factors, although this
requires some care in taking the averages of the ' function terms. If
afferent j fires a Poisson spike train at rate Rj, the average steady-state
values of the depression terms are:

&Dj' "
1

1 $ "1 # dj#!DRj
and &Sj' "

1
1 $ "1 # sj#!SRj

. (9)

The parameter values we use lie within the range seen in the experimen-
tal data. For all of the simulations, !D % 300 msec, and !S % 20 sec. We
use the values s % 0.99 in all of the simulations where contrast adaptation
is considered and s % 1.0 when we simulate experiments involving a
constant level of adaptation. (We write the depression factors sj and dj
without the index j when their values do not depend on j.) Turning off the
slow form of depression in this way is a convenience to avoid having to
duplicate the sorts of manipulations that must be done in an experimen-
tal setting to avoid adaptation effects. The value of d varies between 0.4
and 1.0 in different simulations as noted.

The model of synaptic depression and parameters values used come
from studies of slices of rat primary visual cortex. The data on visually
evoked neural responses that we use to test the model come primarily
from experiments on cats. Therefore, our model relies on two extrapo-
lations, from in vitro to in vivo preparations and from rat to cat cortices.
The extrapolation from rat to cat is supported by the fact that results on
cat visual cortical synapses (Stratford et al., 1996) show short-term
plasticity very similar to that seen in the rat. Measurements on slices of
ferret visual cortex also reveal synaptic depression with similar properties
(J. A. Varela and S. B. Nelson, unpublished observations). The relation-
ship between short-term plasticity in vivo and in vitro has not been
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examined in detail in the visual system. However, synaptic depression has
been observed in parallel in vivo and in vitro studies of rodent somato-
sensory cortex (Castro-Alamancos and Connors, 1996; Gil et al., 1997).

Synaptic inputs. To isolate the role that synaptic depression plays in
shaping the temporal characteristics of V1 responses, we drive the model
simple cell exclusively with feedforward inputs (Hubel and Wiesel, 1962).
Although, in reality, V1 cells are part of a recurrent network, studying a
feedforward model allows us to identify the essential features caused by
synaptic depression without having to deal with the complexities of
recurrent network dynamics. In a recurrent circuit, the nonlinear prop-
erties we study on the output of a model simple cell are also present on
its inputs. To avoid this problem, we give all of the inputs to our model
V1 cell, both excitatory and inhibitory, the spatial and temporal charac-
teristics of linear LGN cells.

The model of synaptic depression we use is based on properties of the
layer 4 to layer 2/3 pathway within visual cortex that provides the major
excitatory synaptic drive to upper layer neurons (Abbott et al., 1997;
Varela et al., 1997). Recent results indicate that LGN inputs to neurons
in the primary visual and somatosensory cortices display depression
similar to that seen for synapses between pyramidal cells (Stratford et al.,
1996; Gil et al., 1997). Currently, less information is available about the
short-term synaptic plasticity of feedforward inhibition. Synapses from
inhibitory interneurons onto pyramidal cells of rat primary visual cortex
show the faster form of synaptic depression but to a lesser degree than
excitatory synapses (Song et al., 1997). Unfortunately, we do not know
how LGN–interneuron synapses contribute to the total short-term plas-
ticity along the feedforward pathway. In the absence of these data, we
simply assumed that the total synaptic depression of the inhibitory drive
to the model V1 cell is the same as that of the excitatory drive. We also
studied a feedforward model with exclusively excitatory drive. This
model produced results similar to those described below, although, of
course, there was no hyperpolarization below the resting potential.

The synaptic input to the model neuron is derived from the model of
LGN center–surround receptive fields described in the next section. The
structure of the receptive field of the model V1 simple cell is established
by the spatial arrangement of the receptive fields of its on- and off-center
afferents. Because we use contrast gratings that only vary spatially in one
dimension as visual stimuli, we use a one-dimensional spatial arrange-
ment of afferent receptive fields. To study response phase shifts, we
consider a simple linear arrangement that produces a three-lobed, off–
on–off V1 receptive field. This is obtained by dividing the afferents of
the model into three groups with receptive fields at three different spatial
locations (see Fig. 2 A). In the central region, we place on-center afferents
that act on the model V1 neuron via excitatory synapses and off-center
afferents that act via inhibitory synapses. In the two flanking regions, the
situation is reversed so that the excitatory inputs have off-center recep-
tive fields and the inhibitory inputs have on-center receptive fields. For
the directionally selective model neuron, we use two such arrangements
of afferent receptive fields shifted from each other by one-half the size of
the receptive field center (see Fig. 3A). Because our primary purpose is
to model the temporal response properties of V1 simple cells, we do not
model spatial receptive fields in detail. We have obtained similar results
from a variant of the model in which the spatial structure of the receptive
field is matched to a Gabor function by adjusting the values of the
synaptic weights of the inputs, but we use the simple geometric model
here.

In the nondirectionally selective model (see Fig. 2 A), all of the exci-
tatory synaptic strengths were set to gj % 0.009, and the inhibitory
synapses all had gj % 0.0025 (for exceptions, see Fig. 2 B, middle and
bottom, where values 2.4 and 10 times larger were used to compensate for
the increased degree of depression). For the directionally selective model
(see Fig. 3A), the nondepressing excitatory synapses had gj % 0.0075, and
the nondepressing inhibitory synapses had gj % 0.002. For the depressing
synapses, these values were increased by a factor of 10. Some scaling of
these values was done from figure to figure to produce firing rates within
a range that matched data for a particular cell. In some cases (see Figs.
4–6), all of the synaptic conductances were multiplied by 1.25. When we
activated the slower form of synaptic depression to model contrast
adaptation, we had to increase the synaptic conductances to compensate
for the average tonic level of slow depression. The synaptic conductances
were multiplied by factors of 5.5, 4, and 6.25 (see Figs. 7–9, respectively).
Responses of the model without simulated visual images and using gj %
0.05 are also shown (see Fig. 1).

We use a sufficient number of afferents to drive our model V1 cell to
reduce the Poisson noise in the membrane potential and the variability in

the firing rate of the model simple cell to a level that allows us to perform
single-trial simulations. This was done merely for convenience; using a
smaller number of afferents and averaging over trials (as is done in
experimental work) can yield similar results. In the receptive field, each
circle represents 80 (see Fig. 2 A) or 40 (see Fig. 3A) excitatory and
inhibitory afferents. In another case (see Fig. 1), a total of 200 afferents
was used.

Model of afferent firing rates. To model the afferent spike sequences that
drive the V1 cell, we use a standard LGN model that produces a Poisson
spiking output at a rate computed from a linear space–time filter acting
on the luminance of the visual input (see, for example, Wörgötter and
Koch, 1991). The particular implementation we use is from the work of
Maex and Orban (1996). The spatial structure of the afferent receptive
fields is center–surround described by the difference of two Gaussian
functions. The temporal response of both the center and the surround is
given by the difference of two ( functions with the surround response
slower than the center response. The difference between the stimulus
luminance at the point (x, y) at time t and the average background
luminance is denoted I(x, y, t). The firing rate of afferent j at time t in
response to this stimulus is given by the difference of center (c) and
surround (s) contributions:

Rj"t# " Rb ) A"C# "dxdydt()Wc" x, y# Kc"t # t(#

# 0.6 * Ws" x, y# Ks"t # t(#*I" x, y, t(#. (10)

Rb is the background firing rate set to 5 Hz (for an exception, see Fig. 8
where we used a background rate of 15 Hz to get better agreement with
the data), and A( C) is a contrast-dependent amplitude factor discussed
below with C a measure of contrast that varies from zero to one. The
choice of plus or minus in this equation determines whether the afferent
is of the on-center (+) or off-center ($) type. The spatial filters for the
center (c) and surround (s) are:

Wc, s" x, y# "
1

2+,c, s
2 exp#$

" x # xj#2 $ " y # yj#2

2,c, s
2 $ , (11)

where (xj, yj) is the location of the center of the receptive field for afferent
j. The receptive field size is set by the parameters ,c % 0.3° and ,s % 1.5°.
The temporal filters used to model the afferents are:

Kc, s"t# " (c, s
2 t exp"$(c, st# # -2t exp"$-t#, (12)

with 1/(c % 8 msec, 1/(s % 16 msec, and 1/ - % 32 msec.
The computed firing rate Rj is used to drive a Poisson spike generator

that produces action potentials on afferent j to the model V1 simple cell.
The Poisson spike generator produces an action potential during a short
time period of duration ,t around the time t with probability Rj(t),t. If
Rj(t) - 0, no spike is fired.

LGN firing rates do not increase linearly as image contrast is in-
creased; they saturate. The afferent model described by the above equa-
tions is linear as a function of the stimulus function I, but we include this
nonlinear effect via the contrast amplitude factor A( C). To do this, we
restrict I to lie in the range $1 % I % 1. Afferent responses at contrast
level C are scaled by the contrast amplitude factor:

A"C# " "172 Hz#ln"67C#, (13)

obtained by fitting data of Ohzawa et al. (1985). We only use Equation 13
in the range C . 0.015 (1.5% contrast) where the logarithm is positive.
To simulate images with no contrast, we set A % 0. We have also used the
fit A ( C n/(C50

n + C n) (Cheng et al., 1995) in the model and found that
it gives similar results.

Comparison with data. We compare the results of the model with
previously published data (see Figs. 3, 4, 7, 8). We have extracted the
data curves or points in these figures from the cited references using the
graph tracing program DataThief and then redrawn the figures.

RESULTS
Transient responses
The temporal response characteristics of the model simple cell we
have constructed are affected by the temporal dynamics of the
LGN cell model of the afferents and by synaptic depression.
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Nonlinear dynamics in the model V1 cell can arise from rectifi-
cation of afferent and V1 firing rates as well as from nonlinear
synaptic depression. Before analyzing the complete model, we
present a simulation that reveals the basic features arising solely
from the rapid form of synaptic depression. To isolate these
features, we drive the model V1 neuron by manipulating directly
the firing rate of its afferents rather than by using simulated visual
images. Inhibitory afferents were not activated in this simulation.
Furthermore, we study the membrane potential of the model
simple cell with action potentials blocked. These steps eliminate
the effects of temporal filtering by the LGN-like afferent model
and of output firing rate rectification.

The frequency–response characteristics of the model V1 cell
are shown in Figure 1B. To generate this figure, we modulated

identically the firing rates of all the excitatory afferents to the
model V1 cell, although individual action potentials were gener-
ated independently on each afferent. The common afferent firing
rate oscillated over time at a variety of frequencies and took the
form of a rectified sine wave with a peak firing rate of 100 Hz.
Two different cases were considered, a periodic pattern formed
from a rectified sine wave as shown on the top of Figure 1A and
a single pulse consisting of one cycle of a rectified sine wave as
shown in the middle of Figure 1A. Figure 1B is a plot of the
amplitude of the membrane potential fluctuations produced in
the model V1 cell by these patterns of afferent firing. The solid
circles and triangles correspond to the case in which the rapid form
of depression was present with d % 0.75. The open symbols show
the results without any synaptic depression (d % 1.0) for compar-

Figure 1. Temporal response properties arising from synaptic depression. A, The model neuron was stimulated by modulating the rate of Poison spike
sequences on its afferents. Action potentials were blocked. Top, Middle, The temporal pattern of afferent firing rates used in B, either single (triangles)
or multiple (circles) cycles of a rectified sine wave with a peak of 100 Hz. B, Plots of the peak-to-peak membrane potential fluctuation evoked by the
pattern of presynaptic stimulation in A are shown. The circles refer to periodic afferent firing rates, and the triangles refer to single-pulse stimulation. The
solid symbols correspond to depressing synapses (d % 0.75), whereas the open symbols show the results without synaptic depression (d % 1). C, The
membrane potential response to a step change in the afferent firing rates. The solid curve is with depression (d % 0.75), and the dashed curve is without
depression (d % 1). D, Synaptic depression causes nonlinear summation. The afferent firing rates were modulated around a background of 50 Hz by the
sum of a 0.5 and a 3 Hz sine wave. The solid curve is the resulting membrane potential. The dashed curve is a membrane potential obtained by summing
the separate responses to the background rate and the two different oscillations. Differences between the two curves show the effect of nonlinear
summation.
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ison purposes. In both cases, the slow form of synaptic depression
was eliminated by setting s % 1. Conductance strengths were
adjusted so that the peak responses to periodic input-rate oscil-
lations were the same with and without synaptic depression.

For low afferent oscillation frequencies, the response ampli-
tudes plotted in Figure 1B for the periodic and transient cases are
identical, but the frequency–response curves with and without
depression are different. Without depression, the frequency re-
sponse is approximately that of a resistance-capacitance circuit,
and it peaks at zero frequency. With depression, the response
peaks at !2 Hz. The increase in response amplitude between 0
and 2 Hz is attributable to the onset of depression during the
rising phase of the afferent firing rate increase. At low modulation
frequencies, depression sets in well before the afferent rate
reaches its peak value. At higher frequencies, the afferent firing
rate increases quickly enough so that it can get closer to its peak
value before depression sets in. The peak response frequency
depends on the value of d, and for typical values seen in the slice
data (Varela et al., 1997), such as d % 0.75, it falls in a range that
matches peak response frequencies for V1 neurons responding to
oscillating images. Above a few Hertz, the response amplitude for
single pulse afferent rates without depression and for periodic
afferent rates with and without depression all fall off rapidly as a
function of frequency. This is the result of the low-pass filtering
properties of the equivalent circuit model of the neuron [for a
discussion of a bandpass filtering model, see Maex and Orban
(1992)]. Synaptic depression causes the response to periodic af-
ferent rate fluctuations to roll off slightly more rapidly than when
depression is absent. This is because, for high-frequency oscilla-
tions, there is insufficient time for the synapses to recover from
depression between successive pulses of afferent firing. The solid
triangles in Figure 1B show that synaptic depression has a dra-
matic effect on responses to transient, single-pulse fluctuations in
the afferent firing rates. For such transients, the response ampli-
tude continues to rise as a function of frequency until it peaks at
!10 Hz. This occurs because, for single pulses, recovery from
depression between pulses is not an issue and the rapid onset of
a high-frequency pulse allows the firing rate to get closer to its
maximum value before depression sets in. The eventual roll off
above 10 Hz is due to the filtering properties of the postsynaptic
cell. The effects of synaptic depression seen in Figure 1B repro-
duce characteristic features of cortical responses: the rise in
response amplitude at low frequency, the response peak at a few
Hertz, and the increase in both response amplitude and response
cutoff frequency for transient as opposed to periodic stimuli.

Figure 1C shows the membrane potential of the model neuron
in response to a sudden step in the afferent firing rates from 0 to
50 Hz. The dashed curve, showing the response without synaptic
depression, resembles a typical capacitive charging curve. When
synaptic depression is included, the membrane potential over-
shoots by approximately a factor of two and then settles to its
steady-state value. Similar overshoots are a common feature of
the firing rates of cortical neurons in response to sudden stimulus
onsets (Maunsell, 1987).

The reduced model, in which synaptic depression is the only
nonlinearity, displays nonlinear temporal summation as seen in
Figure 1D. The membrane potential trajectory indicated by the
solid line in Figure 1D was evoked by setting all of the excitatory
afferent firing rates to an expression involving the sum of two
sinusoids: r % 50 Hz [1 + 0.5 sin(2+ f1t) + 0.5 sin(2+ f2t)], with f1
% 0.5 Hz and f2 % 3 Hz. The dashed line in Figure 1D was
computed by summing the membrane potential trajectories gen-

erated by the DC term and the two sinusoids in this expression
separately. The failure of linear summation is evident. The re-
sponse of the model to a combined stimulus like this, consisting of
a sum of low- and high-frequency oscillations, can be separated
into corresponding low- and high-frequency components by Fou-
rier analysis. When this is done, we find that in the model, as in
the data (Dean et al., 1982), the amplitude of the low-frequency
component is smaller than when the low-frequency signal is
presented alone, whereas the amplitude of the high-frequency
component is larger than when the high-frequency stimulus is
presented alone. This latter effect can be seen by carefully com-
paring the two traces in Figure 1D. This figure also reveals that
the low-frequency oscillation induces more of a multiplicative
amplitude modulation in the response to the high-frequency stim-
ulus than a linear additive shift.

We can use the result in Equation 9 to understand the nonlin-
ear summation seen in Figure 1D. Suppose that R % A + B sin(2+
f1t) + C sin(2+ f2t) as in Figure 1D, f1 is small enough so that the
depression factor D remains near its steady-state value during the
slower oscillations, and f2 is large enough so that oscillations at
this frequency have a minimal temporal effect on synaptic depres-
sion. In this case, D / rD/[rD + A + B sin(2+ f1t)], where rD %
1/[(1 $ d)!D]. The level of postsynaptic drive attributable to an
afferent firing at rate R via a synapse depressed to a level D is
approximately DR. Thus, the effect of these two different sinu-
soids is approximately rD [A + B sin(2+ f1t) + C sin(2+ f2t)]/[rD

+ A + B sin(2+ f1t)]. The rapidly varying part of this expression,
rD C sin(2+ f2t)/[rD + A + B sin(2+ f1t)], shows the effect seen in
Figure 1D, in which the amplitude of the high-frequency oscilla-
tion is modulated by a low-frequency term in a multiplicative
rather than in an additive form.

Temporal phase shifts
Having illustrated the basic features introduced by synaptic de-
pression, we now include the LGN-like afferent model in our
simulations and drive the model V1 neuron with simulated visual
input. The basic arrangement considered in this section is shown
in Figure 2A. The afferent receptive fields are arranged to form
a V1 receptive field consisting of a central “on” region and two
flanking “off” regions. The visual image used in these simulations
is a grating with sinusoidal variations in both space and time. The
maximum contrast and temporal oscillation frequency of the
grating were varied, but its spatial wavelength was held fixed at a
value that maximized the V1 response.

The membrane potential of the model neuron, with action
potentials blocked, in response to an oscillating grating with
different degrees of depression is shown in Figure 2B. Without
depression (d % 1.0), the membrane potential varies approxi-
mately sinusoidally because the transform from image luminance
to membrane potential is approximately linear in the model.
When depression is included (d % 0.75 and d % 0.4), a temporal
nonlinearity is immediately evident because the waveform in
response to a sinusoidal input is not sinusoidal. The time of peak
depolarization (and peak hyperpolarization) advances via the
effects of synaptic depression until it shifts by almost 90°. This
occurs because depression sets in during the rising phase of the
afferent response. The magnitude of the phase shift depends on
both the frequency and the level of contrast. To quantify this
effect, we computed the phase of the Fourier component of the
membrane potential at the frequency of the stimulus. This is
plotted as a function of stimulus frequency in Figure 2C. The
response phase of a resistance-capacitance circuit varies as a
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function of frequency and can account for the major part of the
dependence of response phase on frequency. However, depres-
sion produces an appreciable phase advance for frequencies be-
tween !0.25 and 6 Hz relative to the phase of the nondepressing
case (Fig. 2C, open circles). The phase advance attributable to
depression is plotted in Figure 2D. Note that the phase shift
computed in this way is considerably smaller than the phase shift
of the peak of the membrane potential depolarization seen in
Figure 2B.

For a linear system, the phase cannot depend on amplitude or,
in this case, contrast. When synaptic depression is eliminated, the
phase of the model V1 cell membrane potential oscillations is
indeed insensitive to contrast (Fig. 2E, open circles). Depression
causes the phase to advance as the contrast is increased (Fig. 2E,
solid circles). Phases of experimentally recorded V1 responses
advance as the contrast is increased in qualitative agreement with
the results of Figure 2E, but the magnitude of the effect is
considerably larger in the data (Dean and Tolhurst, 1986; Ham-

Figure 2. Synaptic depression causes temporal phase shifts. A, Schematic of the arrangement of afferent receptive fields used to drive the model simple
cell. Areas marked OFF correspond to the central regions of off-center afferents with excitatory synapses onto the simple cell and of on-center afferents
with inhibitory synapses. Conversely, within the ON region, the central regions of on-center afferents excite the model V1 cell, and of off-center afferents
inhibit it. For B–E, the stimulus used was a contrast grating that varied as sin(2+ f t) sin(2+ x/.), where f is the temporal frequency and . is the spatial
wavelength. The spatial wavelength was set to match the spacing of the afferent receptive fields, whereas the temporal oscillation frequency or contrast
was varied. B, Membrane potential as a function of time in response to a 2 Hz oscillating grating (100% contrast) for different levels of synaptic
depression. Top, no depression; middle, d % 0.75; bottom, d % 0.4. C, Response phase relative to the phase of the oscillating grating for different oscillation
frequencies at 100% contrast. Open circles correspond to no depression, and solid circles correspond to d % 0.75. D, The difference between the response
phases in C with and without synaptic depression plotted as a function of stimulus frequency. E, The response phase relative to the stimulus for an
oscillation frequency of 2 Hz as a function of stimulus contrast. Open circles correspond to no depression, and solid circles correspond to d % 0.75.

4790 J. Neurosci., June 15, 1998, 18(12):4785–4799 Chance et al. • Synaptic Depression and V1 Responses



ilton et al., 1989; Reid et al., 1991; Carandini and Heeger, 1994).
There are some complications in relating the phase of the mem-
brane potential to the phase extracted from the principal Fourier
component of a spike sequence. As we have mentioned, the peak
phase of the membrane potential advances more than the phase
of its principal Fourier component. The phases extracted from
spikes, from the peak potential, and from subthreshold oscilla-
tions are all different, and the relationship between them depends
on details of the membrane potential waveform and on the value
of the spiking threshold. Synaptic depression is only one potential
contributor to response phase shifts. Additional LGN shifts,
spike-rate adaptation, conductance changes, and intracortical ef-
fects are other possible sources (Priebe et al., 1997; Carandini et
al., 1998).

Direction selectivity
Models of direction selectivity in neuronal responses to moving
images are based on a combination of temporal and spatial phase
shifts (Barlow and Levick, 1965; Adelson and Bergen, 1985;
Watson and Ahumada, 1985; Borst and Egelhaaf, 1989; Heeger,
1993; Smith and Snowden, 1994; Suarez et al., 1995; Maex and
Orban, 1996). In these models, inputs from different spatial loca-
tions within the receptive field are subjected to different temporal
delays or advances so that an image moving in the preferred
direction produces synchronous excitation and a large response.
Movement in the opposite direction leads to asynchronous exci-
tation and a weaker response. A spatial phase shift between
different sets of inputs to a V1 neuron can be established by
appropriate positioning of the receptive fields of its afferents. The
source of the temporal phase shift is more problematic. Potential
sources include lagged responses in the LGN (Mastronarde, 1987;
Saul and Humphrey, 1990) or delays caused by cortical loops
(Suarez et al., 1995; Maex and Orban, 1996). In both of these
cases, the relevant temporal phase shift is a delay. Figure 2B
shows that synaptic depression is another candidate, although in
this case the temporal phase shift is an advance not a delay.

Figure 3 shows how the phase advance attributable to synaptic
depression can give rise to directionally selective responses. The
key element in the model is a correlation between the spatial
location of a given input and the degree of depression it displays.
We discuss arrangements with multiple components and graded
degrees of depression below, but first we consider the simplest
possible scheme. As seen in Figure 3A, the model V1 neuron is
driven by two sets of inputs each consisting, as before, of a central
on region flanked by two off regions. The two sets are shifted in
space relative to each other by one-half the size of the central
region of the afferent receptive field. This produces the spatial
shift needed in the model. The temporal shift is generated by
connecting these two sets of inputs to the model cortical neuron
via synapses exhibiting different degrees of depression. In this
example, one set has no depression (d % 1), and the other has a
fairly large amount of depression (d % 0.4). The membrane
potential fluctuations produced in the model V1 cell (with action
potentials blocked) by these two sets of inputs separately are
shown on the lef t of Figure 3B. These traces were generated by a
temporally oscillating, stationary grating positioned to produce
the maximum response in each case. The set of nondepressing
inputs evokes an approximately sinusoidal oscillation (dashed
curve) like that seen in the top of Figure 2B. Input through the
depressing synapses generates a sawtooth waveform (solid curve)
similar to that seen in the bottom of Figure 2B. The sawtooth
waveform is advanced in phase relative to the sinusoidal form.

Intracellular recordings of direction-selective neurons in cat
visual cortex have been made by Jagadeesh et al. (1993). We
compare the membrane potential of our model neuron with their
results in Figure 4. Kontsevich (1995) (see also Ferster, 1994) has
analyzed this intracellular data and discovered that it can be fit
quite well using a phenomenological model based on two princi-
pal components. The components extracted by Kontsevich (Fig.
3B, right) are quite similar to the two components that contribute
to the membrane potential in our model (Fig. 3B, lef t). This
similarity first led us to consider synaptic depression as a mech-
anism for direction selectivity.

Figure 3, C and D, shows how the model of direction selectivity
works. When a grating moves in the preferred direction (Fig. 3A,
from lef t to right), it aligns with the receptive fields of the afferents
with nondepressing synapses before it aligns with those that de-
press. Nevertheless, synaptic depression advances the response so
that the peak of the depolarization caused by the depressing
synapses (Fig. 3C, upper, solid curve) occurs at approximately the
same time as the peak of the contribution of the nondepressing
synapses (Fig. 3C, upper, dashed curve). When the two contribu-
tions are added together, they produce sufficient depolarization to
make the model neuron fire action potentials (Fig. 3C, lower).
When the direction of motion is reversed, the grating aligns with
the nondepressing inputs after it aligns with the receptive fields of
the depressing synapses. In this case, the contribution of the
depressing synapses to the membrane potential (Fig. 3D, upper,
solid curve) is out of phase with that of the nondepressing syn-
apses (Fig. 3D, upper, dashed curve). When the two are summed,
the total depolarization is subthreshold, and no firing results (Fig.
3D, lower).

Figure 4 compares the membrane potential in our model with
the intracellular recordings of Jagadeesh et al. (1993). A station-
ary oscillating grating was used as the stimulus for both the model
and the experiments, and the different traces show the responses
for different positions of the grating. In both cases, the response
at 0° spatial phase is approximately sinusoidal. In the model, this
occurs because the grating in this position aligns with the recep-
tive fields of the inputs without synaptic depression. At approxi-
mately 90° spatial phase, the membrane potential in both the
model and the data has the sawtooth shape that we have seen
before. In the model, this occurs because the grating now aligns
with the receptive fields of the afferents with synapses that
depress.

Any model of direction selectivity must account for the fact
that neurons can remain directionally selective over a wide range
of contrasts. Figure 5A shows that this is true for our model. The
firing rate of the model V1 neuron increases as a function of
contrast for motion in both the preferred and nonpreferred di-
rections. However, the direction index is constant and near one
over the entire contrast range shown (the direction index is the
difference between the firing rates in the preferred and nonpre-
ferred directions divided by the firing rate in the preferred
direction). Figure 5B shows that the firing rate evoked by a
grating moving in the preferred direction varies with temporal
frequency in the typical manner of a cortical response, peaking at
!2 Hz and falling off above !10 Hz (for a moving grating, the
temporal frequency is the speed of the motion divided by the
spatial wavelength of the grating). Although the response in the
preferred direction is greatly decreased at low temporal frequen-
cies, the model neuron remains at least somewhat directionally
selective. Directionally selective neurons show a wide variety of
frequency and contrast–response characteristics, and those shown
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in Figure 5 fall within observed ranges (Orban et al., 1986; Reid
et al., 1991; Tolhurst and Dean, 1991; Saul and Humphrey, 1992).

The directionally selective model of Figures 3–5 is based on
having two populations of inputs with different spatial phases and
different degrees of depression. It is possible to avoid such a
simplistic scheme and construct models that involve a continuous
variation in the degree of synaptic depression. The critical com-
ponent in these models is that the degree of depression for a given
input must be correlated with its spatial phase. We have con-
structed such a model with spatial receptive fields divided into

two groups, as in Figure 3A, but with a continuous range of
depression factors. These factors fell in the range 0.4 % dj % 1.0.
Afferents with dj % 0.7 shared one spatial placement, and those
with dj . 0.7 had the second spatial placement. The firing rates,
direction index, and frequency–response curves for this model
are shown in Figure 6. The graded model tends to be less
directionally selective than the simple two-component model,
although it retains a constant directional index as a function of
contrast (Fig. 6A). The difference in the frequency–response
profile of this model neuron (Fig. 6B) for motion in the nonpre-

Figure 3. Model of a directionally selective simple cell. A, The arrangement of afferent receptive fields. Each row of circles is identical to that shown
in Figure 2A, and the two rows are displaced from each other in the horizontal direction by one-half the width of the central region of an afferent
receptive field (the vertical displacement of the two rows in the figure is only for clarity; the V1 receptive field is one-dimensional). The upper circles
represent afferents coupled to the V1 cell without synaptic depression, and the lower circles are inputs with synapses that depress (d % 0.4). B, Left, Model
V1 cell membrane potentials evoked by driving the two rows of inputs separately using a sinusoidal counterphase grating oscillating at 2 Hz. The solid
curve is the potential caused by driving the afferents with depressing synapses (shaded circles in A), and the dashed curve corresponds to driving the
afferents with nondepressing synapses (open circles in A). Right, The two principal components replotted from Kontsevich’s (1995) analysis of the
intracellular recordings of Jagadeesh et al. (1993). C, Plots of the membrane potential of the model simple cell in response to a grating moving in the
preferred direction. Upper, The peak membrane potential fluctuations induced separately by the depressing (solid curves) and nondepressing (dashed
curves) inputs are in phase. Lower, When both components are present, the model neuron fires action potentials. D, Plots of the membrane potential of
the model simple cell in response to a grating moving in the nonpreferred direction. Upper, The membrane potential fluctuations induced separately by
the depressing (solid curves) and nondepressing (dashed curves) inputs are out of phase. Lower, When both components are present, the model neuron
fails to fire any action potentials.
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Figure 5. Direction selectivity as a function of contrast and frequency. A, The firing rate of the model V1 cell shown in Figures 3 and 4 as a function
of the contrast of the moving grating for motion in the preferred (solid circles) and nonpreferred (open circles) directions. The upper curve (+ symbols)
is the directional index, plotted as a percentage. B, The firing rate in response to a grating of 100% contrast moving in the preferred (solid circles) and
nonpreferred (open circles) directions as a function of frequency.

Figure 4. A comparison of the membrane potential of the model simple cell with in vivo intracellular recordings from a neuron in area 17 of a cat. In
both cases, the stimulus was a stationary counterphase grating oscillating at 2 Hz and positioned at different spatial phases as indicated. A, Membrane
potential of the model neuron. B, Recorded membrane potentials replotted from Jagadeesh et al. (1993). Calibration: horizontal, 100 msec; vertical, 10
mV for the model and 2.5 mV for the data.
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ferred direction compared with that in Figure 5B is attributable
primarily to its higher firing rate compared with that of the model
of Figure 3A and is not a necessary correlate of this architecture.

We have used oscillating stimuli and discussed phase shifts in
our presentation of the directionally selective model, and that
might leave the impression that it requires oscillating stimuli to be
directionally selective. We have verified that this is not the case.
For example, the response of the model neuron to two spatially
displaced gratings that are flashed transiently depends on the
order in which they appear in a manner consistent with its
direction selectivity.

Contrast adaptation
The effects we have discussed thus far are caused by the fast
component of synaptic depression. We now turn our attention to
the slower component that, when activated by setting s % 0.99
(rather than s % 1), causes the responses of the model simple cell
to change slowly over time as the slow depression either sets in or
recovers from previous activity. Figure 7 compares a model
simulation with an experiment on contrast adaptation in neurons
of cat area 17 performed by Ohzawa et al. (1985). The stimulation
sequence in Figure 7 goes from top to bottom. In both the
simulation and the experiment, the firing rate at 0% contrast is
essentially zero. After a 30 sec period during which contrast
adaptation to the 0% stimulus takes place, the response to a
low-contrast grating is transiently vigorous but then relaxes to a
lower firing rate. After another 30 sec adaptation period, the
response to a high-contrast grating once again consists of a
transient period of rapid firing followed by steady-state firing at a
lower rate. When the low-contrast grating is presented for a
second time, there is no initial response because of the previous
adaptation to the high-contrast stimulus. The steady-state re-
sponse is established after a slow buildup period. The model
neuron, with contrast adaptation arising solely from slow synaptic
depression, duplicates the results seen in the experimental re-
cordings quite well.

Figure 8 compares the contrast–response curves for the model
neuron and a cat area 17 neuron recorded by Ohzawa et al. (1985)
under a variety of preadapted conditions. Contrast adaptation
causes the curves to shift rightward in the model as in the data.
We can approximate the effect of synaptic depression on contrast
response using some of the results derived when we discussed the
model of depression. The total drive coming from an afferent
with firing R is R times the level of depression of its synapse onto
the V1 neuron. The average steady-state level of depression is
given by Equation 9. After adaptation to a sustained firing rate
Radapt , this drive is equal to R/([1 + (1 $ dj)!DR] [1 + (1 $
sj)!SRadapt]). Synaptic depression thus implements a form of di-
visive contrast normalization similar but not identical to that
discussed by Heeger (1992) and Carandini and Heeger (1994).
Synaptic depression causes the postsynaptic response to begin to
saturate when the input rates are larger than rD % 1/[(1 $ d)!D].
In agreement with experimental data (Albrecht and Hamilton,
1982; Skottun et al., 1986), the saturation level depends on the
afferent firing rate and hence on the contrast level, not on the
firing rate of the postsynaptic V1 neuron.

Recently two groups have recorded intracellularly in anesthe-
tized cats during contrast adaptation protocols (Ahmed et al.,
1997; Carandini and Ferster, 1997). Ahmed et al. (1997) found no
clear intracellular correlate of contrast adaptation in the recorded
subthreshold membrane potentials. Carandini and Ferster (1997)
have reported that the dominant effect of contrast adaptation on
the recorded membrane potentials was a DC hyperpolarization.
In the majority of cells, contrast adaptation did not significantly
alter the amplitude of the membrane potential oscillations evoked
by an oscillating stimulus. Our model is not in complete agree-
ment with these results. Figure 9 shows the membrane potential
of the model simple cell in response to oscillating gratings at 0, 5,
and 100% contrast. The solid curves show the response after
adaptation to a 100% contrast grating, and the dashed curves show
the response after adaptation to a 5% contrast grating. Adapta-

Figure 6. Directional selectivity in a model with graded amounts of depression. A, The firing rate of the model cell as a function of the contrast of the
moving grating for motion in the preferred (solid circles) and nonpreferred (open circles) directions. The horizontal curve (+ symbols) is the directional
index, plotted as a percentage. B, The firing rate in response to a grating of 100% contrast moving in the preferred (solid circles) and nonpreferred (open
circles) directions as a function of frequency.
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tion to the high-contrast grating causes a DC hyperpolarization
(Fig. 9A–D) in agreement with the results of Carandini and
Ferster (1997). However, the amplitude of the oscillations in
response to the 5% (Fig. 9B) and 100% (Fig. 9C) contrast stimuli
is clearly smaller for high-contrast adaptation than for low-
contrast adaptation, an effect not seen by Carandini and Ferster
(1997) in the majority of cells they recorded. In Figure 9A–C,
action potentials have been blocked in the model to show the
membrane potential oscillations without the spiking nonlinearity.
Figure 9D shows the membrane potential of the model under the
same conditions used in Figure 9C but with the model producing
spikes every time the neuron rises to the threshold potential (for
clarity, the spikes have been truncated in this figure). The spike
generation mechanism in the model clips the membrane potential
oscillation so that it does not rise above the action potential
threshold. Clearly, if action potentials are not integrated into the
potential in some way, spiking seriously distorts the picture and
greatly reduces the amount by which contrast adaptation modifies
the amplitude of membrane potential oscillations. The effects of
spikes have been included in the data from the intracellular
recorded membrane potentials by a method of averaging and
interpolation (Carandini and Ferster, 1997), but, ideally, the

results of the model should be compared with intracellular re-
cordings with action potentials internally blocked. Nevertheless,
as Carandini and Ferster (1997) have noted, the data seem to
suggest the presence of a tonic component in the synaptic input
that slowly depresses, and this is not present in the model we have
described.

DISCUSSION
Simple cells exhibit nonlinear behavior in both the spatial and
temporal domains, but the nature and source of these nonlineari-
ties appear to be different. A large body of data suggests that
spatial summation of subthreshold inputs to simple cells is linear
and that the dominant source of nonlinearity in the spatial do-
main is the action potential threshold (Ferster, 1994). Nonlinear
behavior in the time domain seems to be richer and difficult to
explain as arising purely from a spiking threshold. Transient and
sustained visual responses exhibit different types and degrees of
nonlinear behavior. Transient responses show strong temporal
nonlinearities, including enhancement of high-frequency compo-
nents (Ikeda and Wright, 1975; Movshon et al., 1978; Kulikowski
et al., 1979; Tolhurst et al., 1980). Sustained responses show more
subtle temporal nonlinearities, in particular the failure of linear

Figure 7. Contrast adaptation from slow synaptic depression. Left, The different stimuli used and the sequence in which they were presented. Each
stimulus presentation lasted for 30 sec. Middle, The firing rate of the model V1 neuron in response to each stimulus, starting from the time of stimulus
onset. Right, Data from recordings of cat area 17 neurons replotted from Ohzawa et al. (1985). In both cases, the stimulus was a 2 Hz grating moving
in the preferred direction.
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summation (Dean et al., 1982; Reid et al., 1992). We have found
that the synaptic depression measured and modeled from exper-
iments involving slices of primary visual cortex (Abbott et al.,
1997; Varela et al., 1997) can account for nonlinear temporal
effects in responses to both sustained and transient stimuli. Syn-
aptic depression is particularly well suited to explain the marked
differences between the responses to transient and periodic stim-
uli, including both the higher response frequency range and the
increased response amplitude for transient stimuli.

Perceptual and single-unit studies have revealed the existence
of sustained and transient channels in vision (for review, see
Maunsell, 1987). Although a number of factors, including retinal
and LGN cell type, contribute to this distinction, our studies
indicate that differences in the degree and type of short-term
synaptic plasticity can dramatically affect the temporal character
of cortical responses.

Despite its extreme simplicity, our simple-cell model does a
fairly good job of matching data on nonlinear temporal summa-
tion, direction selectivity as a function of frequency and contrast,
and contrast adaptation. Results on the contrast dependence of
response phase shifts suggest that synaptic depression may be a
significant contributor to this effect (see also Priebe et al., 1997).

Previous models of directionally selective simple cells have
used a variety of mechanisms to generate the necessary temporal
phase shifts (Saul and Humphrey, 1990; Suarez et al., 1995; Maex
and Orban, 1996). In these models, direction selectivity arises
from a temporal delay combined with a spatial phase shift. In our
model, direction selectivity arises from a phase advance. The
intracellular recordings of Jagadeesh et al. (1993) shown in Fig-
ure 4 and the principal components extracted from these data by
Kontsevich (1995) shown in Figure 3B suggest that the more
nonlinear component is phase advanced relative to the more
linear (that is, sinusoidal) component. If the source of the non-

linearity and the source of the phase shift are the same, as they
are in our model, the phase shift must be an advance not a delay.
A model based on a delay mechanism must use an approximately
linear delay mechanism and then explain by a separate mecha-
nism the nonlinear behavior in the other component. The intra-
cellular recordings can potentially be explained by a single mech-
anism if the source of direction selectivity is a phase advance.

In the directionally selective model, we have adjusted the
relative strengths of the depressing and nondepressing synapses
so that their steady-state amplitude is approximately equal. As a
result, the synaptic conductance parameter that sets the synaptic
strength in the model was larger for depressing synapses than for
nondepressing synapses. This is consistent with the assumption
that these two sets of synapses differ in the probability of vesicle
release. It is observed experimentally that depression is maximal
for synapses with high release probabilities and decreases when
the release probability is smaller (Atwood and Wojtowicsz, 1986;
Zucker, 1989; Tsodyks and Markram, 1997; Varela et al., 1997).
Because the synaptic strength parameter gj is proportional to
release probability, this is exactly the type of relationship used in
the directionally selective model.

The directionally selective model requires a correlation be-
tween the spatial phase of a particular afferent and the degree of
depression at its synapse onto the V1 cell. Deficits in strobe-
reared cats suggest that activity may play a role in establishing
direction selectivity (Pasternak et al., 1985). The correlations
needed in our model could arise from an activity-dependent
learning rule that adjusts the degree of synaptic depression on the
basis of the spatial phase of the input. Markram and Tsodyks
(1996) have found that a long-term potentiation (LTP) paradigm
that enhances the amplitude of postsynaptic currents in response
to a single presynaptic spike also increases the degree of synaptic
depression, so that the steady-state response to repetitive presyn-

Figure 8. Contrast–response curves for different levels of adaptation. Each curve shows the response as a function of contrast after the neuron has been
fully adapted to the level of contrast indicated. The stimulus was a 2 Hz grating moving in the preferred direction. A, Contrast–response curves of the
model neuron. B, Contrast–response curves of a cat area 17 neuron redrawn from Ohzawa et al. (1985).
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aptic input remains unchanged. A form of LTP that targets the
degree of synaptic depression is exactly what is needed for
activity-dependent development of directional selectivity via syn-
aptic depression. Modeling work on correlation-based activity-
dependent development (Miller, 1992) of direction selectivity in
other models (Miura et al., 1995; Feidler et al., 1997) may provide
the mechanism needed to correlate activity-dependent modifica-
tion of the degree of depression with the spatial phase of a
particular input, although this has not yet been verified.

Synaptic transmission at a synapse that exhibits depression
depends on the relation of presynaptic activity to the activity that
immediately preceded it. The presynaptic spiking pattern that
produces the largest postsynaptic current is a period of silence
followed by a high rate of activity. Visual neurons often respond
most vigorously if the appearance of an optimal image is pre-
ceded by an “opposite” image, for example, contrast reversed.
Recently Ringach et al. (1997) have measured reverse correla-
tions for orientation tuning at short time intervals. Their data
show this “reversal” effect; many neurons respond most vigor-
ously if an optimally oriented image is preceded by an orthogonal
orientation [the effects of synaptic depression on the dynamics of
orientation tuning have been considered by O. Artun, H. Shouval,
and L. Cooper (personal communication)]. Optimal stimuli that
are anticorrelated in this way arise naturally from synaptic
depression.

We have studied the idea that synaptic depression may also play
an important role in contrast adaptation. The onset of synaptic
depression depends on the number of presynaptic action poten-
tials and thus is both rate and contrast dependent. Consistent
with this, the magnitude and onset rate of adaptation increase as
the temporal frequency of the visual stimulus increases (Maddess
et al., 1988; Bonds, 1991; Nelson, 1991a). Pharmacological ma-
nipulations (Nelson, 1991b; McLean and Palmer, 1996) and in-
tracellular recordings (Carandini and Ferster, 1997) support the
hypothesis that contrast adaptation is caused by a reduction in
excitatory synaptic drive. A number of experiments suggest a
synaptic, rather than a cellular, adaptation mechanism. Contrast
adaptation can occur locally within a portion of the receptive field
of a cell (Marlin et al., 1991; Nelson, 1991a), the sensitivity of a
neuron to a particular stimulus can be reduced without reducing
its maximal firing rate (Ohzawa et al., 1985), and contrast adap-
tation can be induced by stimuli that do not cause the cortical
neuron to fire (Vidyasagar, 1990; Geisler and Albrecht, 1992;
Allison and Martin, 1997). On the other hand, recent results show
that contrast adaptation can also be evoked by current injection
without visual stimulation, suggesting that a cellular mechanism
may also contribute (Sanchez-Vives et al., 1997).

We have constructed our model specifically to investigate the
impact of synaptic depression and thus have tried to avoid other
sources of temporal nonlinearity that would complicate the study
of this particular mechanism. We are not proposing that all of the
temporal response properties of cortical neurons arise solely from
synaptic depression. Undoubtedly, neuronal adaptation and cor-
tical circuit effects play a role in these phenomena. Some of the
effects of the interplay between recurrent synaptic connections,
cortical amplification (Douglas et al., 1995), and synaptic depres-
sion have been discussed by Todorov et al. (1997), Priebe et al.
(1997), and Sen (1997). Interplay between the different forms of
short-term plasticity seen in intracortical excitatory–excitatory,
excitatory–inhibitory, and inhibitory–excitatory synapses, as well
as the rich dynamics of recurrent neural circuits, will make the
study of more realistically connected models both challenging and
interesting.

The most direct way to test our model experimentally is to
modify synaptic depression in vivo. Recently, we and others have
shown that manipulations that diminish transmitter release also
diminish synaptic depression in slices (Gil et al., 1997; Tsodyks
and Markram, 1997; Varela et al., 1997). These manipulations
include reducing extracellular calcium, applying neuromodula-
tors including adenosine and acetylcholine, and activating pre-
synaptic GABA-B receptors. According to our model, reducing

Figure 9. Membrane potential oscillations evoked by a 4 Hz oscillating
grating at different contrast levels and for different degrees of adaptation.
The solid curves show the response of the model V1 cell (with action
potentials blocked) after prolonged exposure to an oscillating 100%
contrast grating. For the dashed curves, the adapting stimulus was a 5%
grating. A, Response to a 0% grating. The different levels of contrast
adaptation cause a DC shift in the membrane potential. B, Response to a
5% grating. C, Response to a 100% contrast grating. In B and C, the
different levels of contrast adaptation cause both a DC shift in the
membrane potential and a change in the amplitude of the membrane
potential oscillations. D, Same as C but with the spike generation mech-
anism in the model activated. Spikes have been truncated to reveal the
underlying subthreshold membrane potential more clearly.
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depression should make V1 responses more linear in the temporal
domain, and the response properties that we have attributed to
depression, such as enhancement of transient and reduction of
steady-state responses, nonlinear temporal summation, contrast-
dependent phase shifts, directional selectivity, and contrast adap-
tation, should be altered. Unfortunately, manipulations that mod-
ify transmitter release do not target synaptic depression
exclusively; they also affect response amplitude and synaptic fa-
cilitation. Spiking threshold effects in extracellular recordings can
make it difficult to untangle these combined modulations. Never-
theless, the model makes clear predictions about the impact that
modifying synaptic depression will have on visual responses, and
with sufficient pharmacological specificity and clever data analy-
sis, it should be possible to test them.

REFERENCES
Abbott LF, Sen K, Varela JA, Nelson SB (1997) Synaptic depression

and cortical gain control. Science 275:220–224.
Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the

perception of motion. J Opt Soc Am A2:284–299.
Ahmed B, Allison JD, Douglas RJ, Martin KAC (1997) An intracellular

study of the contrast-dependence of neuronal activity in cat visual
cortex. Cereb Cortex 7:559–570.

Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat:
contrast response function. J Neurophysiol 48:217–237.

Albrecht DG, Farrar SB, Hamilton DB (1984) Spatial contrast adapta-
tion characteristics of neurones recorded in the cat’s visual cortex.
J Physiol (Lond) 347:713–739.

Allison JD, Martin KAC (1997) Contrast adaptation produced by null
direction and cross orientation stimulation of neurons in cat visual
cortex. Soc Neurosci Abstr 23:454.

Atwood HL, Wojtowicsz JM (1986) Short-term and long-term plasticity
and physiological differentiation of crustacean motor synapses. Int Rev
Neurobiol 28:275–362.

Barlow H, Levick R (1965) The mechanism of directional selectivity in
the rabbit’s retina. J Physiol (Lond) 173:477–504.

Bonds AB (1991) Temporal dynamics of contrast gain in single cells of
the cat striate cortex. Vis Neurosci 6:239–255.

Borst A, Egelhaaf M (1989) Principles of visual motion detection.
Trends Neurosci 12:297–306.

Carandini M, Ferster D (1997) A tonic hyperpolarization underlying
contrast adaptation in cat visual cortex. Science 276:949–952.

Carandini M, Heeger DJ (1994) Summation and division by neurons in
primate visual cortex. Science 264:1333–1336.

Carandini M, Heeger DJ, Movshon JA (1998) Linearity and gain control
in V1 simple cells. In: Cerebral cortex, Vol XII (Jones EG, Ulinski PS,
eds). New York: Plenum, in press.

Castro-Alamancos M, Connors B (1996) Spatiotemporal properties of
short-term plasticity in sensorimotor thalamocortical pathways of the
rat. J Neurosci 16:2767–2779.

Cheng H, Chino YM, Smith EL, Hamamoto J, Yoshida K (1995) Trans-
fer characteristics of lateral geniculate nucleus X neurons in the cat:
effects of spatial frequency and contrast. J Neurophysiol 74:2548–2557.

Dean AF, Tolhurst DJ (1986) Factors influencing the temporal phase of
response to bar and grating stimuli for simple cells in the cat striate
cortex. Exp Brain Res 62:143–151.

Dean AF, Tolhurst DJ, Walker NS (1982) Non-linear temporal summa-
tion by simple cells in cat striate cortex demonstrated by failure of
superposition. Exp Brain Res 45:456–458.

Deisz R, Prince D (1989) Frequency-dependent depression of inhibition
in guinea-pig neocortex in vitro by GABAB receptor feedback on
GABA release. J Physiol (Lond) 412:513.

Douglas RJ, Koch C, Mahowald M, Martin KAC, Suarez HH (1995)
Recurrent excitation in neocortical circuits. Science 269:981–985.

Feidler JC, Saul AB, Murthy A, Humphrey AL (1997) Hebbian learning
and the development of direction selectivity: the role of geniculate
response timings. Network 8:192–214.

Ferster D (1994) Linearity of synaptic interactions in the assembly of
receptive fields in cat visual cortex. Curr Opin Neurobiol 4:563–568.

Finlayson PG, Cynader MS (1995) Synaptic depression in visual cortex
tissue slices: an in vitro model for cortical neuron adaptation. Exp
Brain Res 106:145–155.

Geisler WS, Albrecht DG (1992) Cortical neurons: isolation of contrast
gain control. Vision Res 32:1409–1410.

Giaschi D, Douglas R, Marlin S, Cynader M (1993) The time course of
direction-selective adaptation in simple and complex cells in cat striate
cortex. J Neurophysiol 70:2024–2034.

Gil Z, Amitai Y, Castro MA, Connors BW (1997) Differential regula-
tion of neocortical synapses by neuromodulators and activity. Neuron
19:679–686.

Grossberg S (1984) Some psychophysiological and pharmacological cor-
relates of a developmental, cognitive, and motivational theory. In:
Brain and information: event related potentials (Karrer R, Cohen J,
Tueting P, eds), pp 58–142. New York: NY Acad Sci.

Hamilton DB, Albrecht DG, Geisler WS (1989) Visual cortical receptive
fields in monkey and cat: spatial and temporal phase transfer function.
Vision Res 29:1285–1308.

Hawken MJ, Shapley RM, Grosof DH (1996) Temporal-frequency se-
lectivity in monkey visual cortex. Vis Neurosci 13:477–492.

Heeger DJ (1992) Normalization of cell responses in cat striate cortex.
Vis Neurosci 9:181–198.

Heeger DJ (1993) Modeling simple-cell direction selectivity with nor-
malized, half-squared, linear operators. J Neurophysiol 70:1885–1898.

Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J Physiol (Lond)
160:106–154.

Ho WA, Berkley MA (1988) Evoked potential estimates of the time
course of adaptation and recovery to counterphase grating. Vision Res
28:1287–1296.

Ikeda H, Wright MJ (1975) The relationship between the “sustained-
transient” and the “simple-complex” classifications of neurones in area
17 of the cat. J Physiol (Lond) 244:58P–59P.

Jagadeesh B, Wheat HS, Ferster D (1993) Linearity of summation of
synaptic potentials underlying direction selectivity in simple cells of the
cat visual cortex. Science 262:1901–1904.

Kontsevich LL (1995) The nature of the inputs to cortical motion de-
tectors. Vision Res 35:2785–2793.

Krausz HI, Friesen WO (1977) The analysis of nonlinear synaptic trans-
mission. J Gen Physiol 70:243–265.

Kulikowski JJ, Bishop PO, Kato H (1979) Sustained and transient re-
sponses by cat striate cells to stationary flashing light and dark bars.
Brain Res 170:362–367.

Liley AW, North KAK (1952) An electrical investigation of effects of
repetitive stimulation on mammalian neuromuscular junction. J Neu-
rophysiol 16:509–527.

Maddess T, McCourt ME, Blakeslee B, Cunningham RB (1988) Factors
governing the adaptation of cells in area-17 of the cat visual cortex. Biol
Cybern 59:229–236.

Maex R, Orban GA (1992) A model circuit for cortical temporal low-
pass filtering. Neural Comput 4:932–945.

Maex R, Orban GA (1996) Model circuit of spiking neurons generating
directional selectivity in simple cells. J Neurophysiol 75:1515–1545.

Magleby KL, Zengel JE (1975) A quantitative description of tetanic and
post-tetanic potentiation of transmitter release at the frog neuromus-
cular junction. J Physiol (Lond) 245:183–208.

Markram H, Tsodyks MV (1996) Redistribution of synaptic efficacy
between neocortical pyramidal neurones. Nature 382:807–809.

Marlin SG, Douglas RM, Cynader MS (1991) Position-specific adapta-
tion in simple cell receptive fields of the cat striate cortex. J Neuro-
physiol 66:1769–1784.

Mastronarde DN (1987) Two classes of single-input x-cells in cat lateral
geniculate nucleus. Cat lateral geniculate nucleus. I. Receptive-field
properties and classification of cells. J Neurophysiol 57:357–380.

Maunsell JHR (1987) Physiological evidence for two visual subsystems.
In: Matters of intelligence (Vaina LM, ed), pp 59–87. New York:
Reidel.

McLean J, Palmer LA (1996) Contrast adaptation and excitatory amino
acid receptors in cat striate cortex. Vis Neurosci 13:1069–1087.

Miller KD (1992) Models of activity-dependent neural development.
Semin Neurosci 4:61–73.

Miura K, Kurata K, Nagano T (1995) Self-organization of the velocity
selectivity of a directionally selective neural network. Biol Cybern
73:401–407.

Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual
cortical neurones. Nature 278:850–852.

Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial and temporal

4798 J. Neurosci., June 15, 1998, 18(12):4785–4799 Chance et al. • Synaptic Depression and V1 Responses



contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual
cortex. J Physiol (Lond) 283:101–120.

Nelson SB (1991a) Temporal interactions in the cat visual system. I.
Orientation-selective suppression in the visual cortex. J Neurosci
11:344–356.

Nelson SB (1991b) Temporal interactions in the cat visual system. III.
Pharmacological studies of cortical suppression suggest a presynaptic
mechanism. J Neurosci 11:369–380.

Nelson SB, Varela JA, Sen K, Abbott LF (1997) Functional significance
of synaptic depression between cortical neurons. In: Computational
neuroscience, trends in research (Bower JM, ed), pp 429–434. New
York: Plenum.

Ohzawa I, Sclar G, Freeman RD (1985) Contrast gain control in the cat’s
visual system. J Neurophysiol 54:652–667.

Orban GA, Hoffmann KP, Duysens J (1985) Velocity selectivity in the
cat visual system. I. Responses of LGN cells to moving bar stimuli: a
comparison with cortical areas 17 and 18. J Neurophysiol 54:1026–1049.

Orban GA, Kennedy H, Bullier J (1986) Velocity sensitivity and direc-
tion selectivity of neurons in areas V1 and V2 of the monkey: influence
of eccentricity. J Neurophysiol 56:462–480.

Pasternak T, Schumer RA, Grizzi MS, Movshon JA (1985) Abolition of
visual cortical direction selectivity affects visual behavior in cats. Exp
Brain Res 61:214–217.

Priebe NJ, Kayser AS, Krukowski AE, Miller KD (1997) A model of
simple cell orientation tuning: the role of synaptic depression. Soc
Neurosci Abstr 23:2061.

Reid RC, Soodak RE, Shapley RM (1991) Direction selectivity and
spatiotemporal structure of receptive fields of simple cells in cat striate
cortex. J Neurophysiol 66:505–529.

Reid RC, Victor JD, Shapley RM (1992) Broadband temporal stimuli
decrease the integration time of neurons in cat striate cortex. Vis
Neurosci 9:39–45.

Ringach DL, Hawken MJ, Shapley R (1997) Dynamics of orientation
tuning in macaque primary visual cortex. Nature 387:281–284.

Sanchez-Vives MV, Nowak LG, McCormick DA (1997) Cellular and
network mechanisms generating adaptation to contrast in the visual
cortex: an in vivo and in vitro study. Soc Neurosci Abstr 23:1944.

Saul AB, Humphrey AL (1992) Spatial and temporal properties of
lagged and nonlagged cells in the cat lateral geniculate nucleus. J Neu-
rophysiol 68:1190–1208.

Saul AB, Humphrey AL (1992) Temporal-frequency tuning of direction
selectivity in cat visual cortex. Vis Neurosci 8:365–372.

Sen K (1997) The temporal dynamics of synapses and synaptic decoding.
PhD Thesis, Brandeis University.

Sen K, Jorge-Rivera JC, Marder E, Abbott LF (1996) Decoding syn-
apses. J Neurosci 16:6307–6318.

Shaw C, Teyler TJ (1982) The neural circuitry of the neocortex examined
in the in vitro brain slice preparation. Brain Res 243:35–47.

Skottun BC, Bradley A, Ramoa AS (1986) Effect of contrast on spatial
frequency tuning of neurones in area 17 of cat’s visual cortex. Exp
Brain Res 63:431–435.

Smith A, Snowden R (1994) Visual detection of motion. London:
Academic.

Song S, Varela JA, Abbott LF, Nelson SB (1997) A quantitative descrip-
tion of synaptic depression at monosynaptic inhibitory inputs to visual
cortical pyramidal neurons. Soc Neurosci Abstr 23:2362.

Stratford KJ, Tarczy-Hornuch K, Martin KAC, Bannister NJ, Jack JJB
(1996) Excitatory synaptic inputs to spiny stellate cells in cat visual
cortex. Nature 382:258–261.

Suarez H, Koch C, Douglas R (1995) Modeling direction selectivity of
simple cells in striate visual cortex within the framework of the canon-
ical microcircuit. J Neurosci 15:6700–6719.

Thomson AM, Deuchars J (1994) Temporal and spatial properties of
local circuits in neocortex. Trends Neurosci 17:119–126.

Thomson AM, West DC (1993) Fluctuations in pyramid–pyramid exci-
tatory postsynaptic potentials modified by presynaptic firing pattern
and postsynaptic membrane potential using paired intracellular record-
ings in rat neocortex. Neuroscience 54:329–346.

Thomson AM, Deuchars J, West DC (1993) Large, deep layer pyramid–
pyramid single axon EPSPs in slices of rat motor cortex display paired
pulse and frequency-dependent depression, mediated presynaptically
and self-facilitation, mediated postsynaptically. J Neurophysiol
70:2354–2369.

Todorov EV, Siapas AG, Somers DC, Nelson SB (1997) Modeling
visual cortical contrast adaptation effects. In: Computational neuro-
science, trends in research (Bower JM, ed), pp 525–531. New York:
Plenum.

Tolhurst DJ, Dean AF (1991) Evaluation of a linear model of directional
selectivity in simple cells of the cats striate cortex. Vis Neurosci
6:421–428.

Tolhurst DJ, Heeger DJ (1997) Contrast normalization and a linear
model for the directional selectivity of simple cells in cat striate cortex.
Vis Neurosci 14:19–25.

Tolhurst DJ, Walker NS, Thompson ID, Dean AF (1980) Non-
linearities of temporal summation in neurones in area 17 of the cat. Exp
Brain Res 38:431–435.

Tsodyks MV, Markram H (1997) The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability.
Proc Natl Acad Sci USA 94:719–723.

Varela J, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A
quantitative description of short-term plasticity at excitatory synapses
in layer 2/3 of rat primary visual cortex. J Neurosci 17:7926–7940.

Vidyasagar TR (1990) Pattern adaptation in cat visual cortex is a co-
operative phenomenon. Neuroscience 36:175–179.

Watson AB, Ahumada AJ (1985) Model of human visual-motion sens-
ing. J Opt Soc Am A2:322–342.

Wörgötter F, Koch C (1991) A detailed model of the primary visual
pathway in the cat: comparison of afferent excitatory and intracortical
inhibitory connection schemes for orientation selectivity. J Neurosci
11:1959–1979.

Zengel JE, Magleby KL (1982) Augmentation and facilitation of trans-
mitter release. J Gen Physiol 80:583–611.

Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci
12:13–31.

Chance et al. • Synaptic Depression and V1 Responses J. Neurosci., June 15, 1998, 18(12):4785–4799 4799


